
Skill of Seasonal Rainfall and Temperature Forecasts for East Africa

HANNAH R. YOUNG AND NICHOLAS P. KLINGAMAN

National Centre for Atmospheric Science–Climate, and Department of Meteorology, University of Reading, Reading,

United Kingdom

(Manuscript received 28 March 2019, in final form 19 June 2020)

ABSTRACT

Skillful seasonal forecasts can provide useful information for decision-makers, particularly in regions

heavily dependent on agriculture, such as East Africa. We analyze prediction skill for seasonal East African

rainfall and temperature one to four months ahead from two seasonal forecasting systems: the U.S.

National Centers for Environmental Prediction (NCEP) Coupled Forecast SystemModel, version 2 (CFSv2),

and the Met Office (UKMO) Global Seasonal Forecast System, version 5 (GloSea5). We focus on skill for

low or high temperature and rainfall, below the 25th or above the 75th percentile, respectively, as these events

can have damaging effects in this region. We find skill one month ahead for both low and high rainfall from

CFSv2 for December–February in Tanzania, and from GloSea5 for September–November in Kenya. Both

models have higher skill for temperature than for rainfall across Ethiopia, Kenya, and Tanzania, with skill two

months ahead in some cases. Performance for rainfall and temperature change in the two models during

certain El Niño–Southern Oscillation (ENSO) and Indian Ocean dipole (IOD) phases, the impacts of which

vary by country, season, and sometimes bymodel.While most changes in performance are within the range of

uncertainty due to the relatively small sample size in each phase, they are significant in some cases. For

example, La Niña lowers performance for Kenya September–November rainfall in CFSv2 but does not affect

skill in GloSea5.

1. Introduction

Forecasts of rainfall and temperature for upcoming

months can be valuable for decision-makers to antici-

pate and mitigate the effects of unfavorable conditions.

Forecast information can guide the decisions of policy

makers in agriculture and food security, water man-

agement, disaster risk reduction, emergency relief, and

health (Lemos et al. 2002; Vitart et al. 2012) and at local

scales can be useful for subsistence farmers (Patt and

Gwata 2002; Hansen et al. 2011). East Africa is partic-

ularly vulnerable to the effects of rainfall and tempera-

ture extremes, as much of the population depends on

rainfed agriculture for their income: 79% in Ethiopia,

77% in Tanzania, and 61% in Kenya (FAO 2018).

Crops and livestock can be affected by heat stress,

drought conditions (Herrero et al. 2010), and frosts

(Kotikot and Onywere 2015), and the prevalence of

disease is also influenced by both rainfall and temper-

ature (Bandyopadhyay et al. 2012).

For forecasts to be successfully interpreted and ap-

plied in this region, it is necessary to understand the skill

and reliability of ensemble forecasting systems for pre-

dicting rainfall and temperature on decision-relevant

time scales. Seasonal rainfall variability over the East

African region is influenced by local factors such as to-

pography, coastal influences, and lakes; regional circu-

lation drivers such as the tropical easterly jet; and

remote drivers such as the El Niño–SouthernOscillation

(ENSO), the Indian Ocean dipole (IOD), and the

Madden–Julian oscillation (MJO) (Nicholson 2017).

Successful rainfall predictions rely on the ability of

seasonal forecast models to represent a range of drivers

and their relationships to regional rainfall. Models also

need to capture the seasonal cycle of rainfall. While

some parts of the region experience one rainy season per
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year, such as southern Tanzania and northern Ethiopia,

the near-equatorial region including northern Tanzania,

Kenya, and southern Ethiopia has two rainy seasons

(Dunning et al. 2016; Nicholson 2017). Successful tem-

perature predictions also rely on models representing

drivers, both local and remote, and their relationships to

regional conditions. In particular, soil moisture condi-

tions and ENSO phase are important for predicting heat

waves (Hirschi et al. 2011; Russo et al. 2016; van den

Hurk et al. 2012).

Seasonal forecasts for East Africa

Nicholson (2017) provides a comprehensive overview

of previous work on the skill of seasonal rainfall fore-

casts over eastern Africa. The short rains (October–

November) are generally more predictable than the

long rains (March–May), particularly in dynamical

models. In both seasons statistical models are generally

more skillful than dynamical ones; however, dynamical

models do outperform in some cases. For instance,

Walker et al. (2019) found a dynamical model had

higher skill for predicting East African rainfall than a

consensus forecast based on both statistical and dy-

namical models.

Statistical models identify remote atmospheric and

oceanic drivers with teleconnections to the region of

interest, to predict conditions in the coming months.

These models therefore rely on the availability of in-

formation about the relevant drivers ahead of the

season of interest to make a prediction. For example,

Camberlin and Philippon (2002) used observed ENSO

and other predictors identified using principal compo-

nent analysis to predict March–May rainfall in East

Africa. Diro et al. (2008, 2011) developed skillful sta-

tistical forecasts for Ethiopia’s spring and summer rains

based on teleconnections from sea surface tempera-

tures (SSTs) in regions across the globe. Funk et al.

(2014) used western central Pacific and central Indian

Ocean SSTs to predict East African droughts, and

Chen and Georgakakos (2015) forecast East African

rains using SST dipoles across basins including the

Mediterranean Sea, North and South Atlantic, Indian

Ocean, and Arabian Sea.

