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Abstract. This paper considers whether there is any added

value in using seasonal climate forecasts instead of histor-

ical meteorological observations for forecasting streamflow

on seasonal timescales over Europe. A Europe-wide analysis

of the skill of the newly operational EFAS (European Flood

Awareness System) seasonal streamflow forecasts (produced

by forcing the Lisflood model with the ECMWF System 4

seasonal climate forecasts), benchmarked against the ensem-

ble streamflow prediction (ESP) forecasting approach (pro-

duced by forcing the Lisflood model with historical meteoro-

logical observations), is undertaken. The results suggest that,

on average, the System 4 seasonal climate forecasts improve

the streamflow predictability over historical meteorological

observations for the first month of lead time only (in terms

of hindcast accuracy, sharpness and overall performance).

However, the predictability varies in space and time and is

greater in winter and autumn. Parts of Europe additionally

exhibit a longer predictability, up to 7 months of lead time,

for certain months within a season. In terms of hindcast re-

liability, the EFAS seasonal streamflow hindcasts are on av-

erage less skilful than the ESP for all lead times. The re-

sults also highlight the potential usefulness of the EFAS sea-

sonal streamflow forecasts for decision-making (measured in

terms of the hindcast discrimination for the lower and upper

terciles of the simulated streamflow). Although the ESP is

the most potentially useful forecasting approach in Europe,

the EFAS seasonal streamflow forecasts appear more poten-

tially useful than the ESP in some regions and for certain

seasons, especially in winter for almost 40 % of Europe. Pat-

terns in the EFAS seasonal streamflow hindcast skill are how-

ever not mirrored in the System 4 seasonal climate hindcasts,

hinting at the need for a better understanding of the link be-

tween hydrological and meteorological variables on seasonal

timescales, with the aim of improving climate-model-based

seasonal streamflow forecasting.

1 Introduction

Seasonal streamflow forecasts predict the likelihood of a dif-

ference from normal conditions in the following months. Un-

like forecasts at shorter timescales, which aim to predict indi-

vidual events, seasonal streamflow forecasts aim at predict-

ing long-term (i.e. weekly to seasonal) averages. The pre-

dictability in seasonal streamflow forecasts is driven by two

components of the Earth system, the initial hydrological con-

ditions (IHC; i.e. of snowpack, soil moisture, streamflow and

reservoir levels, etc.) and large-scale climate patterns, such

as the El Niño–Southern Oscillation (ENSO), the North At-

lantic Oscillation (NAO), the Pacific-North American (PNA)

pattern and the Indian Ocean Dipole (IOD) (Yuan et al.,

2015b).

The first seasonal streamflow forecasting method, based

on a regression technique developed around 1910–1911 in

the United States, harnessed the predictability from accurate

IHC of snowpacks to derive streamflow for the following
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summer (Church, 1935). This statistical method recognized

antecedent hydrological conditions and land surface mem-

ory as key drivers of streamflow generation for the following

months.

Alongside the physical understanding of streamflow gen-

eration processes came technical developments, such as the

creation of the first hydrological models and the acquisi-

tion of longer observed meteorological time series, which

led to the creation of the first operational model-based sea-

sonal streamflow forecasting system. This system, called ex-

tended streamflow prediction (ESP; i.e. note that ESP nowa-

days stands for ensemble streamflow prediction, although it

refers to the same forecasting method), was developed by

the United States National Weather Service (NWS) in the

1970s (Twedt et al., 1977; Day, 1985). The ESP forecasts are

produced by forcing a hydrological model, initialized with

the current IHC, with the observed historical meteorological

time series available. The output is an ensemble streamflow

forecast (where each year of historical data is a streamflow

trace) for the following season(s) (Twedt et al., 1977; Day,

1985). The quality of the ESP forecasts can be high in basins

where the IHC dominate the surface hydrological cycle for

several months (the exact forecast quality depending on the

time of year and the basin’s physiographic characteristics;

Wood and Lettenmaier, 2008).

In basins where the meteorological forcings drive the pre-

dictability, however, the lack of information on the future cli-

mate is a limitation of the ESP forecasting method and might

result in unskilful ESP forecasts. This drawback led to the in-

vestigation of the use of seasonal climate forecasts, in place

of the historical meteorological inputs, to feed hydrological

models and extend the predictability of hydrological vari-

ables on seasonal timescales (Pagano and Garen, 2006). This

investigation was made possible by technical and scientific

advances. Scientifically, seasonal climate forecasts were im-

proved greatly by the understanding of ocean–atmosphere–

land interactions and the identification of large-scale climate

patterns as drivers of the hydro-meteorological predictabil-

ity (Goddard et al., 2001; Troccoli, 2010). This was tech-

nically implementable with the increase in computing re-

sources, making it possible to run dynamical coupled ocean–

atmosphere–land general circulation models on the global

scale at high spatial and temporal resolutions (Doblas-Reyes

et al., 2013). An additional technical challenge, the coarse

spatial resolution of seasonal climate forecasts compared to

the finer resolution of hydrological models, had to be ad-

dressed. To tackle this issue, many authors have explored dif-

ferent ways of downscaling climate variables for hydrologi-

cal applications (Maraun et al., 2010, and references therein).

While climate-model-based seasonal streamflow forecast-

ing experiments are more common outside of Europe, for ex-

ample for the United States (Wood et al., 2002, 2005; Mo and

Lettenmaier, 2014), Australia (Bennett et al., 2016), or Africa

(Yuan et al., 2013), they remain limited in Europe, with a few

examples in France (Céron et al., 2010; Singla et al., 2012;

Crochemore et al., 2016), in central Europe (Demirel et al.,

2015; Meißner et al., 2017), in the United Kingdom (Bell et

al., 2017; Prudhomme et al., 2017) and at the global scale

(Yuan et al., 2015a; Candogan Yossef et al., 2017). This is

because, although the quality of seasonal climate forecasts

has increased over the past decades, there remains limited

skill in seasonal climate forecasts for the extra-tropics, par-

ticularly for the variables of interest for hydrology, notably

precipitation and temperature (Arribas et al., 2010; Doblas-

Reyes et al., 2013).

In Europe, the NAO is one of the strongest predictability

sources of seasonal climate forecasts; it is associated with

changes in the surface westerlies over the North Atlantic and

Europe, and hence with changes in temperature and precip-

itation patterns over Europe (Hurrell, 1995; Hurrell and Van

Loon, 1997). It was shown to affect streamflow predictability,

especially during winter (Dettinger and Diaz, 2000; Bierkens

and van Beek, 2009; Steirou et al., 2017), in addition to the

IHC and the land surface memory. It was furthermore shown

to be an indicator of flood damage and occurrence in parts of

Europe (Guimarães Nobre et al., 2017).

As the quality and usefulness of seasonal streamflow fore-

casts increase, their usability for decision-making has lagged

behind. Translating the quality of a forecast into an added

value for decision-making and incorporating new forecast-

ing products into established decision-making chains are not

easy tasks. This has been explored for many water-related

applications, such as navigation (Meißner et al., 2017), reser-

voir management (Viel et al., 2016; Turner et al., 2017),

drought-risk management (Sheffield et al., 2013; Yuan et

al., 2013; Crochemore et al., 2017), irrigation (Chiew et al.,

2003; Li et al., 2017), water resource management (Schepen

et al., 2016) and hydropower (Hamlet et al., 2002), but sea-

sonal streamflow forecasts have yet to be adopted by the

flood preparedness community.

The European Flood Awareness System (EFAS) is at the

forefront of seasonal streamflow forecasting, with one of the

first operational pan-European seasonal hydrological fore-

casting systems. The aim of this paper is to bridge the current

gap in pan-European climate-model-based seasonal stream-

flow forecasting studies. Firstly, the setup of the newly op-

erational EFAS climate-based seasonal streamflow forecast-

ing system is presented. A Europe-wide analysis of the skill

of this forecasting system compared to the ESP forecast-

ing approach is then presented, in order to identify whether

there is any added value in using seasonal climate fore-

casts instead of historical meteorological observations for

forecasting streamflow on seasonal timescales over Europe.

Subsequently, the potential usefulness of the EFAS seasonal

streamflow forecasts for decision-making is assessed.

Hydrol. Earth Syst. Sci., 22, 2057–2072, 2018 www.hydrol-earth-syst-sci.net/22/2057/2018/



L. Arnal et al.: Skilful seasonal forecasts of streamflow over Europe? 2059

Figure 1. Schematic of the EFAS-WB streamflow simulation and of the CM-SSF and ESP seasonal streamflow hindcast generation, where

P is precipitation, T is temperature, E is evaporation and ETpot is potential evapotranspiration. The Lisflood model diagram was taken from

Burek et al. (2013).

2 Data and methods

2.1 EFAS hydrological simulation and seasonal

hindcasts

The data used in this paper include a streamflow simulation

and two seasonal streamflow hindcasts (Fig. 1). Further in-

formation on these datasets is given below.

2.1.1 Hydrological modelling and streamflow

simulation

The Lisflood model was used to produce all the simulations

and hindcasts used in this paper. Lisflood is a GIS-based

hydrological rainfall–runoff–routing distributed model writ-

ten in the PCRaster Dynamic Modelling Language, which

enables it to use spatially distributed maps (i.e. both static

and dynamic) as input (De Roo et al., 2000; Van Der Kni-

jff et al., 2010). The Lisflood model was calibrated to pro-

duce pan-European parameter maps. The calibration was per-

formed for 693 basins from 1994 to 2002 using the Stan-

dard Particle Swarm Optimisation 2011 (SPSO-2011) algo-

rithm. The calibration was carried out for parameters control-

ling snowmelt, infiltration, preferential bypass flow through

the soil matrix, percolation to the lower groundwater zone,

percolation to deeper groundwater zones, residence times in

the soil and subsurface reservoirs, river routing and reservoir

operations for a few basins. The results were validated with

the Nash–Sutcliffe efficiency (NSE) for the validation period

2003–2012. In validation (calibration), Lisflood obtained a

median NSE of 0.57 (0.62). Basins with large discrepancies

between the observed and simulated flow statistics were situ-

ated mainly on the Iberian Peninsula and on the Baltic coasts

(see Zajac et al., 2013, and Smith et al., 2016, for further

details).

