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Abstract: In this paper we construct some skewed distributions with pdfs of
the form 2f(u)G(λu), where λ is a real number, f(·) is taken to be a Laplace
pdf while the cdf G(·) comes from one of Laplace, double Weibull, reflected
Pareto, reflected beta prime, or reflected generalized uniform distribution.
Properties of the resulting distributions are studied. In particular, expres-
sions for the moments of these distributions and the characteristic functions
are derived. However, as some of these quantities could not be evaluated in
closed forms, special functions have been used to express them. Graphical
illustrations of the pdfs of the skewed distributions are also given. Further,
skewness-kurtosis graphs for these distributions have been drawn.

Zusammenfassung: In diesem Aufsatz konstruieren wir einige schiefe Vertei-
lungen mit Verteilungsfunktionen der Form 2f(u)G(λu), wobei λ eine reelle
Zahl und f(·) eine Laplace Dichte ist, während die Verteilungsfunktion G(·)
von einer Laplace-, zweiseitigen Weibull-, reflektierten Pareto-, reflektierten
Beta-Primär-, oder reflektierten generalisierten Gleichverteilung stammt. Die
Eigenschaften der resultierenden Verteilungen werden untersucht. Im Beson-
deren werden Ausdrücke für die Momente dieser Verteilungen und deren
charakteristische Funktionen hergeleitet. Da jedoch einige dieser Größen
nicht in geschlossener Form dargestellt werden konnten, wurden spezielle
Funktionen verwendet um diese auszudrücken. Graphische Illustrationen
der Dichten dieser schiefen Verteilungen sind auch gegeben. Weiters sind
Skewness-Kurtosis Graphen für diese Verteilungen gezeichnet worden.

Keywords: Skewed Distribution, Laplace Distribution, Double Weibull Dis-
tribution, Reflected Pareto Distribution, Reflected Beta Prime Distribution,
Reflected Generalized Uniform Distribution, Moments, Characteristic Func-
tions.

1 Introduction
Univariate skew-symmetric models have been defined by several authors, using the con-
cept described in the article by Azzalini (1985). This particular article defined the family
of univariate skewed-normal distributions, an extension of the symmetric normal distribu-
tion to a general class of asymmetrical distributions. An extension of the skewed-normal
distribution to the multivariate case was studied by Azzalini and Dalla Valle (1996). Its
application in statistics has been considered by Azzalini and Capitanio (1999). As a gen-
eral result, Azzalini (1985) showed that any symmetric distribution could be viewed as
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a member of more general class of skewed distributions. In recent years, many authors
have studied similar distributions. For example, see Ali, Woo, Pal, and Wahed (2008),
Ali and Woo (2006), Gupta, Chang, and Huang (2002), Wahed and Ali (2001), Arnold
and Beaver (2000a, 2000b), Balakrishnan and Ambagaspitiy (1994), Azzalini (1986).
The main feature of these models is that a skewness parameter λ is introduced to control
skewness and kurtosis. These models are useful in many practical situations (see Hill and
Dixon, 1982; Arnold, Beaver, Groeneveld, and Meeker, 1983) and have also been used
in studying robustness and as priors in Bayesian estimation (see O’Hagan and Leonard,
1976; Mukhopadhyay and Vidakovic, 1995).

The skew-symmetric models defined by different researchers are based on the follow-
ing general result by Azzalini (1985):
Lemma: Let U and V be two arbitrary absolutely continuous independent random vari-
ables symmetric about zero, with probability density functions (pdfs) f and g, and cu-
mulative distribution functions (cdfs) F and G, respectively. Then for any λ ∈ R, the
function

fZ(z; λ) = 2f(z)G(λz) (1)

is a valid pdf of a random variable, say Z.
The papers mentioned above obtain skew-symmetric models by taking both f and G

to belong to the same family of symmetric distributions. Mukhopadhyay and Vidakovic
(1995) pointed out an extension of the above approach by suggesting that one take f and
G in (1) to belong to two different families. Nadarajah and Kotz (2003) were probably
the first to consider this extension. They studied skew-symmetric models with f as the
pdf of a normal distribution with mean zero and variance σ2, and G as the cdf of normal,
Student’s t, Cauchy, Laplace, logistic and uniform distributions. Nadarajah and Kotz
(2004) also defined skew-symmetric models with f as the pdf of a Laplace distribution,
and G being the cdf of normal, Student’s t, Cauchy, logistic and uniform distributions.
Ali, Pal, and Woo (2008) discussed skew-symmetric models with reflected gamma kernel
and G as the cdf of Laplace, double Weibull, reflected Pareto, reflected beta prime and
reflected generalized uniform distributions.