Nicholson (2014) produced regression models based

on SST, sea level pressure, and vertical and horizon-

tal winds at different heights to predict March–May,

July–September, and October–November rains in equa-

torial and summer rainfall regions. The summer rain-

fall region was defined by areas of East Africa where

the maximum rainfall falls between June and September,

and the equatorial rainfall region was defined where

the maximum rainfall falls within March–May or

October–November. Correlations between modeled

and observed rainfall were above 0.76 up to five months

ahead for October–November rainfall in both regions,

two months ahead for July–September rainfall in the

summer rainfall region, and two months ahead for

March–May rainfall in the equatorial region. This

highlighted how the ENSO spring predictability

barrier (Webster and Yang 1992) can hinder prediction

of spring and summer rains at longer lead times (Nicholson

2017). Along with later work (Nicholson 2015), the

Nicholson (2014) study also found that statistical models

that used atmospheric variables on multiple levels as

predictors tended to have higher skill than those that

used only surface variables.

On the other hand, dynamical forecasts are predic-

tions frommodels that represent the physical processes

underlying weather and climate. While dynamical

systems are generally less skillful than statistical models

over East Africa (Nicholson 2017), they are increasingly

being developed and used, and there is evidence of skill

for predicting seasonal temperature (Weisheimer and

Palmer 2014) and rainfall (Bahaga et al. 2016; Batté

and Déqué 2011; Diro et al. 2012; Dutra et al. 2013;

MacLeod 2018; Mwangi et al. 2014;Walker et al. 2019).

In this paper we will contribute to greater under-

standing of the skill of two contemporary dynamical

seasonal forecasting systems, the U.S. National Centers

for Environmental Prediction (NCEP) Coupled Forecast

System Model, version 2 (CFSv2; Saha et al. 2014), and

the Met Office (UKMO) Global Seasonal Forecast

System, version 5 (GloSea5; MacLachlan et al. 2015).

We focus on the skill of CFSv2 and GloSea5 for high

or low rainfall or temperature for countries in East

Africa, with lead times of one to four months. While

GloSea5 rainfall forecasts have been analyzed by

Walker et al. (2019) across East Africa at one-month

lead time for tercile event categories, here we analyze

additionally lead times out to four months, to deter-

mine how far ahead useful predictions can bemade.We

also evaluate temperature forecasts, as these may also

be relevant for decision-makers in the region, and we

provide a comparison with CFSv2. In each case we also

analyze the forecasts at country scale, which has not

been done before for these models. Alongside infor-

mation at both larger regional and smaller subnational

scales, forecasts for individual countries may be useful

for decision-makers advising at this scale, such as hu-

manitarian agencies, so an understanding of country-

level skill is relevant in this context. We compare skill

over Ethiopia, Kenya, and Tanzania, three relatively

large countries in the East Africa region with different

seasonal cycles, particularly for rainfall.

In the next section we describe the data and methods

used in this study. We present results in section 3 and in
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section 4 we discuss these in the context of skill of other

models and future research opportunities.

2. Data and methods

a. Reforecast and observational data

The reforecast data are from the NCEP CFSv2 and

UKMO GloSea5 models. CFSv2 reforecasts are started

every five days starting from 1 January, running for nine

months, for the period 1982–2011. They have four en-

semble members and T126 resolution (approximately

100 km). GloSea5 reforecasts are started on the 1st,

9th, 17th and 25th of each month, with seven ensemble

members, and are run for approximately seven months

(216 days). We used reforecasts for 1993–2015 at N216

resolution (approximately 60 km at midlatitudes). For

each model, all reforecasts within a calendar month

weremerged to produce larger ensembles of reforecasts,

and for ease of comparing the models. This resulted in

an ensemble size of either 20, 24, or 28 for CFSv2 (four

ensemblemembers started on either 5, 6, or 7 start dates,

depending on the month), and an ensemble size of 28

for GloSea5 (7 ensemble members started on 4 start

dates). We evaluate both models at lead times of one

to four months. The lead time corresponds to the time

ahead of the start of the season. For example, reforecasts

for DJF at one-month lead are those starting on any

dates in November; reforecasts at four months lead are

those starting on any dates in August.

Rainfall data to validate the reforecasts are taken

from the Global Precipitation Climatology Project

(GPCP; Adler et al. 2003) at 2.58 3 2.58 resolution

(approximately 275 km at the equator). Temperature

data are near-surface (2 m) air temperatures from the

ECMWF Interim reanalysis (ERA-Interim; Dee et al.

2011) at N128 resolution (approximately 80 km). Model

data were regridded to the grid of the observations for

gridpoint-scale analyses.

b. Methods

We analyzed the reforecasts over the standard mete-

orological seasons (DJF, MAM, JJA, SON), with lead

times one to four months ahead of the season of in-

terest. Analyses were carried out at gridpoint scale and

at country-average scale over Ethiopia, Kenya, and

Tanzania. Results are shown at country scale as, due to

geopolitical considerations, information at this scale

is sometimes used to guide decisions in humanitarian

or other sectors. Results are shown for DJF and JJA

for temperature, and for the main rainy seasons in each

country. It is meteorological practice in Ethiopia to par-

tition rainfall in three four-month seasons: February–

May (FMAM), June–September (JJAS; the main rainy

season), and October–January (ONDJ). For consistency

with the analysis for other countries we here retain use of

three-month periods and focus on the two seasons where

these are a subset of the longer seasons: JJA and MAM.

Biases in the mean of the forecasts compared to the

observations were first calculated. Mean biases for each

lead time (in weeks) were then removed from the

hindcasts before the rest of the analysis was carried out.