The Lisflood model is run operationally in EFAS, with

the simulation domain covering Europe at a 5 × 5 km reso-

lution. A reference simulation, called the EFAS water bal-

ance (EFAS-WB), is available on a daily time step start-

ing from February 1990. Lisflood simulates the hydrologi-

cal processes within a basin (most of which are mentioned

above), starting from the previous day’s IHC (e.g. snow

cover, storage in the upper and lower zones, soil moisture,

initial streamflow, reservoir filling) and forced with the most

recent observed meteorological fields (i.e. of precipitation,

potential evapotranspiration and temperature; provided by

the EFAS meteorological data collection centres). The ob-

served meteorological fields are daily maps of spatially in-

terpolated point measurements of precipitation (from more

than 6000 stations) and temperature (from more than 4000

stations) at the surface level. These same data are used to

produce interpolated potential evapotranspiration maps from

the Penman–Monteith method (Alfieri et al., 2014). All mete-

orological variables are interpolated on a 5×5 km grid using

an inverse distance weighting scheme and the temperature is

first corrected using the elevation (Smith et al., 2016).

The EFAS-WB is the best estimate of the hydrological

state at a given time and for a given grid point in EFAS and

is thus used as initial conditions from which the seasonal hy-

drological forecasts are started.

2.1.2 Ensemble seasonal streamflow hindcasts

In this paper, two types of ensemble seasonal stream-

flow hindcasts are used: the ensemble streamflow prediction

(ESP) hindcast (hereafter referred to as ESP) and the System

4-driven seasonal streamflow hindcast (hereafter referred to

as CM-SSF (climate-model-based seasonal streamflow fore-

cast), following the notation from Yuan et al. (2015b)).

They are both initialized from the EFAS-WB, on the first

day of each month, to produce a new ensemble streamflow

forecast up to a lead time of 7 months (215 days), with a

daily time step. Both hindcasts are generated from February

1990 for the same European domain as the EFAS-WB, at the

same 5×5 km resolution. The unique difference between the
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ESP and the CM-SSF is the meteorological forcing used to

drive the hydrological model, described below.

The ESP is produced by driving the Lisflood model with

20 (the number of years of data available at the time the hind-

cast was produced) randomly sampled years of historical me-

teorological observations (i.e. the same as the meteorologi-

cal observations used to produce the EFAS-WB, excluding

the year of meteorological observations corresponding to the

year that is being forecasted). A new 20-member ESP is thus

generated at the beginning of each month and for the next 7

months.

The CM-SSF is produced by driving the Lisflood model

with the ECMWF System 4 seasonal climate hindcast (Sys4,

i.e. of precipitation, evaporation and temperature). Sys4 has

a spatial horizontal resolution of about 0.7◦ (approximately

70 km). It is re-gridded to the Lisflood spatial resolution us-

ing an inverse distance weighting scheme and the tempera-

ture is first corrected using the elevation. Sys4 is made up

of 15 ensemble members, extended to 51 every 3 months

(Molteni et al., 2011). From 2011 onwards the Sys4 forecasts

were run in real time and all contained 51 ensemble mem-

bers. A new 15- to 51-member CM-SSF is hence produced

at the beginning of each month and for the next 7 months.

Operationally, the CM-SSF forecasts are currently used in

EFAS to generate a seasonal streamflow outlook for Europe

at the beginning of every month.

2.2 Hindcast evaluation strategy

For this study, monthly region specific discharge averages of

the hindcasts (CM-SSF and ESP) and EFAS-WB were used.

The specific discharge is the discharge per unit area of an

upstream basin. For this paper, the gridded daily specific dis-

charge was calculated by dividing the gridded daily discharge

output maps (of the hindcasts and the EFAS-WB) by the Lis-

flood gridded upstream area static map. Subsequently, the

gridded daily specific discharge maps were used to calculate

daily region averaged specific discharges (for each region in

Fig. 2) by summing up the daily specific discharge values

of each grid cell within a region, divided by the number of

grid cells in that region. Finally, monthly specific discharge

region averages were calculated for each calendar month.

The regions displayed in Fig. 2 were created by merging

several basins together (basins used operationally in EFAS

for the shorter timescale forecasts), while respecting hydro-

climatic boundaries. They were chosen for the analysis pre-

sented in this paper for two main reasons. Firstly, they are

the regions used operationally to display the EFAS seasonal

streamflow outlook. Secondly, they were created in order to

capture large-scale variability in the weather.

The analysis of the hindcasts was performed on monthly

specific discharge (hereafter referred to as streamflow) re-

gion averages for hindcast starting dates spanning February

1990 to November 2016 (included; approximately 27 years

of data), with 1 to 7 months of lead time. In this paper, 1

Figure 2. Map of the 74 European regions (dark blue outlines) se-

lected for the analysis of the CM-SSF and the ESP.

month of lead time refers to the first month of the forecast

(e.g. the January 2017 streamflow for a forecast made on 1

January 2017). Two months of lead time is the second month

of the forecast (e.g. the February 2017 streamflow for a fore-

cast made on 1 January 2017), etc. Monthly averages were

selected for the analysis presented in this paper as it is a

valuable aggregation time step for decision-makers for many

water-related applications (as shown in the literature for ap-

plications such as, for example, navigation (Meißner et al.,

2017), reservoir management (Viel et al., 2016; Turner et

al., 2017), drought-risk management (Yuan et al., 2013), ir-

rigation (Chiew et al., 2003; Li et al., 2017) and hydropower

(Hamlet et al., 2002)).

Several verification scores were selected in order to assess

the hindcasts’ quality. These verification scores were cho-

sen to cover a wide range of hindcast attributes (i.e. accu-

racy, sharpness, reliability, overall performance and discrim-

ination). All of these verification scores, except for the veri-

fication score selected to look at hindcast discrimination, are

the same as chosen in Crochemore et al. (2016), and are de-

scribed below. The EFAS-WB streamflow simulations were

used as a proxy for observation against which the seasonal

streamflow hindcasts were evaluated, hence minimizing the

impact of model errors on the hindcasts’ quality.

Hydrol. Earth Syst. Sci., 22, 2057–2072, 2018 www.hydrol-earth-syst-sci.net/22/2057/2018/
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2.2.1 Hindcast accuracy

Both hindcasts (CM-SSF and ESP) were assessed in terms of

their accuracy, the magnitude of the errors between the hind-

cast ensemble mean and the “truth” (i.e. the EFAS-WB). For

this purpose, the mean absolute error (MAE) was calculated

for each region, target month (i.e. the month that is being

forecast) and lead time (i.e. 1 to 7 months). The lower the

MAE, the more accurate the hindcast.

2.2.2 Hindcast sharpness

Both hindcasts were also assessed in terms of their sharpness,

an attribute of the hindcast only, which is a measure of the

spread of the ensemble members of a hindcast. In this paper,

the 90 % interquantile range (IQR; i.e. the difference between

the 95th and 5th percentiles of the hindcast distribution) was

calculated for each region, target month and lead time. The

lower the IQR, the sharper the hindcast.

2.2.3 Hindcast reliability

Both hindcasts were additionally assessed in terms of their

reliability, the statistical consistency between the hindcast

probabilities and the observed frequencies. For this purpose,

the probability integral transform (PIT) diagram was calcu-

lated for each region, target month and lead time (Gneiting

et al., 2007). The PIT diagram is the cumulative distribution

of the PIT values as a function of the PIT values. The PIT

values measure where the “truth” (i.e. EFAS-WB) falls rela-

tive to the percentiles of the hindcast distribution. For a per-

fectly reliable hindcast, the “truth” should fall uniformly in

each percentile of the hindcast distribution, giving a PIT di-

agram that falls exactly on the 1-to-1 diagonal. A hindcast

that systematically under- (over-) predicts the “truth” will

have a PIT diagram below (above) the diagonal. A hindcast

that is too narrow (i.e. underdispersive; hindcast distribution

smaller than the distribution of the observations) (large (i.e.

overdispersive; hindcast distribution greater than the distri-

bution of the observations)) will have a transposed S-shaped

(S-shaped) PIT diagram (Laio and Tamea, 2007).

In order to compare the reliability across all regions, target

months and lead times, the area between the PIT diagram

and the 1-to-1 diagonal was computed for all PIT diagrams

(Renard et al., 2010). The smaller this area, the more reliable

the hindcast.

Furthermore, to disentangle the causes of poor reliabil-

ity, the spread and bias of the hindcasts were calculated for

all PIT diagrams, using two measures first introduced by

Keller and Hense (2011): ß-score and ß-bias, respectively.

By definition, a perfectly reliable hindcast (with regards to

its spread) will have a β-score of zero (to which a tolerance

interval of ±0.09 was added), whereas a hindcast that is too

narrow (large) will have a negative (positive) β-score (out-

side of the tolerance interval). A perfectly reliable hindcast

(with regards to its bias) will have a β-bias of zero (to which

a tolerance interval of ±0.09 was added), whereas a hind-

cast that systematically under- (over-) predicts the “truth”

will have a negative (positive) β-bias (outside of the toler-

ance interval).

