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Abstract

We explore how global symmetry can be detected prior to segmentation
and under noise and occlusion. The definition of local symmetries is ex-
tended to affine geometries by considering the tangents and curvatures of
local structures, and a quantitative measure of local symmetry known as
symmetricity is introduced, which is based on Mahalanobis distances from
the tangent-curvature states of local structures to the local skewed symmetry
state-subspace. These symmetricity values, together with the associated lo-
cal axes of symmetry, are spatially related in the local skewed symmetry field
(LSSF). In the implementation, a fast, local symmetry detection algorithm
allows initial hypotheses for the symmetry axis to be generated through the
use of a modified Hough transform. This is then improved upon by max-
imising a global symmetry measure based on accumulated local support in
the LSSF — a straight active contour model is used for this purpose. This
produces useful estimates for the axis of symmetry and the angle of skew in
the presence of contour fragmentation, artifacts and occlusion.

1 Introduction

Symmetry, like the other properties described in the Gestalt principles of per-
ceptual grouping [9, 10], represents information redundancy which may be used
to overcome noise and occlusion. Under normal viewing conditions we are more
likely to encounter skewed symmetry [7], which is planar bilateral symmetry trans-
formed affinely (viewed under weak perspective [13]) or perspectively, rather than
pure bilateral symmetry.

Friedberg [4, 5] described a method based on moments to detect skewed sym-
metry axes of 2-D shapes, which assumes prior segmentation of objects. Glachet et

al. [6] proposed a technique for recovering symmetric axes in line drawings under
full perspective projection. Ponce [12] exploited straight-spined Brooks Ribbons
and their curvature relationships to pick out symmetrical pairs of points. Mukher-
jee et al. [11] exploited bitangents in objects to define affine bases, from which
relative invariants are used to compare pairs of contours with bitangents for sym-
metry.

Many of these methods apply only to objects which are easy to segment, or
are special cases, and do not consider circumstances when symmetry will be use-
ful to perceptual grouping, such as in cases where objects are occluded, or have
fragmented contours.
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In this paper a local approach to skewed symmetry detection is adopted to
handle occlusion. Sensitivity to noise inherent in local measurements is coped
with through non-committal classification, uncertainty analysis, and arriving at
global decisions by accumulation of independent, local support.

2 Theoretical Framework

2.1 Local Skewed Symmetries

For a point on a curve, its description may be expressed as a Taylor series expan-
sion [3]. The zeroth order term gives the location of the point, the first order term
the orientation of the tangent, the second order term the curvature, etc. The loca-
tions of two skewed symmetric points provide two constraints on two parameters:
the angle of skew and the mid-point between them (the axis of symmetry must
pass through this mid-point). Orientation information gives another constraint to
fully define the axis of symmetry by the property:

Property 1 The intersection of tangents to a pair of skewed symmetric contour
points lie on the axis of symmetry.

Having uniquely define the symmetry basis consisting of an axis of symmetry and
an angle of skew for the pair of points, we can verify the basis through a further
constraint based on curvature:

Proposition 1 Suppose na and Kb are the curvatures (inverses of the radii of
curvature Ra and Rb shown in figure 1 (a)) and aa and o~b are the respective angles
between the curve normals and the angle of skew, as shown in figure l(a). Then
if the two points are skewed symmetric, the following must hold:

Kb \cosabj

See [2] for the derivation. The result is similar to that obtained by Ponce [12],
but obtained by a different approach. We can extend this constraint verification
process to the highest order derivative to which the curve is locally differentiable.
This allows us to extend the definition of local symmetries to different
transformation groups:

Definition 1 A local symmetry for a particular transformation group refers to a
pair of contour points defining a unique symmetry basis within that group. The
required number of parameters is obtained through the derivatives of the contours
at those points. Additionally, the symmetry basis must also be consistent with at
least one other independent constraint provided by the next higher order derivative.