Anomaly correlation coefficients (ACCs) were also cal-

culated for the ensemble mean, which is the correlation

between the forecasts and observations, each taken as

an anomaly from their own climatology. These are tem-

poral correlations and are calculated both at gridpoint

and country scale.

We also calculated the Brier skill score (BSS) to

compare the skill of the reforecasts to a climatological

forecast. We use a climatological forecast that always

forecasts the expected likelihood of an event, for ex-

ample, events below the 25th percentile are expected to

occur 25% of the time, so are forecast with probability

0.25. The Brier skill score is

BSS5 12
BS

BS
ref

,

where BS is the Brier score of the forecast and BSref is

the Brier score of a reference (climatological) forecast.

The Brier score is defined as

BS5
1

N
�
N

t51

( f
t
2 o

t
)2 ,

where N is the number of forecasts, ft are the forecast

probabilities of an event, and ot are the indicators of

whether the event was observed (1 if it occurred; 0

if it did not occur), at each forecast instance t. A BSS

above 0 indicates skill greater than that of a climato-

logical forecast. Finally, reliability diagrams were also

produced, comparing the forecast probability of an

event with its observed frequency. Using five bins to

partition the forecast probabilities, the observed relative

frequency for each bin is plotted against the average

probability value of all forecasts within the bin (Bröcker

and Smith 2007). Reliability is shown aggregated over

leads of 1–2 months and 3–4 months. Both BSSs and re-

liability diagramswere calculated using country-averaged

predicted and observed rainfall and temperature.

BSSs and reliability diagrams were calculated for

events below the 25th percentile, between the 25th and

75th percentiles, and above the 75th percentile. These

were calculated using percentiles based on the refor-

ecast rainfall and temperature distributions (e.g., ft 5

forecast probability of an event above the reforecasts’
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75th percentile, ot 5 whether observations were above

the observations’ 75th percentile), as this calibrates for

errors in the models’ distributions of rainfall and tem-

perature. Reforecast percentiles were calculated for

each lead time (in months) for the BSS and reliability

calculations. To estimate uncertainty in the BSSs, the

original ensemble for each year was bootstrapped

1000 times, sampling with replacement to produce en-

sembles the same size as the original. The reforecast

percentiles were recalculated each time along with the

BSS in order to establish the 5th and 95th percentiles of

the uncertainty range.

Biases and ACCs were also compared for different

ENSO (Trenberth 1997) and IOD (Saji et al. 1999)

phases, as these large-scale circulation changes have

teleconnections to East Africa (e.g., Ropelewski and

Halpert 1987; Nicholson andKim 1997; Black et al. 2003;

Black 2005) and may affect forecast skill (e.g., Goddard

and Dilley 2005). ENSO indices were retrieved from

NOAA and IOD indices from JAMSTEC. Tercile cat-

egories were used to determine negative (below 33rd

percentile), neutral (between 33rd and 66th percentile)

and positive (above 66th percentile) years for each

season. Forecasts were then categorized using the ob-

served IOD andENSO indices for the season. Biases are

shown for these subsets, averaging over 11 (La Niña,

positive and negative IOD) or 12 (El Niño) years for

the observations, 10 years for CFSv2, and 8 years for

GloSea5. To estimate whether the conditional ACCs

for ENSO and IOD phases lie outside the range of

sampling uncertainty, the original uncategorized ensem-

ble was also bootstrapped 1000 times. Each time the same

number of years were sampled as were in the ENSO or

IOD tercile categories (10 for CFSv2 and 8 for GloSea5)

and the ACC calculated in order to establish the 5th and

95th percentiles of the sampling uncertainty range.

3. Results

a. Model biases

Rainfall results for MAM and SON show that both

models have clear mean-state rainfall biases over East

Africa (Fig. 1a). CFSv2 has a dry bias inMAM in regions

of observed high rainfall, and in SON there is a dry bias

across the western part of the region. These biases in-

crease slightly from lead 1 to lead 3. CFSv2 also pro-

duces wet biases in the northern Ethiopian highlands

of up to 3mmday21, suggesting the simulated rainfall is

too sensitive to orography. GloSea5 rainfall biases are

much smaller in MAM. In SON, GloSea5 has a wet bias

of over 3mmday21 across the region, corresponding to

the wet bias found by Walker et al. (2019) for the OND

season. The wet bias increases slightly from lead 1 to

lead 3. Both models also show large rainfall biases over

the Indian Ocean. CFSv2 interannual rainfall variability

is generally too low across East Africa, while GloSea5

has too little variance where observed variance is high

but too much variance in other parts of the region

(not shown).

Temperatures vary little throughout the year in

Ethiopia, Kenya, and Tanzania (Fig. 1b). CFSv2 is too

cool over the Horn of Africa, and additionally over

Tanzania and the southern part of the region in JJA

but too warm into central Africa. Temperatures over

Ethiopia, Kenya, and Tanzania are mostly up to 28C

too cool and these biases change little with lead time.

GloSea5 is too cool by up to 58C in the northern part of

the region and too warm across the southern part in

DJF, and in JJA the warm bias is further north and

includes Ethiopia, with biases above 28C. There is

also a strong warm bias over Lake Victoria. The biases

over Ethiopia, Kenya, and Tanzania change little with

lead time but the warm bias over central Africa in JJA

decreases from lead 1 to lead 3. Both models also have

variability that is too high where observed variance

is low, and too low where observed variance is high

(not shown).

BIASES CONDITIONED ON ENSO AND IOD

Rainfall and temperature in East Africa are affected

by SST variations in the ENSO and IOD regions.