2.2.4 Hindcast overall performance

The hindcasts were furthermore assessed in terms of their

overall performance from the continuous rank probability

score (CRPS), calculated for each region, target month and

lead time (Hersbach, 2000). The CRPS is a measure of the

difference between the hindcast and the observed (i.e. EFAS-

WB) cumulative distribution functions. The lower the CRPS,

the better the overall performance of the hindcast.

In this paper, the skill of the CM-SSF is benchmarked with

respect to the ESP in order to identify whether there is any

added value in using Sys4 instead of historical meteorolog-

ical observations for forecasting the streamflow on seasonal

timescales over Europe. To this end, skill scores were calcu-

lated for the MAE, IQR, PIT diagram area and CRPS, using

the following equation:

Skill score = 1 −
scoreCM−SSF

scoreESP
. (1)

Skill scores were calculated for each region, target month and

lead time and will be referred to as MAESS, IQRSS, PITSS

and CRPSS, respectively. Skill scores larger (smaller) than

zero indicate more (less) skill in the CM-SSF compared to

the ESP. A skill score of zero means that the CM-SSF is as

skilful as the ESP. Note that as the ESP is not a “naive” fore-

cast, using it as a benchmark might lead to lower skill than

benchmarking the CM-SSF against, for example, climatol-

ogy.

2.2.5 Hindcast potential usefulness

For decision-making, the ability of a seasonal forecasting

system to predict the right category of an event (e.g. above

or below normal conditions) months ahead is of great impor-

tance (Gobena and Gan, 2010). In this paper, the potential

usefulness of the CM-SSF and the ESP to forecast lower and

higher than normal streamflow conditions within their hind-

casts is assessed.

To do so, the relative operating characteristic (ROC) score,

a measure of hindcast discrimination (Mason and Graham,

1999), was calculated. The thresholds selected to calculate

the ROC are the lower and upper terciles of the EFAS-WB

climatology for each season. They were calculated for the

simulation period (February 1990 to May 2017), by group-

ing together EFAS-WB monthly streamflows for each month

falling in a season (SON: September–October–November,

DJF: December–January–February, MAM: March–April–

May and JJA: June–July–August). For each season and each

region a lower and upper tercile streamflow value was ob-

www.hydrol-earth-syst-sci.net/22/2057/2018/ Hydrol. Earth Syst. Sci., 22, 2057–2072, 2018
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tained, subsequently used as thresholds against which to cal-

culate the probability of detection (POD) and the false alarm

rate (FAR; with 0.1 probability bins) for both hindcasts, and

for each region, season and lead time. Finally, the area under

the ROC curve, i.e. the ROC score, was calculated for both

hindcasts, for each region, season and lead time. The ROC

score ranges from 0 to 1, with a perfect score of 1. A hind-

cast with a ROC score ≤ 0.5 is unskilful, i.e. less good than

the long-term average climatology which has a ROC of 0.5,

and is therefore not useful.

Because the ROC score was calculated from a low num-

ber of events (i.e. approximately 27 years × 3 months in

each season ×1/3 (lower or upper tercile) = 27 simulated

events), the hindcasts were judged skilful and useful when

their ROC score ≥ 0.6 instead of 0.5. Moreover, the CM-

SSF was categorized as more useful than the ESP when the

CM-SSF’s ROC score was at least 10 % larger than the ESP’s

ROC score.

3 Results

3.1 Overall skill of the CM-SSF

In the first part of the results, the skill of the CM-SSF (bench-

marked with respect to the ESP) is presented, in terms of the

accuracy (MAESS), sharpness (IQRSS), reliability (PITSS)

and overall performance (CRPSS) in the hindcast datasets.

This will benchmark the added value of using Sys4 against

the use of historical meteorological observations for forecast-

ing the streamflow on seasonal timescales over Europe.

As shown by the MAESS boxplots (Fig. 3), the CM-SSF

appears on average more accurate than the ESP for the first

month of lead time only, for all seasons excluding spring

(MAM). Beyond 1 month of lead time, the CM-SSF becomes

on average as or less accurate than the ESP. There are how-

ever noticeable differences between the different seasons.

The CM-SSF shows the largest improvements in the aver-

age accuracy compared to the ESP in winter (DJF) and for

the first month of lead time. For longer lead times (i.e. 2 to

7 months), the accuracy of the CM-SSF is on average quite

similar to that of the ESP in autumn (SON) and winter, and

on average lower in spring and summer (JJA). The boxplots

for the CRPSS look very similar to the MAESS boxplots,

the main difference being the lower average scores for 2 to 7

months of lead time in autumn and winter (Fig. 3).

The boxplots of the IQRSS show that the CM-SSF predic-

tions are on average as sharp as those of the ESP for the first

month of lead time (slightly sharper in autumn; Fig. 3). For

2 to 7 months of lead time, in autumn and winter, the CM-

SSF predictions are on average sharper than those of the ESP,

whereas in spring and summer, the CM-SSF predictions are

on average slightly less sharp than the ESP predictions.

As shown by the boxplots of the PITSS (Fig. 3), the CM-

SSF predictions are less reliable than the ESP predictions for

all seasons and months of lead time. For the first month of

lead time and all seasons, 10–20 % of the ESP hindcasts and

less than 5 % of the CM-SSF hindcasts are reliable (Fig. 4).

About 40–60 % of the ESP hindcasts are not reliable for the

first month of lead time and all seasons due to the ensemble

spread. Approximately half of these hindcasts are too large,

while the other half (slightly more in autumn and winter)

are too narrow. Furthermore, 50–80 % of the ESP hindcasts

under-predict the simulated streamflow for the first month of

lead time and all seasons. The percentage of reliable (unreli-

able) ESP hindcasts increases (decreases) with lead time, as

the effect of the IHC fades away. About 70–90 % of the CM-

SSF hindcasts are too narrow for the first month of lead time

and all seasons. With increasing lead time, the percentage

of CM-SSF hindcasts that are too narrow (large) decreases

(increases), especially in spring. Approximately 40–50 % of

the CM-SSF hindcasts over-predict the simulated stream-

flow in spring and summer for the first month of lead time

(and increasingly over-predict with longer lead times). In au-

tumn and winter, about 70 % of the CM-SSF hindcasts under-

predict the simulated streamflow for the first month of lead

time (and increasingly under-predict with longer lead times).

For all verification scores, the boxplots for autumn and

winter are slightly smaller than for spring and summer, hint-

ing at a smaller variability in the verification scores amongst

regions and target months in autumn and winter than in

spring and summer. Furthermore, the presence of the box-

plots above the zero line (i.e. no skill line) for all lead times

suggests that the CM-SSF is more skilful than the ESP for

some regions and target months, beyond the first month of

lead time.

3.2 Potential usefulness of the CM-SSF

In the second part of the results, the potential usefulness of

the CM-SSF compared to the ESP is described for decision-

making. Here, potential usefulness is defined as the ability

of the forecasting systems to predict lower or higher stream-

flows than normal, as measured with the ROC score.

Generally, either of the two forecasting systems (CM-SSF

or ESP) is capable of predicting skilfully whether the stream-

flow will be anomalously low or high in the coming months

(Fig. 5). However, for a few seasons and regions, none of the

two forecasting systems is skilful at predicting lower and/or

higher streamflows than normal. This is especially noticeable

in winter.

For most seasons and regions, the ESP is more skilful than

the CM-SSF at predicting lower and higher streamflows than

normal. However, in winter for most regions and during other

seasons for several regions, the CM-SSF appears more skilful

than the ESP. Regions where the CM-SSF best predicts lower

and higher streamflows than normal at most lead times are

summarized in Table 1 for all four seasons and the lower and

upper terciles of the simulated streamflow.

Hydrol. Earth Syst. Sci., 22, 2057–2072, 2018 www.hydrol-earth-syst-sci.net/22/2057/2018/



L. Arnal et al.: Skilful seasonal forecasts of streamflow over Europe? 2063

Figure 3. Boxplots of the MAESS, CRPSS, IQRSS and PITSS (from the top to bottom rows) for all four seasons (SON, DJF, MAM and JJA

from the left-most to right-most columns) as a function of lead time (i.e. 1 to 7 months). The boxplots contain the scores for all target months

falling in a given season and all 74 European regions. For all scores, values larger (smaller) than zero indicate that the CM-SSF is more (less)

skilful than the ESP (benchmark). Where the skill is zero, the CM-SSF is as skilful as the ESP for the hindcast period. Note that the PITSS

plots have a different y-axis scale.
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Figure 4. Plots of the percentage of the ESP (a) and the CM-SSF (b) hindcasts falling into each reliability category (reliable – in terms of

both spread and bias, too large, too narrow, over-predicting and under-predicting) for all four seasons (SON, DJF, MAM and JJA from the

left-most to right-most bars in each reliability category). The results are shown as bar charts for the first month of lead time and as circles for

the seventh month of lead time. These lead times were selected for display to highlight the evolution of reliability between the first and last

months of the hindcast. The percentages were calculated from hindcasts for all target months falling in a given season and all 74 European

regions.

Table 1. Regions where the CM-SSF is more skilful than the ESP at predicting anomalously low (lower tercile; first column) or high (upper

tercile; second column) streamflows for all four seasons (SON, DJF, MAM and JJA from the top to bottom rows). This is a summary of the

information displayed in Fig. 5.

Lower tercile Upper tercile

SON – Few regions in Fennoscandia

– Po River basin (northern Italy)

– Elbe River basin (south of Denmark)

– Upstream of the Rhine River basin

– Upstream of the Danube River basin

– Duero River basin (Iberian Peninsula)

– Few regions in Fennoscandia

– Iceland

– Parts of the Danube River basin

– Segura River basin (Iberian Peninsula)

DJF Many regions except

– in most of Fennoscandia north of the Baltic Sea,

– parts of central Europe.

Same as lower tercile.

MAM – Few regions on the Iberian Peninsula

– Few regions in the western part of central Europe

Same as lower tercile.