Notice that the smoothed local symmetries proposed by Brady and Asada [1]
satisfy this definition, since a symmetry basis under scaled Euclidean transfor-
mations may be uniquely defined by the positions of two points; the requirement
that the orientations of the tangents to the contours must be equal with respect
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to the line joining the points, provides the additional independent constraint. We
can also define local skewed symmetries, for which the positions and the tan-
gents at the symmetric contour points define a unique symmetry basis under affine
transformations, and the curvatures provide the extra constraint to be satisfied in
the form of (1).

observed state of contour-point
pair with convarbince ellipse

local skewed symmetry subspace

(a) ^ - - v (b) - U = * J

Figure 1: (a); Proposition 1 relates the curvatures of a pair symmetric contour points
to the angles between the normals and the axis of skew, as shown above; this provides the
additional constraint mentioned in definition 1 to define local skewed symmetries, (b);
In the above state-space the straight line v — u represents the local skewed symmetry
subspace. The symmetricity between a pair of contour points is inversely proportional
to (1 + the shortest Mahalanobis distance squared from their observed combined state
position to the subspace).

2.2 Symmetricity

Attempting to directly classify pairs of points as local skewed symmetries in the
presence of noise and other measurement errors is unlikely to succeed. A better
approach would be to adopt a continuous measure of local symmetry. Such a
measure can take many different forms, and the one proposed in this paper is
based on (1).

In figure l(b), the state space with state variables v = ^ and u — [c
c°

3
s^ J

is shown for a pair of contour points. The state of the contour-point pair will
map onto a single spot (uo) in this state space, and the straight line v — u is
the subspace for which local skewed symmetry holds. Noise perturbs the positions
of contour-point pairs in this state space, and therefore the proposed symmetry
measure is based on the shortest distance to the subspace. Since the error variances
are not the same nor necessarily independent for both state variables, then on the
assumption that the errors are Gaussian, Mahalanobis distance [15] is used instead
of the perpendicular (Euclidean) distance.

Assuming that the covariance matrix K between u and v may be obtained
(eg. via automated least-squares B-spline fitting, see [2]), then the Mahalanobis
distance squared d

2 is given by

d
2 = (u - uo)' K"1 (u - uo) (2)

where u = \u v]' and uo is the observed state of the contour-point pair. The
shortest Mahalanobis distance to the local skewed symmetry subspace may be
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found by substituting v = u into (2) and minimising the quadratic equation.
These steps are further elaborated in [2].

This leads us to the following definition for symmetricity.

Definition 2 Given the shortest Mahalanobis distance d from the observed state
of the pair of contour points a and b, to the local skewed symmetry subspace within
the state-space spanned by u and v as described above, the symmetricity between
a and b is given by

However, work on fitting B-splines automatically is still ongoing, and the cur-
rent implementation uses Euclidean distances instead of Mahalanobis distances.

2.3 The Local Skewed Symmetry Field

In order to spatially represent the symmetry evaluation for each pair of contour
points in an intuitive and useful way, we define a local skewed symmetry field
for the set of contours in an image:

Definition 3 The local skewed symmetry field (LSSF) for a set of contours is

formed by:

• assigning the symmetricity for a pair of points on the contours to the location
of the mid-point of the line joining the pair of points. If more than one pair
of points maps to this location, only the pair with highest symmetricity is
retained. This is the magnitude of the field at the location.

• assigning a direction vector representing the direction of the local axis of
symmetry ; This is termed the 'first direction' of the LSSF.

• assigning another direction vector parallel to the line joining the pair of
points, representing the direction of skew; the 'second direction'.

Figure 2: In order to obtain curvature information to calculate the local skewed sym-
metry field, cubic B-splines are fitted to the image contours in (a); in the actual im-
plementation, the B-splines are fitted to the output from the Canny edge-detector. The
two components of the local skewed symmetry field are represented separately: the sym-
metricity values are shown in (h), while the first directions (local axes of symmetry) are
mapped in (c).

Figure 2(a) shows a planar symmetric object to which cubic B-splines are man-
ually fitted to the image contours in order to obtain the derivatives for computation



553

of the local skewed symmetry fields (later implementation differs; details in sec-
tion 4.2). The magnitude and first direction maps of the local skewed symmetry
fields are shown in figure 2(b) and (c).

The ridges in the field bear some similarity to the symmetry set for smoothed
local symmetries. The global axis of symmetry appears as a ridge when the data
obtained is accurate, and there are also ridges running from the corners. How-
ever the ridges of the LSSF are not affine-transformed smoothed local symmetries
because the SLS are not classified by curvatures.