Figure 2a shows that observed rainfall in SON over

Kenya and Tanzania is generally above normal in El

Niño and positive IOD phases, by up to 0.8mmday21,

while in negative IOD rainfall is up to 0.6mmday21

below normal. In MAM changes are smaller, but there

is slightly above normal rainfall in Ethiopia during El

Niño, and across all three countries during negative

IOD. During positive IOD events there is below normal

rainfall over the region. ENSO and IOD teleconnections

to MAM rainfall are generally weak (e.g., Liebmann

et al. 2014; Mutai andWard 2000; Vellinga and Milton

2018); however, the effects seen here are likely due

to the tercile SST categories defined over a rela-

tively short time period. Conditional rainfall biases in

CFSv2 (biases in SST phases relative to the bias in all

years) are based on only 10 years of data but remain

similar in MAM (Fig. 2b) to the unconditional biases

(i.e., all years), although the dry bias is increased in

negative IOD. In SON, the dry bias over Kenya is

amplified during El Niño and positive IOD events

but decreased during the opposite phases. Figure 2c

shows GloSea5 rainfall biases, which are based on only

8 years of data, appear to change relatively little with

ENSO and IOD phase in MAM. However, in SON the

wet bias over the region is increased during La Niña
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and negative IOD events but reduced during El Niño

and positive IOD phases.

Figure 3a shows that in El Niño and positive IOD

phases, the East African region generally experiences

warm anomalies in JJA, particularly over Ethiopia,

which is up to 0.88C warmer during El Niño. The re-

gion is cooler in JJA during La Niña, while differences

in DJF are smaller across the phases. CFSv2 has

conditional temperature biases largely similar to the

unconditional biases over the East African region

FIG. 1. Seasonal mean observations andmodel biases for (a) rainfall (mmday21) inMAMand SON and (b) 2-m air temperature (8C) in

DJF and JJA. Observational data are for the period 1982–2015 fromGPCP in (a) and ERA-Interim in (b); model biases are for their own

time periods, and lead times are in months ahead of the season.
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(Fig. 3b). Figure 3c shows conditional biases are also

similar to unconditional biases in GloSea5; however,

the cool bias over Ethiopia and Kenya in DJF is

slightly reduced in El Niño and positive IOD years

and amplified in the opposite phases. Again, these

biases are based on small sample sizes.

b. Regional performance

Figure 4 shows the ACCs for rainfall and tempera-

ture at leads 1 and 3 for the ensemble means of the two

models. ACCs are lower for rainfall than temperature

for both models. For MAM, CFSv2 has rainfall ACC

values above 0.4 over northern Ethiopia at lead 1, but

by lead 3 these values have decreased, and there is

no significant correlation between the model and the

observations over Kenya and Tanzania (Fig. 4a). In

SON, ACC values are above 0.4 over eastern Ethiopia

and Kenya and above 0.2 across Tanzania at lead 1,

and these decrease over the eastern part of the region

by lead 3. GloSea5 ACCs show similar spatial pat-

terns across the countries of interest in MAM, but

with higher magnitudes at lead 1 than CFSv2, par-

ticularly over Kenya. However, in SON the region

over eastern Ethiopia and Kenya has higher ACC

values than CFSv2 at lead 1, at over 0.6, and this ex-

tends out to lead 3. The region of high correlation

over land in GloSea5 is broadly similar to the equa-

torial region analyzed by Nicholson (2014), whose

regression model had a correlation of 0.78 with ob-

servations at 2 months lead.

ACCs for DJF temperature in CFSv2 are positive

over Ethiopia, Tanzania, and parts of Kenya, with

particularly high values over 0.6 in northern Ethiopia

at both lead 1 and lead 3 (Fig. 4b). JJA results are

similar, but with higher correlation over Kenya at

lead 1 and lower correlation across Ethiopia and

Tanzania at lead 3. GloSea5 results for JJA temper-

ature also show positive ACCs across most of the

region, with values above 0.6 over Tanzania out to

lead 3. Lower ACCs are found in DJF, and particu-

larly over parts of Kenya there is no significant cor-

relation between the model and the observations, as is

the case in CFSv2.

This analysis is based on different time periods for

the two models to make full use of the available data

and maximize the sample size. However, when using

the same time period for both models (1993–2011),

the spatial patterns of the ACCs are very similar

(Fig. S1 in the online supplemental material). While

there are some regions where the magnitude de-

creases, for example, GloSea5 JJA temperature ACCs

over Kenya and Tanzania are slightly lower when the

FIG. 2. Anomalies in observations during ENSO and IOD phases for rainfall (mmday21) in MAM and SON, and model biases in those

phases relative to the model mean bias at one-month lead time. These are composites based on years in which observed SSTs fall into

tercile categories (11 or 12 years for observations, 10 years for CFSv2, 8 years for GloSea5).
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shorter time period is used, overall, these changes

are small.

c. Country-level skill: Ethiopia

For country-level skill, Figs. 5–12 show results for

leads 1–4, while Tables 1 and 2 provide significance

testing for lead 1 and lead 2.

We analyze the skill for forecasts averaged over

Ethiopia for key 3-month seasons. The CFSv2 rainfall

ACC is 0.48 at lead 1 for JJA, but for MAM ACCs are

lower and not significant at lead 1 (Fig. 5a, Table 1).