JJA – Few regions in the United Kingdom (UK)

– Ireland

– North-western edge of the Iberian Peninsula

– Regions in Fennoscandia around the Baltic Sea

– Regions south of the North Sea

– Northern part of the UK

– Ireland

– North-western edge of the Iberian Peninsula

– Regions in Fennoscandia around the Baltic Sea

– Around the Elbe River basin

– Upstream of the Danube River basin

– Along the Adriatic Sea in Italy
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Figure 5. Maps of the best system (as measured with the ROC score) for all four seasons (SON, DJF, MAM and JJA) and the lower and

upper simulated streamflow seasonal terciles (left-most and right-most columns, respectively) in each region from (a) to (h). The pie charts

display the best system for each lead time (i.e. 1 to 7 months), as shown in the example pie chart on the bottom right of this figure. There are

three possible cases: (1) neither the ESP nor the CM-SSF is skilful (red colours), (2) the ESP is skilful and better than the CM-SSF (yellow

colours), and (3) the CM-SSF is skilful and better than the ESP (blue colours).
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4 Discussion

4.1 Does seasonal climate information improve the

predictability of seasonal streamflow forecasts over

Europe?

On average over Europe and across all seasons, the CM-SSF

is skilful (in terms of hindcast accuracy, sharpness and over-

all performance, using the ESP as a benchmark) for the first

month of lead time only. This means that, on average, Sys4

improves the predictability over historical meteorological in-

formation for pan-European seasonal streamflow forecasting

for the first month of lead time only. At longer lead times,

historical meteorological information becomes as good as or

better than Sys4 for seasonal streamflow forecasting over Eu-

rope. Crochemore et al. (2016) and Meißner et al. (2017)

similarly found positive skill in the seasonal streamflow fore-

cast (Sys4 forced hydrological model compared to an ESP)

for the first month of lead time, after which the skill faded

away for basins in France and central Europe, respectively.

Additionally, on average over Europe and across all seasons,

the CM-SSF is less reliable than the ESP for all lead times.

This is due to a combination of too narrow and biased CM-

SSF hindcasts, where the bias depends on the season that is

being forecasted. As mentioned in the methods section of this

paper, the ESP is not a “naive” benchmark, which might par-

tially explain the limited predictability gained from Sys4.

The predictability varies per season and the CM-SSF pre-

dictions are on average sharper than and as accurate as

the ESP predictions in autumn and winter beyond the first

month of lead time (and increasingly sharper with longer lead

times). The CM-SSF however tends to systematically under-

predict the autumn and winter simulated streamflow (and in-

creasingly under-predicts with longer lead times). In spring

and summer, the CM-SSF predictions are on average less

sharp and less accurate than the ESP predictions, and they

tend to systematically over-predict the simulated streamflow

(and increasingly over-predict with longer lead times).

The added predictability gained from Sys4 was shown

to lead to skilful CM-SSF predictions of lower and higher

streamflows than normal for specific seasons and regions.

The CM-SSF is more skilful at predicting anomalously low

and high streamflows than the ESP in certain seasons and

regions, and noticeably in winter in almost 40 % of the Eu-

ropean regions, mostly clustered in rainfall-dominated areas

of western and central Europe. Several authors have dis-

cussed the higher winter predictability over (parts of) Eu-

rope, with examples in basins in France (Crochemore et al.,

2016), central Europe (Steirou et al., 2017), the UK (Bell et

al., 2017) and the Iberian Peninsula (Lorenzo-Lacruz et al.,

2011). Bierkens and van Beek (2009) additionally showed

that there was a higher winter predictability in Scandinavia,

the Iberian Peninsula and around the Black Sea. Our results

are mostly consistent with these findings, except for Scan-

dinavia, where the ESP is more skilful than the CM-SSF

in winter. Bierkens and van Beek (2009) produced the sea-

sonal streamflow forecast analysed in their paper by forcing

a hydrological model with resampled years of historical me-

teorological information based on their winter NAO index.

However, Sys4 has difficulties in forecasting the NAO over

Europe (Kim et al., 2012), which could have led to these in-

consistent results with the ones presented by Bierkens and

van Beek (2009).

In spring, the CM-SSF is more skilful than the ESP at pre-

dicting lower and higher streamflows than normal beyond

1 month of lead time in approximately 15 % of the Euro-

pean regions, and mostly in regions of western Europe. This

could be due to a persistence of the skill from the previous

winter through the land surface memory (i.e. groundwater-

driven streamflow or snowmelt-driven streamflow), as high-

lighted by Bierkens and van Beek (2009) for Europe, Singla

et al. (2012) for parts of France, Lorenzo-Lacruz et al. (2011)

for the Iberian Peninsula and Meißner et al. (2017) for the

Rhine. Moreover, it could be that most of the gained pre-

dictability occurs in March, a transition month between the

more predictable winter (as mentioned above) and spring, as

discussed by Steirou et al. (2017). The ESP is overall more

skilful than the CM-SSF at predicting the spring streamflow

in snow-dominated regions (e.g. most of Fennoscandia and

parts of central and eastern Europe). This hints at the im-

portance of the IHC (i.e. of snowpack) and the land sur-

face memory for forecasting the spring streamflow in snow-

dominated regions in Europe.

The added predictability from Sys4 for forecasting lower

and higher streamflows than normal is limited in summer

and autumn for most regions. The CM-SSF is more skilful

at predicting anomalously low and high streamflows than the

ESP in about 10–20 % of the European regions during those

seasons. Other studies have found similar patterns for (parts

of) Europe; these include less skill in summer than in winter

overall for basins in France (Crochemore et al., 2016), less

skill for the low flow season (July to October) for basins in

central Europe (Meißner et al., 2017), negative correlations

in summer and autumn seasonal streamflow forecasts in cen-

tral Europe as the influence of the winter NAO fades away

(Steirou et al., 2017), and less skill overall in summer than in

winter in Europe (Bierkens and van Beek, 2009). The lower

CM-SSF skill for predicting lower and higher streamflows

than normal in summer could additionally be due to the con-

vective storms in summer over Europe, which are hard to pre-

dict, and to the fact that it is the dry season in most of Europe,

where rivers are groundwater fed. Therefore, in this season,

the quality of the IHC controls the streamflow predictability.

While the CM-SSF is most skilful (in terms of hindcast

accuracy, sharpness and overall performance, using the ESP

as a benchmark) in autumn and winter and most poten-

tially useful in winter, this does not appear to correlate with

high performance in the Sys4 precipitation and temperature

hindcasts (as seen on the maps of correlation for Sys4 pre-

cipitation and temperature for all four seasons (SON, DJF,

Hydrol. Earth Syst. Sci., 22, 2057–2072, 2018 www.hydrol-earth-syst-sci.net/22/2057/2018/



L. Arnal et al.: Skilful seasonal forecasts of streamflow over Europe? 2067

MAM and JJA) and with 2 months of lead time (as identi-

fied in this paper); available at https://meteoswiss.shinyapps.

io/skill_metrics/, Forecast skill metrics, 2017). Over Europe,

the Sys4 precipitation and temperature hindcasts are the most

skilful in summer and the least skilful in autumn and winter.

Moreover, the regions of high CM-SSF skill for predicting

lower and upper streamflows than normal do not clearly cor-

respond to regions of high performance in the Sys4 precipi-

tation and temperature hindcasts. These differences could be

partially induced by the different benchmark used to evalu-

ate the skill of the CM-SSF (i.e. the ESP) compared to the

one used to look at the performance of the Sys4 precipi-

tation and temperature hindcasts (i.e. ERA-Interim). How-

ever, these results clearly indicate that looking at the perfor-

mance of the Sys4 precipitation and temperature hindcasts

only does not give a good indication of the skill and potential

usefulness of the seasonal streamflow hindcasts over Europe,

and that marginal performance in seasonal climate forecasts

can translate through to more predictable seasonal stream-

flow forecasts, and vice versa. The added predictability in

the CM-SSF could be due to the combined predictability in

the precipitation and temperature hindcasts, as well as a lag

in the predictability from the land surface memory.

In most regions and for most seasons, at least one of the

two forecasting systems (CM-SSF or ESP) is able to predict

lower or higher streamflows than normal. However, in win-

ter, the number of regions and lead times for which none of

the forecasting systems are skilful increases. This could be

because in winter, many regions experience weather-driven

high streamflows and the performance of Sys4 is limited at

this time of year (as mentioned above). In those regions, the

seasonal streamflow forecasts could be improved either by

improving the IHC, through for example data assimilation,

or by improving the seasonal climate forecasts.

Overall, the ESP appears very skilful at forecasting lower

or higher streamflows than normal, showing the importance

of IHC and the land surface memory for seasonal streamflow

forecasting (Wood and Lettenmaier, 2008; Bierkens and van

Beek, 2009; Yuan et al., 2015b).

4.2 What is the potential usefulness and usability of the

EFAS seasonal streamflow forecasts for flood

preparedness?

What appears like little added skill does not necessarily mean

no skill for the forecast users and can in fact be a large

added value for decision-making (Viel et al., 2016). The abil-

ity of a seasonal streamflow forecasting system to predict

the right category of an event months ahead is valuable for

many water-related applications (e.g. navigation, reservoir

management, drought-risk management, irrigation, water re-

source management, hydropower and flood preparedness).

From the results presented in this paper, it appears that ei-

ther of the two forecasting systems (CM-SSF or ESP) is ca-

pable of predicting lower or higher streamflows than normal

months in advance, thanks to the predictability gained from

the IHC, the land surface memory and the seasonal climate

hindcast in some regions and for certain seasons.