When errors are introduced, the local, continuous properties of the LSSF allows
it to degrade more gracefully under occlusion, fragmentation and noise than if
global measures or the strict definition of local skewed symmetries are used. This
makes it useful as a tool for recovering the global axis of symmetry from imperfect
local skewed symmetries.

3 Symmetry Detection Strategy

In images of objects with complicated contours, it is hard to automatically infer
the axis of symmetry purely from its LSSF, especially in the presence of noise and
occlusion. A vast amount of computation will be required to analyse and compare
different portions of the LSSF. The strategy is therefore to:

1. Obtain initial hypotheses for the axis of symmetry from a fast but approx-
imate symmetry detection process. The symmetry detection process has to
use local measures as well to avoid problems of occlusion and incomplete
contours.

2. Compute the local skewed symmetry field with the aid of B-splines (to obtain
curvature information from the edge map of the image).

3. Improve the accuracy of the axis of symmetry and angle of skew by max-

imising a global symmetry measure from local support in the LSSF.

4 Implementation

4.1 Initial Symmetry Detection Technique

A novel, fast method is introduced for the initial symmetry detection. This does
not depend on global measures either and allows local structures to vote indepen-
dently for the global axis of symmetry and angle of skew, except that the local
structures are limited to low-curvature segments and straight edges.

The symmetry detection process comprises of 5 steps:

1. Edge-finding and extracting edgel information.

2. Extrapolate tangents of edgels in an array. This is shown in figure 3.

3. Recover locations of strong intersections. By recovering only strong
intersections, we are effectively considering only the tangents belonging to
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(a) (b) (c)

Figure 3: Based on the edge map of the image in (a), the tangents for each edgel
are extrapolated in (b). In (c), strong intersection points are recovered which represent
intersections of low-curvature segments or straight lines.

low-curvature segments. The locations of these intersections are more accu-
rate than those from high-curvature segments.

4. Carry out a reduced Hough Transform on the intersection points.

The Hough Transform used here parametrise lines by the normal vector from
the origin to the line, expressed in polar coordinates (d, 6). Each intersection
point maps to a half-sinusoidal curve in Hough space, as may be seen in fig-
ure 4. The additional knowledge of property 2 allows us to reduce the Hough
Transform by coding only the relevant portions of the sinusoids representing
the angular sweep between the directions of the extrapolated tangents:

Property 2 The orientation of the axis of symmetry must lie between the
extrapolation directions of tangents belonging to a skewed symmetric edgel
pair.

This reduces the computation time as well as ignore false hypotheses such
as those joining the tips of a serrated edge. The locations of multiple in-
tersections in the Hough Space represent hypotheses for symmetry axis. A
number of strong hypotheses are considered.

Standard HougtiTraneform Reduced Hough Tranalomn

* K < W angle iheta <dege) vedof angle Ihetafdega)

Figure 4: The Hough space in (a) shows the result of carrying out a standard Hough
Transform on the intersection points shown in figure 3. Knowledge of the directions of
tangents at the intersections allows reduction of the complexity of the Hough space (b),
from property 2.

5. Estimate angle of skew and rank the hypotheses. This is achieved
in a dual-purpose manner by calculating the angle of skew per hypothesis
for the axis of symmetry. It is possible to calculate the angle of skew from
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only the directions of tangents at one intersection point and knowledge of
the axis of symmetry, based on (4):

tan 9 - - (cot 7 - cot (3) (4)

where 0 is the angle of skew with respect to the perpendicular to the axis
of symmetry, and /3 and 7 are the angles between the axis of symmetry
and the intersecting tangents. Since we will have a number of intersection
points contributing votes Ok for the angle of skew with different degrees
of accuracy, the optimal estimate is obtained via sensitivity analysis and
Lagrange multipliers. The sample variances are also obtained, which gives
an indication of the accuracy of the estimate and may be used to reject false
hypotheses as well. These derivations are given in [2].

4.2 Calculating the Local Skewed Symmetry Field

In this preliminary implementation, hand-fitted cubic B-splines to edge maps are
used. A number of sample points per polynomial piece are then extracted with
tangent and curvature information. Each sample point is compared with the rest
in ^N(N — 1) operations (where N is the number of sample points), to derive the
LSSF in three arrays of the same size as the original image, containing separately
the symmetricity values, and the two direction data.