ACCs decrease with lead time out to lead 4 in MAM

and lead 3 in JJA. In El Niño and positive IOD phases,

CFSv2 ACCs are higher than the unconditioned ACC in

MAM and lower in the opposite phases. The conditioned

ACConly lies outside the 5th–95th percentile uncertainty

range from bootstrapping the original ensemble for neg-

ative IOD years at lead 1 and lead 2, suggesting that the

difference is significant at the 90% confidence level at

these leads. GloSea5 ACC values are slightly higher than

those from CFSv2 in JJA out to lead 3 and are also much

lower and not significant in MAM (Fig. 5a, Table 1).

ACCs are higher in La Niña and negative IOD phases in

JJA, although this lies within the range of uncertainty.

CFSv2 rainfall BSS values are around 0 for all event

categories in both seasons, except for dry events (below

25th percentile) at lead 2 in JJA where the BSS and its

uncertainty range is positive, showing a slight improve-

ment over a climatological forecast (Fig. 6a, Table 1).

GloSea5 BSS values are also very close to 0, indicating no

improvement over a climatological forecast. Reliability

curves from CFSv2 and GloSea5 for rainfall generally

show little change with lead time, and are closest to the

1:1 line in both models for wet events in MAM and dry

events in JJA, signifying that forecast probabilities cor-

respondwell to the observed frequencies of events (Fig. 7a).

Reliability for average (25th–75th percentile) events is poor

in MAM for both models (Figs. S2a and S3a).

ACCs for temperature are higher than for rainfall in

both models and remain around 0.5 for all lead times

in DJF but decrease with lead time in JJA, from 0.66 in

CFSv2 and 0.88 in GloSea5 (Fig. 9a, Table 2). La Niña

and negative IOD phases have higher ACCs in DJF in

CFSv2, while positive IOD ACCs are negative and out-

side the range of uncertainty. El Niño leads to higher

ACCs in DJF and JJA in GloSea5; however, this condi-

tional ACC does not lie outside the uncertainty range,

suggesting the difference is not significant. CFSv2 BSSs

and their uncertainty ranges are positive for cool (below

25th percentile) events inDJF at all lead times, and warm

events (above 75th percentile) in JJA at lead 1 (Fig. 10a,

Table 2). GloSea5 BSSs and their uncertainty ranges are

FIG. 3. Anomalies in observations during ENSO and IOD phases for 2-m air temperature (8C) in DJF and JJA, and model biases in

those phases relative to themodelmean bias at one-month lead time. These are composites based on years in which observed SSTs fall into

tercile categories (11 or 12 years for observations, 10 years for CFSv2, 8 years for GloSea5).
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positive at lead 1 and lead 2 for average events inDJF and

warm events in JJA, and at lead 1 for average events in

JJA. Reliability diagrams for temperature from CFSv2

show slight improvement from lead 3–4 to lead 1–2, and

match the 1:1 line reasonably well for cool events in DJF

and JJA and warm events in JJA, but they tend to be

too shallow (Fig. 11a). Reliability diagrams for GloSea5

(Fig. 12a) show a similar picture. For the average (25th–

75th percentile) category, CFSv2 forecast probabilities

showing little relationship with the observed frequencies,

but curves are close to the 1:1 line inGloSea5, particularly

for DJF (Figs. S4a and S5a).

d. Country-level skill: Kenya

Kenya receives most rainfall in MAM and SON.

CFSv2 has slightly higher correlations in MAM than

SON, while GloSea5 ACC values are slightly higher

than CFSv2 at lead 1 for MAM, and much higher for

SON with ACCs above 0.7 out to lead 2 (Fig. 5b,

Table 1). El Niño has a strong forcing on SON rainfall

in East Africa and is associated with above normal

conditions (Black 2005). Separating out years into

ENSO and IODphases suggests that CFSv2 andGloSea5

have consistently greater performance in El Niño years

in SON; however, this is within the range of uncertainty.

While GloSea5 has a slight decrease in performance in

La Niña years in SON, CFSv2 exhibits a much greater

decrease that consistently lies outside the uncertainty

range and the model is strongly anticorrelated with the

observations by lead 3 (Fig. 5b). CFSv2 BSS values are

very close to 0 for all events and lead times (Fig. 6b,

Table 1), showing skill similar to climatological forecast

FIG. 4. Temporal ACCs of reforecasts of (a) rainfall in MAM and SON and (b) 2-m air temperature in DJF and JJA. Lead times are in

months ahead of the season. Stippling corresponds to areas where the correlation is significant (p # 0.05).
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skill. GloSea5 skill is above that of a climatological

forecast at lead 1 for wet events in MAM and SON

and dry events in SON (Fig. 6b, Table 1). CFSv2

rainfall reliability changes little with lead time and is

best for dry events in MAM and wet events in SON

(Fig. 7b). GloSea5 reliability curves are particularly

close to the 1:1 line for wet events in SON out to lead

3–4 (Fig. 8b). Reliability for average events is better

in CFSv2 for MAM and GloSea5 for SON (Figs. S2b

and S3b).