However, as highlighted by White et al. (2017), there is

currently a gap between usefulness and usability of seasonal

information. What is a useful scientific finding does not auto-

matically translate into usable information which will fit into

any user’s decision-making chain (Soares and Dessai, 2016).

While several authors have already investigated the usability

of seasonal streamflow forecasts for applications such as nav-

igation (Meißner et al., 2017), reservoir management (Viel

et al., 2016; Turner et al., 2017), drought-risk management

(Sheffield et al., 2013; Yuan et al., 2013; Crochemore et al.,

2017), irrigation (Chiew et al., 2003; Li et al., 2017), water

resource management (Schepen et al., 2016) and hydropower

(Hamlet et al., 2002), its application to flood preparedness is

still left mostly unexplored. One exception being Neumann

et al. (in review), who look at the use of the CM-SSF to

predict the 2013/14 Thames basin floods. This is partially

due to the complex nature of flood generating mechanisms,

still poorly studied on seasonal timescales beyond snowmelt-

driven spring floods, as well as the fact that seasonal forecasts

reflect the likelihood of abnormal seasonal streamflow totals,

but without much skilful information on the exact timing, lo-

cation and severity of the impact of individual flood events

within that season. Coughlan de Perez et al. (2017) looked

at the usefulness of seasonal rainfall forecasts for flood pre-

paredness in Africa and highlighted the complexities behind

using these forecasts as a proxy for floodiness (for a dis-

cussion on floodiness, see Stephens et al., 2015). Further-

more, decision-makers in the navigation, reservoir manage-

ment, drought-risk management, irrigation, water resource

management and hydropower sectors are familiar with work-

ing on long timescales (i.e. several weeks to months ahead).

In contrast, the flood preparedness community is currently

mostly used to working on timescales of hours to a couple of

days.

The Red Cross Red Crescent Climate Centre has recently

designed a new approach that harnesses the usefulness of

seasonal climate information for decision-making for disas-

ter management. This approach, called “Ready-Set-Go!”, is

made up of three stages. The “Ready” stage is based on sea-

sonal forecasts, where they are used as monitoring informa-

tion to drive contingency planning (e.g. volunteer training).

The “Set” stage is triggered by sub-seasonal forecasts, used

as early-warning information to alert volunteers. Finally, the

“Go!” stage is based on short-range forecasts and consists in

the evacuation of people and the distribution of aid (White

et al., 2017). Using a similar approach, seasonal stream-

flow forecasts could complement existing forecasts at shorter

timescales and provide monitoring and early-warning infor-

mation for flood preparedness. Such an approach however re-

quires the use of consistent forecasts from short to seasonal

timescales. In this context, moving to seamless forecasting is

becoming vital (Wetterhall and Di Giuseppe, in review).
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Soares and Dessai (2016) also identified the accessibil-

ity to the information, enhanced by collaborations and on-

going relationships between users and producers, as a key

enabler of the usability of seasonal information. Interna-

tional projects, such as the Horizon 2020 IMPREX (IMprov-

ing PRedictions and management of hydrological EXtremes)

project (van den Hurk et al., 2016), alongside promoting sci-

entific progress on hydrological extremes forecasting from

short to seasonal timescales over Europe, gather together

forecasters and decision-makers and can effectively demon-

strate the added value of the integration of seasonal infor-

mation in decision-making chains. The Hydrologic Ensem-

ble Prediction EXperiment (HEPEX) is another international

initiative that brings together researchers and practitioners

in the field of ensemble prediction for water-related applica-

tions. It is an ideal environment for collaboration and fosters

communication and outreach on topics such as the usefulness

and usability of seasonal information for decision-making.

4.3 Aspects for future work

In this paper, terciles of the simulated streamflow are used.

However, and because the application of the EFAS seasonal

streamflow forecasts is of particular relevance for flood pre-

paredness, the evaluation of the hindcasts for lower and

higher streamflow extremes (for example the 5th and 95th

percentiles, respectively) would be more relevant and might

give very different results. This was not done in this paper as

the time period covered by the seasonal streamflow hindcasts

(i.e. approximately 27 years) was not long enough for statis-

tically reliable results for lower and higher streamflow ex-

tremes. The limited hindcast length is a common problem in

seasonal predictability studies. Increasing the hindcast length

back in time could lead to more stable Sys4 hindcasts and

hence to more stable and potentially skilful seasonal stream-

flow hindcasts (Shi et al., 2015).

Furthermore, in this paper, the hindcasts were analysed

against simulated streamflow, used as a proxy for observed

streamflow. This is necessary because it enables an analysis

of the quality of the hindcasts over the entire computation

domain, rather than at non-evenly spaced stations over the

same domain (Alfieri et al., 2014). Further work could how-

ever include carrying out a similar analysis for selected river

stations in Europe, in order to account for model errors in the

hindcast evaluation.

The calculation of the verification scores (excluding the

ROC) was made by randomly selecting 15 ensemble mem-

bers from the 51 ensemble members of the CM-SSF hind-

casts, for starting dates for which the ensemble varies be-

tween 15 and 51 members (i.e. hindcasts made on 1 Jan-

uary, March, April, June, July, September, October and De-

cember; this is due to the split between 15 and 51 ensemble

members in the Sys4 hindcasts, as described in Sect. 2.1.2 of

this paper). In order to investigate the potential impact of this

evaluation strategy on the results presented in this paper, the

Figure 6. CRPSS calculated for the CM-SSF against the ESP

(benchmark) for hindcasts made on 1 February, May, August and

November, all lead times (i.e. 1 to 7 months) and all 74 European

regions. The x-axis (y-axis) contains the CRPSS calculated from 15

(all 51) ensemble members of the CM-SSF.

CRPSS was calculated for 15 and 51 ensemble members of

the CM-SSF hindcasts for starting dates for which 51 ensem-

ble members are available for the full hindcast period (i.e.

hindcasts made on 1 February, May, August and November).

This is displayed in Fig. 6 for all hindcast starting dates, lead

times (i.e. 1 to 7 months) and regions combined. Overall, it is

apparent that the impact of this evaluation strategy on the re-

sults presented in this paper should be minimal, as all points

align themselves approximately with the 1-to-1 diagonal.

The next version of the ECMWF seasonal climate forecast,

SEAS5, was released in November 2017. Future work could

include forcing the Lisflood model with SEAS5 and compar-

ing the obtained seasonal streamflow hindcasts to the CM-

SSF presented in this paper. This should indicate whether de-

velopments to the seasonal climate forecast translate through

to better pan-European seasonal streamflow forecasts, which

is of particular interest for regions and seasons when neither

the ESP nor the CM-SSF is currently skilful.

The operational EFAS medium-range streamflow forecasts

are currently post-processed as a means to improve their re-

liability (Smith et al., 2016, and references therein). Results

from this paper have shown that the CM-SSF is mostly un-

reliable (with regards to the EFAS-WB) and could hence

benefit from post-processing of the seasonal climate fore-

cast. However, post-processing techniques used for the EFAS

medium-range streamflow forecasts might not be suitable for

the CM-SSF, as the seasonal climate forecast used for the lat-

ter should be post-processed in terms of its seasonal anoma-

lies rather than for errors in the timing, volume and mag-

nitude of specific events. This is currently being considered

for operational implementation within EFAS and is an active

area of discussion within the EFAS user community.
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For the analysis presented in this paper, the CM-SSF was

benchmarked against the ESP. Several other techniques ex-

ist for seasonal streamflow forecasting, such as statistical

methods using predictors ranging from climate indices to an-

tecedent observed precipitation and crop production metrics,

to mention a few (e.g. Mendoza et al., 2017; Slater et al.,

2017). Further analysis could include benchmarking the CM-

SSF against one or multiple statistical methods, to assess the

relative benefits of various seasonal streamflow forecasting

techniques.

In this paper, the ability of both systems (CM-SSF and

ESP) to forecast lower and higher streamflows than nor-

mal was explored, with several hypotheses made to link

the streamflow predictability to regions’ hydro-climatic pro-

cesses. This includes the higher potential usefulness of the

ESP in forecasting the spring streamflow in snow-dominated

regions and the summer streamflow in regions where rivers

are groundwater fed. In these regions and for these seasons,

the IHC and the land surface memory drive the predictability.

The CM-SSF provides an added potential usefulness in win-

ter in the rainfall-dominated regions of central and western

Europe, where the skill appears to persist through to spring

due to the land surface memory (i.e. groundwater-driven

streamflow and snowmelt-drive streamflow). While further

exploration of these hypotheses is outside of the scope of

this paper, future work is required to disentangle the links

between the added predictability from Sys4 and the basins’

hydro-climatic characteristics, for example, understanding

the predictability in snow-dominated basins, arid regions and

temperate groundwater-fed basins.

In this context, additional work to further disentangle and

quantify the contribution of both predictability sources (sea-

sonal climate forecasts versus IHC) to seasonal streamflow

forecasting quality over Europe could be carried out by us-

ing the EPB (end point blending) method (Arnal et al., 2017).

5 Conclusions

In this paper, the newly operational EFAS seasonal stream-

flow forecasting system (producing the CM-SSF forecasts

by forcing the Lisflood model with the ECMWF System 4

seasonal climate forecasts (Sys4)) was presented and bench-

marked against the ESP forecasting approach (ESP fore-

casts produced by forcing the Lisflood model with histori-

cal meteorological observations) for the hindcast period 1990

to 2017. On average, Sys4 improves the predictability over

historical meteorological information for pan-European sea-

sonal streamflow forecasting for the first month of lead time

only (in terms of hindcast accuracy, sharpness and over-

all performance). However, the predictability varies per sea-

son and the CM-SSF is more skilful on average at predict-

ing autumn and winter streamflows than spring and summer

streamflows. Additionally, parts of Europe exhibit a longer

predictability, up to 7 months of lead time, for certain months

within a season. In terms of hindcast reliability, the CM-SSF

is on average less skilful than the ESP for all lead times, due

to a combination of too narrow and biased CM-SSF hind-

casts, where the bias depends on the season that is being

forecasted.