In this paper we construct skewed distributions with a Laplace kernel. Here f is given
by

f(x) =
1

2
θ exp(−|x|/θ) , x ∈ R , θ > 0 .

We then explicitly define skewed Laplace-Laplace, Laplace-double Weibull, Laplace-
reflected Pareto, Laplace-reflected beta prime and skewed Laplace-reflected generalized
uniform distributions. These distributions reduce to the symmetric Laplace distribution
when the skewing parameter is set to zero. They allow distinct local maxima for bimodal
distributions and therefore provide greater flexibility for modeling bimodal frequency dis-
tributions. We also derive the expressions for the pdf, cdf, and the moments of these
distributions. However, some of these quantities could not be evaluated in closed forms
and therefore special functions were used to express them. Also, we find moments of the
distributions only for the skewness parameter λ > 0 because of the following:
Fact 1: For a random variable Z having pdf given by (1),

E(Zk; λ) = (−1)kE((−Z)k;−λ) .
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The paper is organized as follows. In Sections 2 to 7 we introduce the skewed distri-
butions and derive some of their properties. In Section 8, we discuss the skewness and
kurtosis of these distributions. In Section 9 we conclude the article with some remarks on
our findings.

2 Skew Laplace-Laplace Model
The cdf of a Laplace variable is given by

G(x) =
1

2
[1 + sgn(x)(1− exp(−|x|/β))] , x ∈ R , β > 0 , (2)

where

sgn(x) =

{
1 if x ≥ 0

−1 if x < 0 .

Then (2) yields the following pdf of the skew Laplace-Laplace variable Z:

fZ(z; λ) =
1

2θ
exp(−|z|/θ)[1 + sgn(λz)(1− exp(−|λz|/β))] , z ∈ R , λ ∈ R .

(3)

Figure 1: Density curves of skew Laplace-Laplace distributions for λ = 0.5, 1, 3, 5 when
θ = 2, β = 1.

The k-th moment of the distribution is obtained as

E(Zk; λ) = θkΓ(k + 1)

[
1 +

(−1)k − 1

2

βk+1

(β + λθ)k+1

]
, λ > 0 .

Measures of skewness and kurtosis of the distribution are, respectively, given by

γ1 =
µ3

µ
3/2
2

, γ2 =
µ4

µ2
2

,

where µk denotes k-th order central moment of Z, with

µ2 = θ2(1− 2ρ2 − ρ4) , µ3 = 2θ3(1− ρ6) ,

µ4 = 3θ4(3− 8ρ2 + 2ρ4 − 8ρ6 − ρ8) , ρ =
β

β + λθ
.
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For θ = β, we get

E(Zk; λ) = θkΓ(k + 1)

[
1 +

(−1)k − 1

2

1

(1 + λ)k+1

]
.

Then, the first four moments of the distribution come out to be

E(Z; λ) = θkΓ(k + 1)

[
1− 1

(1 + λ)2

]
, E(Z2; λ) = 2θ2

E(Z3; λ) = 6θk

[
1− 1

(1 + λ)4

]
, E(Z4; λ) = 24θ4 .

Measure of skewness of the distribution is then given by

γ1 =
2
[
1− (

1
1+λ

)6
]

[
1 + 2

(
1

1+λ

)2 − (
1

1+λ

)4
]3/2

.

Figure 2 shows that the distribution is negatively skewed and the skewness increases as λ
increases.

Figure 2: Graph of γ1 versus λ when θ = β.

The characteristic function of the skew Laplace-Laplace distribution defined by (3)
has the form

φZ(t) = (1− itθ)−1 +
1

2θ

[(
1

θ
+

λ

β
+ it

)−1

−
(

1

θ
+

λ

β
− it

)−1
]

.