4.3 Maximisation of Symmetry Measure in the Local
Skewed Symmetry Field

Having obtained a ranked list of hypotheses for the axis of symmetry, we are able
to calculate an overall symmetry measure for each of the hypothesis by averaging
the effective symmetricity values of the points in the LSSF crossed by the axis
of symmetry. Taking S as the global symmetry measure and P as the number of
sample points, we have

S = f>* (5)

^ ie = <3>;|cos(0-<*;)! (6)

where 4^0 is the effective symmetricity value at sample point i with respect to the
global axis direction 0, ^i is the absolute symmetricity value measured at sample
point i and a* is the direction of the local axis of symmetry in the LSSF at sample
point i.

We then proceed to locate the position of maximum symmetry measure for the
symmetry axis by initialising a straight active contour model [8] (a 'pole'). This
'pole', unlike normal 'snakes', is driven by effective symmetricity values which
change according to the orientation of the pole. See figure 5.

The new hypotheses for the axes of symmetry may then be ranked again by
their global symmetry measure 5. However this does not mean we reject all but
one of the hypotheses, since different symmetrical objects, or separate symmetrical
components, may be present.
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Figure 5: The above figure diagrammatically shows a straight active contour model (a
'pole') being used to locate the position in the LSSF where the global symmetry measure
is maximised. The 'forces' on the pole are based on effective symmetricity (defined in
(6)) which depend on both the absolute symmetricity as well as the angle between the
(first) direction of the field and the orientation of the pole. The pole is initialized at
the location of the hypotheses obtained from the initial symmetry detection technique
forming the first stage.

5 Preliminary Results

The initial symmetry detection algorithm was tested on a number of synthetic and
real images, with straight and curved contours. The results show good performance
by the initial technique, in most cases the location of the symmetry axis and the
angle of skew are found to a satisfactory degree. The images in figure 6 show some
results obtained after the first stage of the algorithm, with back-projection of the
relatively intact edge maps.

Figure 6: Results obtained from the first symmetry detection stage indicate that the
first stage performs well with easily segmented objects. The lower row shows the back-
projected edge maps to a canonical frame where the symmetry axes are orthogonal.

Since there may be errors in the estimated axis and ranking, there is a need
to use the LSSF to improve the robustness of such estimations. Besides the easily
segmented object shown in figure 2, we have also calculated the LSSF for other
scenes of objects for which mild occlusion is present, which results in fragmented
contours and unwanted artifacts. One of these are shown in figure 7.

Since accurate results are obtained in general from the initial algorithm, lower
ranked hypotheses have been used to demonstrate the use of the 'pole' in the
maximisation of the global symmetry measure in the LSSF. as mentioned earlier.
Some of these examples are shown in figure 8.
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Figure 7: The above figure shows the local skewed symmetry field derived from the
B-spline fitted edge map of an object, with the magnitude and direction maps shown
respectively third and fourth from the left. These will be used in the last stage of the
symmetry detection algorithm.

(a)

(b)
Figure 8: The left column shows the initial hypotheses obtained from the first stage
of the algorithm. A lower ranked hypothesis is used in (a) in order to demonstrate this
stage of the algorithm. The middle column shows the active 'poles' searching for the
positions returning maximum global symmetry measures. The final results are shown
in the right column. Notice that in (b) where the object is occluded the algorithm still
returned good estimates for the axis of symmetry and the angle of skew.

Overall, the results obtained for the flatter and better segmented objects are
particularly good. For objects which have significant thicknesses (deviation from
the 2D affine assumption) and those in scenes which include shadows, occlusion
or noise, the results still return useful estimates.

6 Future Work

We have presented a new method which does not depend on segmentation of ob-
jects or on accurate determination of occlusion-sensitive global measures (eg. mo-
ments). Instead, independent support from local structures may be combined to
achieve global symmetry detection in the presence of noise and even occlusion, via
the local skewed symmetry field. We believe that robust symmetry detection under
such circumstances can be exploited to facilitate perceptual organisation as readily
as other perceptual groupings such as continuity of contours and T-junctions. Fur-
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ther possible applications include integration into a perceptual inference network
such as one described in [14], or as an aid in object recognition.
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