Subsequently, the potential usefulness of the two forecast-

ing systems (CM-SSF and ESP) was assessed by analysing

their skill in predicting lower and higher streamflows than

normal. Overall, at least one of the two forecasting systems

is capable of predicting those events months in advance. The

ESP appears the most skilful on average, showing the im-

portance of IHC and the land surface memory for seasonal

streamflow forecasting. Nevertheless, for certain regions and

seasons the CM-SSF is the most skilful at predicting anoma-

lously low or high streamflows beyond 1 month of lead time,

noticeably in winter for almost 40 % of the European regions.

This potential usefulness could be harnessed by using sea-

sonal streamflow forecasts as complementary information to

existing forecasts at shorter timescales, to provide monitor-

ing and early-warning information for flood preparedness.

Overall, patterns in skill in the CM-SSF are however not

mirrored in the Sys4 precipitation and temperature hindcasts.

This suggests that using seasonal climate forecast perfor-

mance as a proxy for seasonal streamflow forecasting skill

is not adequate and that more work is needed to understand

the link between meteorological and hydrological variables

on seasonal timescales over Europe.

Data availability. The data from the European Flood Awareness

System are available to researchers upon request (subject to licens-

ing conditions). Please visit www.efas.eu for more details.

Competing interests. The authors declare that they have no conflict

of interest.

Special issue statement. This article is part of the special issue

“Sub-seasonal to seasonal hydrological forecasting”. It is not as-

sociated with a conference.

Acknowledgements. Louise Arnal, Hannah L. Cloke and Jessica

Neumann gratefully acknowledge financial support from the

Horizon 2020 IMPREX project (grant agreement 641811) (project

IMPREX: www.imprex.eu). Louise Arnal’s time was additionally

partly funded by a University of Reading PhD scholarship. Fredrik

Wetterhall, Christel Prudhomme and Blazej Krzeminski’s work

was supported by the EFAS computational centre in support to

the Copernicus Emergency Management Service/Early Warning

Systems (Flood) (contract no. 198702 from JRC-IES). Elisabeth

Stephens is thankful for support from the Natural Environment

Research Council and Department for International Development

(grant number NE/P000525/1) under the Science for Humanitarian

Emergencies and Resilience (SHEAR) research programme.

www.hydrol-earth-syst-sci.net/22/2057/2018/ Hydrol. Earth Syst. Sci., 22, 2057–2072, 2018

www.efas.eu
www.imprex.eu


2070 L. Arnal et al.: Skilful seasonal forecasts of streamflow over Europe?

Edited by: Ilias Pechlivanidis

Reviewed by: two anonymous referees

References

Alfieri, L., Pappenberger, F., Wetterhall, F., Haiden, T., Richard-

son, D., and Salamon, P.: Evaluation of ensemble stream-

flow predictions in Europe, J. Hydrol., 517, 913–922,

https://doi.org/10.1016/j.jhydrol.2014.06.035, 2014.

Arnal, L., Wood, A. W., Stephens, E., Cloke, H. L., and Pap-

penberger, F.: An Efficient Approach for Estimating Stream-

flow Forecast Skill Elasticity, J. Hydrometeorol., 18, 1715–1729,

https://doi.org/10.1175/JHM-D-16-0259.1, 2017.

Arribas, A., Glover, M., Maidens, A., Peterson, K., Gor-

don, M., MacLachlan, C., Graham, R., Fereday, D., Camp,

J., Scaife, A. A., Xavier, P., McLean, P., and Colman,

A.: The GloSea4 Ensemble Prediction System for Sea-

sonal Forecasting, Mon. Weather. Rev., 139, 1891–1910,

https://doi.org/10.1175/2010MWR3615.1, 2010.

Bell, V. A., Davies, H. N., Kay, A. L., Brookshaw, A., and Scaife,

A. A.: A national-scale seasonal hydrological forecast system:

development and evaluation over Britain, Hydrol. Earth Syst.

Sci., 21, 4681–4691, https://doi.org/10.5194/hess-21-4681-2017,

2017.

Bennett, J. C., Wang, J. Q., Li, M., Robertson, D. E., and Schepen,

A.: Reliable long-range ensemble streamflow forecasts: Combin-

ing calibrated climate forecasts with a conceptual runoff model

and a staged error model, Water Resour. Res., 52, 8238–8259,

https://doi.org/10.1002/2016WR019193, 2016.

Bierkens, M. F. and van Beek, L. P.: Seasonal Pre-

dictability of European Discharge: NAO and Hydrolog-

ical Response Time, J. Hydrometeorol., 10, 953–968,

https://doi.org/10.1175/2009JHM1034.1, 2009.

Burek, P., Van Der Knijff, J. M., and De Roo, A.: LISFLOOD – Dis-

tributed Water Balance and Flood Simulation Model – Revised

User Manual 2013, EUR – Scientific and Technical Research Re-

ports, Publications Office of the European Union, Luxembourg,

150 pp., https://doi.org/10.2788/24719, 2013.

Candogan Yossef, N., van Beek, R., Weerts, A., Winsemius, H.,

and Bierkens, M. F. P.: Skill of a global forecasting system in

seasonal ensemble streamflow prediction, Hydrol. Earth Syst.

Sci., 21, 4103–4114, https://doi.org/10.5194/hess-21-4103-2017,

2017.

Céron, J.-P., Tanguy, G., Franchistéguy, L., Martin, E., Regim-

beau, F., and Vidal, J.-P.: Hydrological seasonal forecast over

France: feasibility and prospects, Atmos. Sci. Lett., 11, 78–82,

https://doi.org/10.1002/asl.256, 2010.

Chiew, F. H., Zhou, S. L., and McMahon, T. A.: Use of

Seasonal Streamflow Forecasts in Water Resources Manage-

ment, J. Hydrol., 270, 135–144, https://doi.org/10.1016/S0022-

1694(02)00292-5, 2003.

Church, J. E.: Principles of snow surveying as applied to forecasting

stream flow, edited by: Merrill, M. C., J. Agric. Res., Washing-

ton, D. C., Vol. 51, no. 2, 97–130, 1935.

Coughlan de Perez, E., Stephens, E., Bischiniotis, K., van Aalst,

M., van den Hurk, B., Mason, S., Nissan, H., and Pap-

penberger, F.: Should seasonal rainfall forecasts be used for

flood preparedness?, Hydrol. Earth Syst. Sci., 21, 4517–4524,

https://doi.org/10.5194/hess-21-4517-2017, 2017.

Crochemore, L., Ramos, M.-H., and Pappenberger, F.: Bias cor-

recting precipitation forecasts to improve the skill of seasonal

streamflow forecasts, Hydrol. Earth Syst. Sc., 20, 3601–3618,

https://doi.org/10.5194/hess-2016-78, 2016.

Crochemore, L., Ramos, M.-H., Pappenberger, F., and Perrin, C.:

Seasonal streamflow forecasting by conditioning climatology

with precipitation indices, Hydrol. Earth Syst. Sci., 21, 1573–

1591, https://doi.org/10.5194/hess-21-1573-2017, 2017.

Day, G. N.: Extended streamflow forecasting using

NWSRFS, J. Water Res. Plan. Man., 111, 157–170,

https://doi.org/10.1061/(ASCE)0733-9496(1985)111:2(157),

1985.

De Roo, A. P., Wesseling, C. G., and Van Deursen, W. P.: Physically

based river basin modelling within a GIS: the LISFLOOD model,

Hydrol. Process., 14, 1981–1992, https://doi.org/10.1002/1099-

1085(20000815/30)14:11/12<1981::AID-HYP49>3.0.CO;2-F,

2000.

Demirel, M. C., Booij, M. J., and Hoekstra, A. Y.: The skill of sea-

sonal ensemble low-flow forecasts in the Moselle River for three

different hydrological models, Hydrol. Earth Syst. Sci., 19, 275–

291, https://doi.org/10.5194/hess-19-275-2015, 2015.

Dettinger, M. D. and Diaz, H. F.: Global characteris-

tics of stream flow seasonality and variability, J. Hy-

drometeorol., 1, 289–310, https://doi.org/10.1175/1525-

7541(2000)001<0289:GCOSFS>2.0.CO;2, 2000.

Doblas-Reyes, F. J., García-Serrano, J., Lienert, F., Biescas, A. P.,

and Rodrigues, L. R.: Seasonal climate predictability and fore-

casting: status and prospects, WIRES Clim. Change., 4, 245–

268, https://doi.org/10.1002/wcc.217, 2013.

Forecast skill metrics: https://meteoswiss.shinyapps.io/skill_

metrics/, last access: 3 October 2017.

Gneiting, T., Balabdaoui, F., and Raftery, A. E.: Probabilistic fore-

casts, calibration and sharpness, J. Roy. Stat. Soc. B, 69, 243–

268, https://doi.org/10.1111/j.1467-9868.2007.00587.x, 2007.

Gobena, A. K. and Gan, T. Y.: Incorporation of sea-

sonal climate forecasts in the ensemble stream-

flow prediction system, J. Hydrol., 385, 336–352,

https://doi.org/10.1016/j.jhydrol.2010.03.002, 2010.

Goddard, L., Mason, S. J., Zebiak, S. E., Ropelewski, C. F., Basher,

R., and Cane, M. A.: Current approaches to seasonal to in-

terannual climate predictions, Int. J. Climatol., 21, 1111–1152,

https://doi.org/10.1002/joc.636, 2001.