3 Skew Laplace-Double Weibull Model
The double Weibull random variable has the cdf

G(x) =
1

2
[1 + sgn(x)(1− exp(−|x|α))] , x ∈ R , α > 0 .
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Figure 3: Density curves of skew Laplace-double Weibull distributions for λ = 0.5, 1, 3, 5
when θ = 2, α = 0.5.

The skew Laplace-double Weibull distribution is, therefore, defined by the pdf

fZ(z; λ) =
1

2θ
exp(−|z|/θ) [1 + sgn(λz)(1− exp(−|λz|α))] , z, λ ∈ R , α, θ > 0 .

From formula 3.381(4) in Gradshteyn and Ryzhik (1965) we obtain the k-th moment
of the distribution as

E(Zk; λ) = θk

[
Γ(k + 1) +

(−1)k − 1

2

∞∑
i=0

(−1)i (λθ)αi

i!
Γ(k + αi + 1)

]
, λ > 0 .

The characteristic function of the skew Laplace-double Weibull distribution has the form

φZ(t) = (1− itθ)−1− 1

2θ

∞∑
j=0

(−1)j

j!
λjαΓ(jα+1)

[(
1

θ
− it

)−(jα+1)

−
(

1

θ
+ it

)−(jα+1)
]

.

For α = 2, we get the skew Laplace-double Raleigh distribution, and, using formula
3.462(5) in Gradshteyn and Ryzhik (1965), the mean of the distribution comes out to be

E(Z; λ) = θ − 1

2λ2θ

[
1− 1

2θ

√
π

λ2
exp

(
1

4λ2θ2

)(
1− Φ

(
1

2λθ

))]
,

where Φ(·) is the cdf of a standard normal variate.

4 Skew Laplace-Reflected Gamma Model
The reflected gamma random variable has the cdf

G(x) =
1

2

[
1 + sgn(x)

1

Γ(α)
γ (α, |x|/β)

]
, x ∈ R , α, β > 0 ,
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where γ(a, t) =
∫ t

0
xα−1 exp(−x)dx.

The skew Laplace-reflected gamma distribution then has the pdf

fZ(z; λ) =
1

2θ
exp(−|z|/θ)

[
1 + sgn(λz)

1

Γ(α)
γ (α, |λz|/β)

]
, z ∈ R , λ ∈ R .

Figure 4: Density curves of skew Laplace-reflected gamma distributions for λ =
0.5, 1, 3, 5 when θ = 2, α = 2, β = 0.5.

Using formulas 3.381(4) and 6.455(2) in Gradshteyn and Ryzhik (1965), the k-th
moment of the distribution is obtained in the following form:

E(Zk; λ) = θk

[
1 + (−1)k

2
k! +

1− (−1)k

2

Γ(k + α + 1)

Γ(α + 1)

θα

(1 + λθ/β)k+α+1

·F
(

1, k + α + 1; α + 1;
λθ/β

1 + λθ/β

)]
, λ > 0 ,

where

F (a, b; c; x) =
∞∑
i=0

(a)i(b)i

(c)i

xi

i!

is the Gauss hypergeometric function with Pochhammer symbol

(a)i =
Γ(a + i)

Γ(a)
= a(a + 1)(a + 2) · · · (a + i− 1) .

For k = 1, using formula 12.2.25 in Abramowitz and Stegun (1972), we get

F (1, α + 2; α + 1; x) =
(1 + x)(1 + α− αx)

(1 + α)(1− x)

so that

E(Z; λ) = θα+1 (1 + 2λθ/β)(1 + α + λθ/β)

(1 + λθ/β)α+3
.
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The characteristic function of the skew Laplace-reflected gamma distribution is given by

φZ(t) = (1− itθ)−1 −
[

itθ

(1 + t2θ2)
+

1

2(1 + itθ)
[
1 + β

λ

(
1
θ

+ it
)]α

− 1

2(1− itθ)
[
1 + β

λ

(
1
θ
− it

)]α

]
.

5 Skew Laplace-Reflected Pareto Model

The reflected Pareto distribution is defined by the cdf

G(x) =
1

2

[
1 + sgn(x)

(
1−

(
β

β + |x|
)α)]

, x ∈ R , α, β > 0 .