CFSv2 temperature ACC values remain around 0.5

at all lead times in JJA, and are slightly lower in DJF

(Fig. 9b, Table 2). GloSea5 ACCs are lower than

CFSv2 in DJF but similar in JJA. ACCs in negative

IOD phases are slightly greater than in all years in JJA

in both models and outside the range of uncertainty at

longer lead times in both. CFSv2 also has much lower

ACCs with negative correlations during positive IOD

years in JJA. CFSv2 has positive BSSs, showing an

improvement over a climatological forecast, for cool

events in DJF at lead 1 and in JJA at lead 1 and lead

2 (Fig. 10b, Table 2). GloSea5 has BSSs above zero only

for warm events in JJA at lead 1 and lead 2. Reliability

for temperature from CFSv2 is best for cool events in

JJA at leads 1–2, whereas curves for warm events are

too shallow (Fig. 11b). GloSea5 reliability is poor,

particularly for cool events (Fig. 12b). Reliability is

generally poor for average events, although the curve

at lead 1–2 for JJA in CFSv2 is close to the 1:1 line

(Figs. S4b and S5b).

e. Country-level skill: Tanzania

In Tanzania inDJF, bothmodels haveACCs for rainfall

above 0.5 at lead 1; this decreases with lead time in CFSv2

but remains fairly constant in GloSea5 (Fig. 5c, Table 1).

ACCs are much lower in both models in MAM and are

mostly around or below zero. The ENSO and IOD phases

have little consistent effect on the ACC in DJF in either

model, but generally ACCS are lower in negative IOD

than the unconditioned case. In MAM, La Niña increases

the ACC at all lead times in both models, but this is within

the sampling uncertainty range. El Niño decreases skill in

MAM in out to lead 3 in both models, and this is outside

the range of uncertainty at lead 1. CFSv2 has positive BSSs

for dry and wet events at lead 1 in DJF, but other events

and leads are close to or below 0 (Fig. 6c, Table 1). The

uncertainty range of GloSea5 BSSs at lead 1 and lead 2

does not lie above 0 in either season (Fig. 6c). CFSv2

reliability curves are close to the 1:1 line for dry events

in DJF, and wet events in DJF at lead 1–2 (Fig. 7c).

Reliability for rainfall is also better inGloSea5 inDJF than

MAM, where dry and wet events are both only predicted

with low probabilities (Fig. 8c). For average events, fore-

cast probabilities show little relationship with observed

frequencies in CFSv2, but the curve is close to the 1:1 line

in DJF at lead 1–2 in GloSea5 (Figs. S2c and S3c).

FIG. 5. Country-average-scale temporal ACCs of rainfall reforecasts from (left) CFSv2 and (right) GloSea5 for key rainy seasons

in (a) Ethiopia, (b) Kenya, and (c) Tanzania. ACCs are shown for all years (black) and years in ENSO and IOD phases (colors); the

uncertainty (gray) represents the 5th–95th percentiles from bootstrapping with the number of years in the ENSO and IOD phases.
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Temperature ACCs are around 0.5 at lead 1 for both

seasons in CFSv2, and decrease slightly with lead time

(Fig. 9c, Table 2). ACCs are lower in DJF in GloSea5

than in CFSv2, but higher in JJA. ENSO and IOD phase

influences on the ACCs mostly lie within the range of

uncertainty. Both models show slight improvements in

negative IOD years in JJA, and there is a decrease in

ACC when in El Niño phase for JJA in CFSv2 that does

lie outside the range of sampling uncertainty. BSS values

and their uncertainty ranges are positive in CFSv2 at lead

1 and lead 2 for cool events in DJF and cool and average

events in JJA and at lead 1 for warm events in DJF

(Fig. 10c, Table 2), signifying higher skill than a clima-

tological forecast. GloSea5 has less skill over Tanzania in

DJF, with negative BSS values for lead 1 for all temper-

ature categories, but higher skill than a climatological

forecast at lead 1 and lead 2 for cool and warm events in

JJA. Reliability diagrams for temperature from CFSv2

and GloSea5 show curves are closest to the 1:1 line for

warm events in DJF and cool events in JJA at lead 1–2

(Figs. 11c and 12c). Reliability for average events is better

for JJA than DJF in both models (Figs. S4c and S5c).

4. Discussion and conclusions

a. Rainfall skill

Country-scale ACCs and BSSs for rainfall forecasts at

leads 1 and2are summarized inTable 1.CFSv2 temperature

anomalies significantly correlate with observations only

at lead 1 in JJA in Ethiopia and lead 1 and lead 2 in

MAM in Kenya and DJF in Tanzania. Skill is mostly

similar to that of a climatological forecast, only showing

improvement above this at lead 1 for dry and wet events

in DJF in Tanzania, and at lead 2 for dry events in JJA in

Ethiopia.

GloSea5 skill is generally similar to CFSv2 for rainfall,

also having positive anomaly correlations for JJA in

Ethiopia,MAMinKenya, andDJF inTanzania.However,

GloSea5 also has strong correlations for SON rainfall in

Kenya at both lead 1 and lead 2. Skill is only above that of a

climatological forecast forwet events inMAMandwet and

dry events in SON in Kenya at lead 1.

Both models have similar skill for average events to a

climatological forecast. Average events are mostly fore-

cast by around 50% of ensemble members (Figs. S2 and

S3), which matches the definition of occurring 50%of the

time. This indicates the models have low sharpness—the

ability to generate forecast probabilities that are different

to the climatological frequency of the event. Where the

models do exhibit skill above that of a climatological

forecast this is for below normal and above normal

rainfall events. This is similar to results from Diro et al.