Guimarães Nobre, G., Jongman, B., Aerts, J., and Ward, P. J.:

The role of climate variability in extreme floods in Europe,

Environ. Res. Lett., 12, 084012, https://doi.org/10.1088/1748-

9326/aa7c22, 2017.

Hamlet, A. F., Huppert, D., and Lettenmaier, D. P.: Economic

Value of Long-Lead Streamflow Forecasts for Columbia

River Hydropower, J. Water Res. Plan. Man., 128, 91–101,

https://doi.org/10.1061/(ASCE)0733-9496(2002)128:2(91),

2002.

Hersbach, H.: Decomposition of the Continuous Ranked Prob-

ability Score for Ensemble Prediction Systems, Weather

Forecast., 15, 559–570, https://doi.org/10.1175/1520-

0434(2000)015<0559:DOTCRP>2.0.CO;2, 2000.

Hydrol. Earth Syst. Sci., 22, 2057–2072, 2018 www.hydrol-earth-syst-sci.net/22/2057/2018/

https://doi.org/10.1016/j.jhydrol.2014.06.035
https://doi.org/10.1175/JHM-D-16-0259.1
https://doi.org/10.1175/2010MWR3615.1
https://doi.org/10.5194/hess-21-4681-2017
https://doi.org/10.1002/2016WR019193
https://doi.org/10.1175/2009JHM1034.1
https://doi.org/10.2788/24719
https://doi.org/10.5194/hess-21-4103-2017
https://doi.org/10.1002/asl.256
https://doi.org/10.1016/S0022-1694(02)00292-5
https://doi.org/10.1016/S0022-1694(02)00292-5
https://doi.org/10.5194/hess-21-4517-2017
https://doi.org/10.5194/hess-2016-78
https://doi.org/10.5194/hess-21-1573-2017
https://doi.org/10.1061/(ASCE)0733-9496(1985)111:2(157)
https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<1981::AID-HYP49>3.0.CO;2-F
https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<1981::AID-HYP49>3.0.CO;2-F
https://doi.org/10.5194/hess-19-275-2015
https://doi.org/10.1175/1525-7541(2000)001<0289:GCOSFS>2.0.CO;2
https://doi.org/10.1175/1525-7541(2000)001<0289:GCOSFS>2.0.CO;2
https://doi.org/10.1002/wcc.217
https://meteoswiss.shinyapps.io/skill_metrics/
https://meteoswiss.shinyapps.io/skill_metrics/
https://doi.org/10.1111/j.1467-9868.2007.00587.x
https://doi.org/10.1016/j.jhydrol.2010.03.002
https://doi.org/10.1002/joc.636
https://doi.org/10.1088/1748-9326/aa7c22
https://doi.org/10.1088/1748-9326/aa7c22
https://doi.org/10.1061/(ASCE)0733-9496(2002)128:2(91)
https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2
https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2


L. Arnal et al.: Skilful seasonal forecasts of streamflow over Europe? 2071

Hurrell, J. W.: Decadal trends in the North Atlantic oscillation: Re-

gional temperatures and precipitation, Science, 269, 676–679,

https://doi.org/10.1126/science.269.5224.676, 1995.

Hurrell, J. W. and Van Loon, H.: Decadal Variations in Cli-

mate Associated with the North Atlantic Oscillation, in: Cli-

matic Change at High Elevation Sites, edited by: Diaz, H. F.,

Beniston, M., and Bradley, R. S., Springer, Dordrecht, 69–94,

https://doi.org/10.1007/978-94-015-8905-5_4, 1997.

Keller, J. D. and Hense, A.: A new non-Gaussian evaluation method

for ensemble forecasts based on analysis rank histograms,

Meteorol. Z., 20, 107–117, https://doi.org/10.1127/0941-

2948/2011/0217, 2011.

Kim, H.-M., Webster, P. J., and Curry, J. A.: Seasonal prediction

skill of ECMWF System 4 and NCEP CFSv2 retrospective fore-

cast for the Northern Hemisphere Winter, Clim. Dynam., 39,

2957–2973, https://doi.org/10.1007/s00382-012-1364-6, 2012.

Laio, F. and Tamea, S.: Verification tools for probabilistic fore-

casts of continuous hydrological variables, Hydrol. Earth Syst.

Sci., 11, 1267–1277, https://doi.org/10.5194/hess-11-1267-2007,

2007.

Li, Y., Giuliani, M., and Castelletti, A.: A coupled human-natural

system to assess the operational value of weather and climate

services for agriculture, Hydrol. Earth Syst. Sci., 21, 4693–4709,

https://doi.org/10.5194/hess-21-4693-2017, 2017.

Lorenzo-Lacruz, J., Vicente-Serrano, S. M., López-Moreno, J. I.,

González-Hidalgo, J. C., and Morán-Tejeda, E.: The response

of Iberian rivers to the North Atlantic Oscillation, Hydrol. Earth

Syst. Sci., 15, 2581–2597, https://doi.org/10.5194/hess-15-2581-

2011, 2011.

Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon,

E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T.,

Themessl, M., Venema, V. K. C., Chun, K. P., Goodess, C. M.,

Jones, R. G., Onof, C., Vrac, M., and Thiele-Eich, I.: Precipita-

tion downscaling under climate change: Recent developments to

bridge the gap between dynamical models and the end user, Rev.

Geophys., 48, Rg3003, https://doi.org/10.1029/2009rg000314,

2010.

Mason, S. J. and Graham, N. E.: Conditional Probabilities, Rela-

tive Operating Characteristics, and Relative Operating Levels,

Weather Forecast., 14, 713–725, https://doi.org/10.1175/1520-

0434(1999)014<0713:CPROCA>2.0.CO;2, 1999.

Meißner, D., Klein, B., and Ionita, M.: Development of a monthly

to seasonal forecast framework tailored to inland waterway trans-

port in central Europe, Hydrol. Earth Syst. Sci., 21, 6401–6423,

https://doi.org/10.5194/hess-21-6401-2017, 2017.

Mendoza, P. A., Wood, A. W., Clark, E., Rothwell, E., Clark, M.

P., Nijssen, B., Brekke, L. D., and Arnold, J. R.: An inter-

comparison of approaches for improving operational seasonal

streamflow forecasts, Hydrol. Earth Syst. Sci., 21, 3915–3935,

https://doi.org/10.5194/hess-21-3915-2017, 2017.

Mo, K. C. and Lettenmaier, D. P.: Hydrologic Prediction

over the Conterminous United States Using the National

Multi-Model Ensemble, J. Hydrometeorol., 15, 1457–1472,

https://doi.org/10.1175/JHM-D-13-0197.1, 2014.

Molteni, F., Stockdale, T., Balmaseda, M., Balsamo, G., Buizza, R.,

Ferranti, L., Magnusson, L., Mogensen, K., Palmer, T., and Vi-

tart, F.: The new ECMWF seasonal forecast system (System 4),

ECMWF Tech. Memorandum, 656, 1–49, 2011.

Neumann, J. L., Arnal, L., Magnusson, L., and Cloke, H.: The

2013/14 Thames basin floods: Do improved meteorological fore-

casts lead to more skilful hydrological forecasts at seasonal

timescales?, J. Hydrometeorol., in review, 2018.

Pagano, T. C. and Garen, D. C.: Integration of climate informa-

tion and forecasts into western US water supply forecasts, Cli-

mate variations, climate change, and water resources engineer-

ing, edited by: Garbrecht, J. D. and Piechota, T. C., American

Society of Civil Engineers location, Reston, Virginia, US, 86–

103, 2006.

Prudhomme, C., Hannaford, J., Harrigan, S., Boorman, D., Knight,

J., Bell, V., Jackson, C., Svensson, C., Parry, S., Bachiller-

Jareno, N., Davies, H. N., Davis, R., Mackay, J., Macken-

zie, A., Rudd, A. C., Smith, K., Bloomfield, J., Ward, R.,

and Jenkins, A.: Hydrological Outlook UK: an operational

streamflow and groundwater level forecasting system at monthly

to seasonal time scales, Hydrolog. Sci. J., 62, 2753–2768,

https://doi.org/10.1080/02626667.2017.1395032, 2017.

Renard, B., Kavetski, D., Kuczera, G., Thyer, M., and

Franks, S. W.: Understanding predictive uncertainty in

hydrologic modeling: The challenge of identifying input

and structural errors, Water Resour. Res., 46, W05521,

https://doi.org/10.1029/2009WR008328, 2010.

Schepen, A., Zhao, T., Wang, Q. J., Zhou, S., and Feikema, P.: Op-

timising seasonal streamflow forecast lead time for operational

decision making in Australia, Hydrol. Earth Syst. Sci., 20, 4117–

4128, https://doi.org/10.5194/hess-20-4117-2016, 2016.

Sheffield, J., Wood, E. F., Chaney, N., Guan, K., Sadri, S., Yuan,

X., Olang, L., Amani, A., Ali, A., Demuth, S., and Ogallo,

L.: A Drought Monitoring and Forecasting System for Sub-

Sahara African Water Resources and Food Security, B. Am. Me-

teorol. Soc., 95, 861–882, https://doi.org/10.1175/BAMS-D-12-

00124.1, 2013.

Shi, W., Schaller, N., MacLeod, D., Palmer, T. N., and Weisheimer,

A.: Impact of hindcast length on estimates of seasonal

climate predictability, Geophys. Res. Lett., 42, 1554–1559,

https://doi.org/10.1002/2014GL062829, 2015.

Singla, S., Céron, J.-P., Martin, E., Regimbeau, F., Déqué, M., Ha-

bets, F., and Vidal, J.-P.: Predictability of soil moisture and river

flows over France for the spring season, Hydrol. Earth Syst. Sci.,

16, 201–216, https://doi.org/10.5194/hess-16-201-2012, 2012.