A skew Laplace-reflected Pareto distribution, therefore, has the pdf

fZ(z; λ) =
1

2θ
exp(−|z|/θ)

[
1 + sgn(λz)

(
1−

(
β

β + |λz|
)α)]

, z, λ ∈ R .

Figure 5: Density curves of skew Laplace-reflected Pareto distributions for λ = 0.5, 1, 3, 5
when θ = 2, α = 2, β = 3.

For λ > 0, the k-th moment of the distribution is obtained using formula 3.5 in
Oberhettinger (1974) in the following form:

E(Zk; λ) = θkΓ(k + 1)

[
1 +

1− (−1)k

2
exp

(
β

2θλ

)(
β

θλ

) k+α
2

W− k+α
2

, k−α+1
2

(
β

θλ

)]
,

where Wa,b(x) is the Whittaker function.
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Using formula 3.381(3) in Gradshteyn and Ryzhik (1965) the moment may also be
expressed in the following form :

E(Zk; λ) = θk

[
Γ(k + 1) +

(−1)k − 1

2
exp

(
β

θλ

) k∑
i=0

(−1)k−i

(
k

i

)(
β

θλ

)k+α−i

Γ

(
i− α + 1,

β

θλ

)]
,

where Γ(a, x) = γ(a,x)
Γ(a)

is an incomplete gamma function.
The mean of the skewed distribution, therefore, comes out to be

E(Z; λ) = θ

[
1 + exp

(
β

θλ

)(
β

θλ

)α (
β

θλ
Γ

(
1− α,

β

θλ

)
− Γ

(
2− α,

β

θλ

))]
.

Using formula 3.383(5) in Gradshteyn and Ryzhik (1965), the characteristic function of
the distribution is given by

φZ(t)=(1−itθ)−1−βα

θ

∞∑
j=0

(it)2j+1

j!

(
λ

β

)−2(j+1)

Γ(2j+2)ψ

(
2(j + 1), 2j + 3− α;

β

θλ

)
,

where ψ(a, b; x) is the degenerate hypergeometric function.

6 Skew Laplace-Reflected Beta Prime Model
The reflected beta prime distribution has the cdf

G(x) =
1

2

[
1 + sgn(x)I |x|

1+|x|
(α, β)

]
, x ∈ R , α, β > 0 ,

where Ix(a, b) = Bx(a, b)/B(a, b) is the incomplete beta function.
The pdf of the skew Laplace-beta prime distribution is, therefore,

fZ(z; λ) =
1

2θ
exp(−|z|/θ)

[
1 + sgn(λz)I |λz|

1+|λz|
(α, β)

]
, z ∈ R , λ ∈ R .

To find the moments of the distribution we make use of the formulas 3.381(4), 8.391
and 8.392 in Gradshteyn and Ryzhik (1965) and formula 3.5 in Oberhettinger (1974), and
get

E(Zk; λ) = θk

[
1 + (−1)k

2
Γ(k + 1) +

1− (−1)k

2

(θλ)−k/2

αB(α, β)

· exp

(
1

2θλ

) ∞∑
j=0

(α)j(1− β)j

j!(α + 1)j

Γ(k + α + j + 1)W−(α+j+k/2), k+1
2

(
1

λθ

)]
,

λ > 0 .
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Figure 6: Density curve of skew Laplace-reflected beta prime distribution for λ =
0.5, 1, 3, 5 when θ = 2, α = 2, β = 1.

The characteristic function of the skew Laplace-reflected beta prime distribution is ob-
tained as follows, using formula 3.383(5) in Gradshteyn and Ryzhik (1965):

φZ(t) = (1−itθ)−1−
[

itθ

(1 + t2θ2)

+
1

θ

∞∑
j=0

(it/λ)2j+1

j!
Γ(2j+α+1)ψ

(
2j+α+1, 2j−β+2;

1

θλ

)]
.

7 Skew Laplace-Reflected Generalized Uniform Model

A reflected generalized uniform variable X has the cdf given by

G(x) =





0 if x < −β
1
2
[1 + sgn(x)(|x|/β)α+1] if |x| ≤ β

1 if x > β ,

where β > 0, α > −1. For α = 0, it becomes the uniform distribution, and for β = 1 we
get the reflected power function distribution.