(2008, 2011) for a statistical model based on SST anom-

alies and from Walker et al. (2019) for GloSea5, which

found higher skill for the outer tercile categories over a

large East Africa region. In these skillful cases, the

FIG. 6. Country-average-scale BSSs for rainfall reforecasts using percentiles based on model reforecast climatologies to define events,

from (left) CFSv2 and (right) GloSea5 for key rainy seasons in (a) Ethiopia, (b) Kenya, and (c) Tanzania. Colors represent dry (red),

normal (orange), and wet (yellow) events.
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models predict the events with probabilities that are dif-

ferent to the 25% frequency defining dry and wet events,

demonstrating sharpness. For example, CFSv2 has skill

for dry and wet events in Tanzania in DJF, and GloSea5

has skill for dry and wet events in Kenya in SON. In both

of these cases the distribution of forecast probabilities at

lead 1–2 peaks at the lowest values, suggesting a high

frequency of forecasts giving less than climatological

chances of the events, along with some forecasts giving

probabilities above 25% (Figs. 7 and 8).

Walker et al. (2019) found skill for the short rains

(OND) over East Africa inGloSea5 at onemonth ahead,

particularly for upper tercile events, along with an in-

crease in skill and reliability of East African rainfall when

GloSea5 forecasts an IOD event. ECMWF System 4 also

has good rainfall reliability in this region (Weisheimer

and Palmer 2014). The reliability in these analyses ap-

pears consistent with the reliability results shown here, in

particular for wet events in SON inKenya. Differences in

the reliability from these previous studies are likely

to be because here the country average has been

used, rather than an aggregation over the grid points

in each region. This does mean the sample sizes are

smaller, making the reliability estimates less robust

and more susceptible to random variations due to under-

sampling; however, the estimates still support those

from Walker et al. (2019).

Forecasts for the long rains season (MAM) have

been shown to be generally less skillful than forecasts

for the short rains (OND; e.g., Nicholson 2014, 2017;

MacLeod 2018). ACC results in Fig. 4a show that over

the East Africa region GloSea5 has greater correla-

tion in SON than in MAM over the eastern part of the

region; however, CFSv2 at lead 1 has greater perfor-

mance for MAM than SON over Ethiopia and Kenya.

This is reflected in the country-scale results, where

ACC values for Kenya from CFSv2 are higher in

MAM than SON, but values from GloSea5 are higher

FIG. 7. Country-average-scale reliability diagrams for rainfall reforecasts from CFSv2 using percentiles based on model reforecast

climatologies to define events below the 25th and above the 75th percentiles, for key rainy seasons in (a) Ethiopia, (b) Kenya, and

(c) Tanzania. Colors represent reliability for lead 1–2 (purple) and lead 3–4 (pink) and the 1:1 line (gray).
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in SON (Table 1). GloSea5 also has positive BSSs for

dry and wet events in SON and wet events in MAM in

Kenya (Table 1), which suggests this model may be

able to provide skillful forecast information particu-

larly for the short rains season.

b. Temperature skill

Country-scale ACCs and BSSs for temperature

forecasts at leads 1 and 2 are summarized in Table 2.

Temperature forecast skill is generally higher than

rainfall, with more significant ACCs and BSS un-

certainty ranges above zero in both models. CFSv2

ensemble mean temperature anomalies significantly

positively correlate with observed anomalies at lead 1

for all countries and seasons, and at lead 2 for all ex-

cept DJF in Kenya. CFSv2 has skill at predicting cool

events in all countries, with the uncertainty above

zero indicating skill above that of a climatological

forecast in all seasons except JJA in Ethiopia, and

mostly out to lead 2. Skill is lower for normal events,

where it is only above a climatological forecast for

JJA in Tanzania, and for warm events where it is only

above for JJA in Ethiopia and DJF in Tanzania at

lead 1.

GloSea5 temperature anomaly correlations are higher

than CFSv2 for JJA in all countries at lead 1 and lead 2,

positive and similar to CFSv2 for DJF in Ethiopia, but

not significant for DJF in Kenya and Tanzania. Skill for

cool events is lower than CFSv2, with skill above a cli-

matological forecast only for JJA in Tanzania. However,

GloSea5 has skill for normal events at lead 1 in DJF and

JJA in Ethiopia where CFSv2 does not and has skill for

warm events at lead 1 and lead 2 in JJA in all three

countries.

Both CFSv2 and GloSea5 have some skill at pre-

dicting temperatures in East Africa at 1- and 2-month

lead times: CFSv2 particularly for cool events and

GloSea5 particularly for warm events in JJA. Few other

FIG. 8. Country-average-scale reliability diagrams for rainfall reforecasts from GloSea5 using percentiles based on model reforecast

climatologies to define events below the 25th and above the 75th percentiles, for key rainy seasons in (a) Ethiopia, (b) Kenya, and

(c) Tanzania. Colors represent reliability for lead 1–2 (purple) and lead 3–4 (pink) and the 1:1 line (gray).
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studies have analyzed seasonal temperature forecast

skill over this particular region. However, ECMWF

System 4 has been shown to have good reliability

for warm (upper tercile) and cold (lower tercile) DJF

and JJA seasons over a large East African region

one month ahead (Weisheimer and Palmer 2014).

Combined with the results shown here this suggests

that dynamical models are able to make skillful and

FIG. 9. Country-average-scale temporal ACCs of 2-m air temperature reforecasts from (left) CFSv2 and (right) GloSea5 for DJF and

JJA in (a) Ethiopia, (b) Kenya, and (c) Tanzania. ACCs are shown for all years (black) and years in ENSO and IOD phases (colors); the

uncertainty (gray) represents the 5th–95th percentiles from bootstrapping with the number of years in the ENSO and IOD phases.