Slater, L. J., Villarini, G., Bradley, A. A., and Vecchi, G. A.: A

dynamical statistical framework for seasonal streamflow fore-

casting in an agricultural watershed, Clim. Dynam., 1–17,

https://doi.org/10.1007/s00382-017-3794-7, 2017.

Smith, P., Pappenberger, F., Wetterhall, F., Thielen, J., Krzeminski,

B., Salamon, P., Muraro, D., Kalas, M., and Baugh, C.: On the

operational implementation of the European Flood Awareness

System (EFAS), ECMWF Tech. Memorandum, 778, 1–34, 2016.

Soares, M. B. and Dessai, S.: Barriers and enablers to the use

of seasonal climate forecasts amongst organisations in Europe,

Climatic Change, 137, 89–103, https://doi.org/10.1007/s10584-

016-1671-8, 2016.

Steirou, E., Gerlitz, L., Apel, H., and Merz, B.: Links be-

tween large-scale circulation patterns and streamflow

in Central Europe: A review, J. Hydrol., 549, 484–500,

https://doi.org/10.1016/j.jhydrol.2017.04.003, 2017.

www.hydrol-earth-syst-sci.net/22/2057/2018/ Hydrol. Earth Syst. Sci., 22, 2057–2072, 2018

https://doi.org/10.1126/science.269.5224.676
https://doi.org/10.1007/978-94-015-8905-5_4
https://doi.org/10.1127/0941-2948/2011/0217
https://doi.org/10.1127/0941-2948/2011/0217
https://doi.org/10.1007/s00382-012-1364-6
https://doi.org/10.5194/hess-11-1267-2007
https://doi.org/10.5194/hess-21-4693-2017
https://doi.org/10.5194/hess-15-2581-2011
https://doi.org/10.5194/hess-15-2581-2011
https://doi.org/10.1029/2009rg000314
https://doi.org/10.1175/1520-0434(1999)014<0713:CPROCA>2.0.CO;2
https://doi.org/10.1175/1520-0434(1999)014<0713:CPROCA>2.0.CO;2
https://doi.org/10.5194/hess-21-6401-2017
https://doi.org/10.5194/hess-21-3915-2017
https://doi.org/10.1175/JHM-D-13-0197.1
https://doi.org/10.1080/02626667.2017.1395032
https://doi.org/10.1029/2009WR008328
https://doi.org/10.5194/hess-20-4117-2016
https://doi.org/10.1175/BAMS-D-12-00124.1
https://doi.org/10.1175/BAMS-D-12-00124.1
https://doi.org/10.1002/2014GL062829
https://doi.org/10.5194/hess-16-201-2012
https://doi.org/10.1007/s00382-017-3794-7
https://doi.org/10.1007/s10584-016-1671-8
https://doi.org/10.1007/s10584-016-1671-8
https://doi.org/10.1016/j.jhydrol.2017.04.003


2072 L. Arnal et al.: Skilful seasonal forecasts of streamflow over Europe?

Stephens, E., Day, J. J., Pappenberger, F., and Cloke, H.: Precip-

itation and floodiness, Geophys. Res. Lett., 42, 10316–10323,

https://doi.org/10.1002/2015GL066779, 2015.

Troccoli, A.: Seasonal climate forecasting, Meteorol. Appl., 17,

251–268, https://doi.org/10.1002/met.184, 2010.

Turner, S. W. D., Bennett, J. C., Robertson, D. E., and Galelli, S.:

Complex relationship between seasonal streamflow forecast skill

and value in reservoir operations, Hydrol. Earth Syst. Sci., 21,

4841–4859, https://doi.org/10.5194/hess-21-4841-2017, 2017.

Twedt, T. M., Schaake, J. C., and Peck, E. L.: National Weather Ser-

vice extended streamflow prediction, Proceedings Western Snow

Conference, Albuquerque, New Mexico, 52–57, April 1977.

van den Hurk, B. J. J. M., Bouwer, L. M., Buontempo, C.,

Döscher, R., Ercin, E., Hananel, C., Hunink, J., Kjellström, E.,

Klein, B., Manez, M., Pappenberger, F., Pouget, L., Ramos,

M.-H., Ward, P. J., Weerts, A., and Wijngaard, J.: Improving

predictions and management of hydrological extremes through

climate services: www.imprex.eu, Climate Services, 1, 6–11,

https://doi.org/10.1016/j.cliser.2016.01.001, 2016.

Van Der Knijff, J. M., Younis, J., and De Roo, A. P.: LISFLOOD:

a GIS-based distributed model for river basin scale water bal-

ance and flood simulation, Int. J. Geogr. Inf. Sci., 24, 189–212,

https://doi.org/10.1080/13658810802549154, 2010.

Viel, C., Beaulant, A.-L., Soubeyroux, J.-M., and Céron, J.-P.: How

seasonal forecast could help a decision maker: an example of

climate service for water resource management, Adv. Sci. Res.,

13, 51–55, https://doi.org/10.5194/asr-13-51-2016, 2016.

Wetterhall, F. and Di Giuseppe, F.: The benefit of seamless forecasts

for hydrological predictions over Europe, Hydrol. Earth Syst.

Sci. Discuss., https://doi.org/10.5194/hess-2017-527, in review,

2017.

White, C. J., Carlsen, H., Robertson, A. W., Klein, R. J., Lazo, J. K.,

Kumar, A., Vitart, F., Coughlan de Perez, E., Ray, A. J., Murray,

V., Bharwani, S., MacLeod, D., James, R., Fleming, L., Morse,

A. P., Eggen, B., Graham, R., Kjellström, E., Becker, E., Pe-

gion, K. V., Holbrook, N. J., McEvoy, D., Depledge, M., Perkins-

Kirkpatrick, S., Brown, T. J., Street, R., Jones, L., Remenyi,

T., Hodgson-Johnston, I., Buontempo, C., Lamb, R., Meinke,

H., Arheimer, B., and Zebiak, S. E.: Potential applications of

subseasonal-to-seasonal (S2S) predictions, Meteorol. Appl., 24,

315–325, https://doi.org/10.1002/met.1654, 2017.

Wood, A. W., Kumar, A., and Lettenmaier, D. P.: A retrospec-

tive assessment of National Centers for Environmental Predic-

tion climate model-based ensemble hydrologic forecasting in the

western United States, J. Geophys. Res.-Atmos., 110, D04105,

https://doi.org/10.1029/2004JD004508, 2005.

Wood, A. W. and Lettenmaier, D. P.: An ensemble approach for

attribution of hydrologic prediction uncertainty, Geophys. Res.

Lett., 35, L14401, https://doi.org/10.1029/2008GL034648, 2008.

Wood, A. W., Maurer, E. P., Kumar, A., and Lettenmaier, D.

P.: Long-range experimental hydrologic forecasting for the

eastern United States, J. Geophys. Res.-Atmos., 107, 4429,

https://doi.org/10.1029/2001JD000659, 2002.

Yuan, X., Roundy, J. K., Wood, E. F., and Sheffield, J.: Sea-

sonal forecasting of global hydrologic extremes: system devel-

opment and evaluation over GEWEX basins, B. Am. Meteo-

rol. Soc., 96, 1895–1912, https://doi.org/10.1175/BAMS-D-14-

00003.1, 2015a.

Yuan, X., Wood, E. F., and Ma, Z.: A review on climate-model-

based seasonal hydrologic forecasting: physical understanding

and system development, Wiley Interdisciplinary Reviews: Wa-

ter, 2, 523–536, https://doi.org/10.1002/wat2.1088, 2015b.

Yuan, X., Wood, E. F., Chaney, N. W., Sheffield, J., Kam, J., Liang,

M., and Guan, K.: Probabilistic Seasonal Forecasting of African

Drought by Dynamical Models, J. Hydrometeorol., 14, 1706–

1720, https://doi.org/10.1175/JHM-D-13-054.1, 2013.

Zajac, Z., Zambrano-Bigiarini, M., Salamon, P., Burek, P., Gen-

tile, A., and Bianchi, A.: Calibration of the lisflood hydrologi-

cal model for europe – calibration round 2013, Joint Research

Centre, European Commission, 2013.

Hydrol. Earth Syst. Sci., 22, 2057–2072, 2018 www.hydrol-earth-syst-sci.net/22/2057/2018/

https://doi.org/10.1002/2015GL066779
https://doi.org/10.1002/met.184
https://doi.org/10.5194/hess-21-4841-2017
www.imprex.eu
https://doi.org/10.1016/j.cliser.2016.01.001
https://doi.org/10.1080/13658810802549154
https://doi.org/10.5194/asr-13-51-2016
https://doi.org/10.1002/met.1654
https://doi.org/10.1029/2004JD004508
https://doi.org/10.1029/2008GL034648
https://doi.org/10.1029/2001JD000659
https://doi.org/10.1175/BAMS-D-14-00003.1
https://doi.org/10.1175/BAMS-D-14-00003.1
https://doi.org/10.1002/wat2.1088
https://doi.org/10.1175/JHM-D-13-054.1

	Abstract
	Introduction
	Data and methods
	EFAS hydrological simulation and seasonal hindcasts
	Hydrological modelling and streamflow simulation
	Ensemble seasonal streamflow hindcasts

	Hindcast evaluation strategy
	Hindcast accuracy
	Hindcast sharpness
	Hindcast reliability
	Hindcast overall performance
	Hindcast potential usefulness


	Results
	Overall skill of the CM-SSF
	Potential usefulness of the CM-SSF

	Discussion
	Does seasonal climate information improve the predictability of seasonal streamflow forecasts over Europe?
	What is the potential usefulness and usability of the EFAS seasonal streamflow forecasts for flood preparedness?
	Aspects for future work

	Conclusions
	Data availability
	Competing interests
	Special issue statement
	Acknowledgements
	References