The skew Laplace-reflected generalized uniform distribution will, therefore, be de-
fined by the pdf

fZ(z; λ) =





0 if λz < −β
1
2θ

exp(−|z|/θ) [
1 + sgn(λz) (|λz|/β)α+1] if |λz| ≤ β

1
θ
exp(−|z|/θ) if λz > β .

For λ > 0, we use formulas 3.381(1) and 3.381(3) in Gradshteyn and Ryzhik (1965)
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Figure 7: Density curves of skew Laplace-reflected generalized uniform distributions for
λ = 0.5, 1, 3, 5 when θ = 2, α = 0.5, β = 2.

to get

E(Zk; λ) = θk

[
Γ

(
k + 1,

β

λθ

)
+

1 + (−1)k

2
θγ

(
k + 1,

β

λθ

)

+
1− (−1)k

2

(
θλ

β

)α+1

γ

(
k + α + 2,

β

λθ

)]
,

for k = 1, 2, . . . . Then,

E(Z; λ) = θ

[
Γ

(
2,

β

λθ

)
+

(
θλ

β

)α+1

γ

(
α + 3,

β

λθ

)]
, E(Z2; λ) = 2θ2 .

For α = 0, i.e. for the skew Laplace-uniform distribution,

E(Zk; λ) = θk

[
Γ

(
k + 1,

β

λθ

)
+

1 + (−1)k

2
θγ

(
k + 1,

β

λθ

)

+
1− (−1)k

2

(
θλ

β

)
γ

(
k + 2,

β

λθ

)]
,

for k = 1, 2, . . . . Hence, for the skew Laplace-uniform distribution,

E(Z; λ) = θ

[
Γ

(
2,

β

λθ

)
+

(
θλ

β

)
γ

(
3,

β

λθ

)]
, E(Z2; λ) = 2θ2 .

The characteristic function of the skew Laplace-reflected generalized uniform distribution
is obtained as

φZ(t) = (1− itθ)−1 − itθ

1 + t2θ2
− 1

2
exp (−β/θ)

(
exp(−itβ)

1 + itθ
− exp(itβ)

1− itθ

)

+ (λθ/β)α+1
∞∑

j=0

(itθ)2j+1

(2j + 1)!
γ (2j + α + 3, β/θ) .
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8 Skewness and Kurtosis of the Skewed Distributions
For the standard Laplace distribution, γ1 = 0 and γ2 = 6, which means it is a symmetric,
platykurtic distribution. In order to examine how flexible the six skewed distributions
defined are, in the sense of skewness and peakedness, we draw the skewness-kurtosis
graphs (see Dudewicz and Mishra, 1988). The graphs have been drawn by computing
(γ1, γ2) for the set of parameter values as follows:

• θ = 1, 2, . . . , 40 and λ = −100000,−99999, . . . , 99999, 100000

• β = 1, 2, . . . , 40 for skew Laplace-Laplace distribution

• α = 1, 2, . . . , 40 for skew Laplace-Double Weibull distribution

• β = 1 and α = 1, 2, . . . , 40 for skew Laplace-reflected Gamma distribution

• α = 2 and β = 1, 2, . . . , 40 for skew Laplace-reflected Pareto distribution

• α = 1 and β = 1, 2, . . . , 40 for skew Laplace-reflected beta prime distribution

• α = 0 and β = 1, 2, . . . , 40 for skew Laplace-generalized uniform distribution

For the last four distributions, one of the parameters is maintained at a fixed value for the
sake of simplicity.

It is quite evident from the graphs that the skewed distributions investigated are very
flexible in terms of exhibiting both positive and negative skewness, as well as high and
low degrees of peakedness. If variation in values of the third parameter in skew Laplace-
reflected Gamma, skew Laplace-reflected Pareto, skew Laplace-beta prime distribution
and skew Laplace-uniform models be allowed, then wider coverage areas could be real-
ized in the graphs.

9 Concluding Remarks
In recent years, a fair amount of research has focused on extending families of symmet-
ric densities to incorporate skewed distributions. This has resulted in a vast literature on
skewed distributions, giving a broader flexibility to statistical modeling of natural phe-
nomena. The skewed distributions discussed in this paper add a great deal of flexibility
in the sense that by proper choice of skewing parameter, they can be made to exhibit both
positive and negative skewness, as well as higher and lower degrees of peakedness.
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