FIG. 10. Country-average-scale BSSs for 2-m air temperature reforecasts using percentiles based on model reforecast climatologies to

define events, from (left) CFSv2 and (right) GloSea5 for DJF and JJA in (a) Ethiopia, (b) Kenya, and (c) Tanzania. Colors represent cool

(red), normal (orange), and warm (yellow) events.
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reliable temperature predictions for this region in

some seasons.

c. Limitations and future opportunities

In this study skill and reliability may be limited by the

size of the reforecast datasets (30 years for CFSv2 and

23 years for GloSea5), particularly when the record is

split into ENSOand IODphases; most of the differences

between conditional and unconditional performance

were not significant. Results may also be sensitive to the

time periods that do not match between the models. A

much longer reforecast set would be required to have

enough years in each ENSO and IOD phase to sub-

stantially reduce uncertainty; around 20 years are cur-

rently used to characterize seasonal forecast skill so this

may need to be up to 3 times as long.

The impact of ENSO and IOD phase on prediction

performance is often consistent across the two models.

For example, increased skill for MAM rainfall in Kenya

in positive IOD years and JJA temperature in Tanzania

in negative IOD years. However, impacts do differ

across the two models in some countries and seasons.

For example, for JJA rainfall in Ethiopia, negative IOD

phase improves performance in GloSea5 but has little

effect in CFSv2, while for SON rainfall in Kenya, La

Niña significantly decreases skill in CFSv2 but has little

effect in GloSea5. For JJA temperature in Kenya, La

Niña increases skill in CFSv2 but decreases skill in

GloSea5, while positive IOD phase significantly de-

creases skill in CFSv2 but has little impact in GloSea5.

Many of the impacts in both models are within the range

of sampling uncertainty. With a limited sample size, it is

difficult to rule out the effect of other influences and

isolate the role of ENSO and IOD. While terciles are

used for ENSO and IOD categorization in each season

so there are equal numbers of years in each phase, SST

variability is likely to be higher in some seasons, for

example, El Niño and La Niña events typically peak in

FIG. 11. Country-average-scale reliability diagrams for 2-m air temperature reforecasts from CFSv2 using percentiles based on model

reforecast climatologies to define events below the 25th and above the 75th percentiles for DJF and JJA in (a) Ethiopia, (b) Kenya, and

(c) Tanzania. Colors represent reliability for lead 1–2 (purple) and lead 3–4 (pink) and the 1:1 line (gray).
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DJF, and there may be stronger influences on rainfall in

certain seasons. Longer reforecast datasets would aid

more robust estimates of changes in performance and

skill based on the phase of ENSO and IOD variability.

Bahaga et al. (2016) showed that a realistic represen-

tation of the relationship with the Indian Ocean dipole is

important in capturing the variability of the rains in East

Africa.Walker et al. (2019) foundGloSea5 represents the

correlations between East African rainfall and ENSO

and IOD region SSTs well but may have atmosphere–

ocean coupling, which is too weak. Further work should

investigate the teleconnections to East Africa in CFSv2,

along with model skill at replicating the SST changes in

each year to also help understand why different ENSO

and IOD phases may improve skill in each model. There

may also be limitations due to the observational datasets

used for validation; for example, GPCP has been shown

to underestimate high rainfall intensities over the region

(Dinku et al. 2007; Kimani et al. 2017).

Further work should investigate skill for smaller coun-

tries in the East African region, or for subnational or

transnational regions with consistent meteorological con-

ditions (e.g., timing of the wet season). Our skill results

may be artificially low due to variations within our target

countries inmeteorological regimes, for example, differing

rainy seasons in northern and southern Ethiopia (Dunning

et al. 2016). Here we analyzed the country scale as these

forecasts are applied in humanitarian contexts where de-

cisions are in some cases made at country scales for geo-

political reasons. However, model biases and performance

vary across countries (Figs. 1a and 4a), so the country scale

may reduce skill where it is high only in parts of the

countries. Downscaling may also help improve skill in this

region (Diro et al. 2012; Kipkogei et al. 2017).

In general, it still appears that statistical models, for

example, based on SST anomalies, may provide better

skill at forecasting rainfall over the region.An important

addition to the literature would be rigorous comparisons

FIG. 12. Country-average-scale reliability diagrams for 2-m air temperature reforecasts fromGloSea5 using percentiles based on model

reforecast climatologies to define events below the 25th and above the 75th percentiles for DJF and JJA in (a) Ethiopia, (b) Kenya, and

(c) Tanzania. Colors represent reliability for lead 1–2 (purple) and lead 3–4 (pink) and the 1:1 line (gray).
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of statistical and dynamical model forecasts for the re-

gion, which are currently lacking. Models such as those

from Chen and Georgakakos (2015) and Nicholson

(2014, 2015) have been shown to produce reliable and

skillful forecasts out to months ahead using indices such

as wind, SST, and sea level pressure. The results here

show that forecasts for rainfall at country scale are

country, season, and event category dependent, and in

many cases, skill is very similar to that of a climatological

forecast. However, both dynamical models may provide

useful information. In particular, CFSv2 has skill for dry

and wet events in DJF in Tanzania at lead 1, while

GloSea5 has skill for wet events in MAM and dry and

wet events in SON in Kenya at lead 1 where CFSv2 does

not. Temperature forecast skill is generally higher than

rainfall, out to lead 2 in some cases from both CFSv2 and

GloSea5. In particular, CFSv2 has skill for cool events

in both DJF and JJA while GloSea5 has skill for warm

events in JJA. Further understanding of the models

analyzed here would require investigating the underly-

ing causes of the differences in skill between the CFSv2

and GloSea5 models, for example, through identifying

common factors between years when one model strongly

outperforms the other and comparing to other dynamical

seasonal forecasting systems.
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