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Abstract

The mastery of skills, such as balancing an inverted pendulum, implies a very accurate con-

trol of movements to achieve the task goals. Traditional accounts of skilled action control

that focus on either routinization or perceptual control make opposite predictions about the

ways we achieve mastery. The notion of routinization emphasizes the decrease of the vari-

ance of our actions, whereas the notion of perceptual control emphasizes the decrease of

the variance of the states we visit, but not of the actions we execute. Here, we studied how

participants managed control tasks of varying levels of difficulty, which consisted of control-

ling inverted pendulums of different lengths. We used information-theoretic measures to

compare the predictions of alternative accounts that focus on routinization and perceptual

control, respectively. Our results indicate that the successful performance of the control task

strongly correlates with the decrease of state variability and the increase of action variability.

As postulated by perceptual control theory, the mastery of skilled pendulum control consists

in achieving stable control of goals by flexible means.

Author summary

What characterises skilled behaviour? When one observes capable tennis players or other

masters of their craft, their performance appears effortless, their behaviours purposeful

and stable. This has been suggested in some traditional accounts to imply that mastery of

a task is linked to highly routinised behaviours; such behaviours would concentrate on

well-rehearsed routes. Others have proposed instead that mastery consists in keeping the

states well confined during a behaviour; where necessary, actions would vary strongly to

achieve that. Which of these is the case? Here, we undertake a study where participants

have the task to balance an inverted pole. The length of the pole can be varied, which per-

mitted us to control the difficulty of the task. Using methods from information theory, we

set out to answer above question in the case of pole balancing control. We found that suc-

cessful balancing correlates strongly with focused, well controlled states, but at the cost of
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having highly varying actions. In other words, a potentially wide choice of actions serves

to maintain the system tightly in preferred states. According to these results, mastery (in

this task) is not about choosing the same actions repeatably, but about reliably achieving

the same outcomes.

1 Introduction

Humans are able to learn sophisticated skills [1], such as playing a musical instrument profes-

sionally, excelling in complex sports such as tennis, balancing an inverted pendulum, or driv-

ing a car in a busy city. Yet, the informational principles underlying human skilled action

control are incompletely known [2–7].

Classical theories of skill learning in motor control assume that with training actions

become routinized, which implies a drastic reduction of their variability [8]. Action variability

might be initially useful during learning to promote exploration and remains also afterwards,

but in general, a hallmark of expertise and routinization is the low variability of skilled actions

[9–13]. The idea that with expertise action variability decreases is also implicit in standard

machine learning and AI approaches to gaming (e.g., deep RL systems), where the goal is to

learn a convenient policy, or state-action mapping [14, 15]. The massive learning process of

deep RL systems implies a routinization of actions and the drastic reduction of the variability

of the selected policies—in the sense that at the end of learning, a single policy is retained from

a potentially huge space of possible policies considered before learning.

Other frameworks assume instead that we control (and reduce the variability of) perceptual

states, not of actions. A prominent example of this perspective is perceptual control theory
(PCT), which assumes that behaviour uses negative feedback control loops [16–18]. This feed-

back control loop maintains a controlled perceptual variable at (or close to) a goal or reference

point, by producing appropriate actions that—via the environment—influence the controlled

variable. For example, when we drive a car, we could keep the speed indicator fixed on our

desired speed (say, 80 mph). To do this, we could use an internal comparator to measure dif-

ferences between the currently sensed input and the reference—and accelerate and decelerate

as needed, to reduce this discrepancy. In turn, acceleration and deceleration have an effect on

the car dynamics and ultimately on the input that we sense, creating a feedback loop that

affords control despite external disturbances (e.g., wind). This example illustrates an important

insight of PCT: the fact that the controlled variable is not the output of the system (the actions)

but its input. As a consequence, we vary and allow for a potentially high variability in our

actions (e.g., press or release break) in order to control our perceptual variable (e.g., speed

indicator), which therefore shows much less variability. Importantly, the feedback control loop

of PCT can be extended hierarchically, by allowing hierarchically higher levels to set the goals

or reference points of hierarchically lower levels and the lower levels to achieve these goals set

by higher levels. Most sophisticated behaviours can be described in terms of a PCT controller

with multiple hierarchical levels. For example, Johnson et al realized a 4-level perceptual con-

troller for an inverted pendulum that is especially effective in withstanding external perturba-

tions [19]. Other related approaches, such as planning-as-inference, active inference, surprise-

minimising RL and KL control are also based on the idea that goal-directed behavior amounts

to reducing the entropy or variance of the final (goal) state(s) of the controlled dynamical sys-

tem [20–27]. For example, when balancing an inverted pendulum, the task ends in one single

state, which is the one with the pendulum upwards and standing still. In most practical cases,

it is important to reduce the entropy not just of the final (goal) state, but also of (some of) the
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intermediate states that the agent has to visit to achieve its goals. This is because in difficult

control tasks, such as balancing an inverted pendulum, there is only a “narrow corridor” in the

phase space of the task: only a very small subset of trajectories (compared to the full set of pos-

sible trajectories in the state space) afford goal achievement. In other words, a difficult control

task implies that only a small region of the state space must be visited with high probability to

reach the goal. Some exploration of the state space (here, indexed by high state entropy) might

be useful during initial phases of learning, or when the control task is easy, but could otherwise

hinder the performance. Please note that in this paper, we focus on control dynamics after the

learning stage and hence we do not consider the effects of learning.

We designed an experiment to adjudicate between these contrasting views of expertise in

the case of a pendulum balancing task—and to assess the relative importance of reducing vari-

ability of actions and states during skilled control for this problem. We analyzed human partic-

ipants’ behaviour and performance during the control of an inverted pendulum. Crucially, in

different trials, the pendulum length varied, therefore creating control tasks of different levels

of difficulty [28, 29]. We reasoned that if, in the case of a pole balancing task, the former

hypothesis (reduction of action variability) is correct, the skilled control of a pendulum should

be indexed by low levels of action entropy. Rather, if the second hypothesis (reduction of per-

ceptual state or outcome variability) is correct, skilled control of a pendulum should be

indexed by low levels of state entropy, but not action entropy. To preview our results, we

found that successful performance in pole balancing strongly correlates with the decrease of

state variability and the increase of action variability. A numerical study based on Markov

Decision Processes [14, 15] suggests an important role of noise in determining the trade-off

between performance and information processing that we observed in human participants.

2 The experiment

We studied the behaviour of 36 human participants performing a continuous control task,

consisting in inverting and balancing a swinging pendulum about its axis for as long as possi-

ble, using a computer simulation.

The participants of the experiment were recruited from the students and staff of the Univer-

sity of Hertfordshire. They were aged between 22 and 51 years, with 9 female and 27 male par-

ticipants. Participants had no prior knowledge of the project or the specific task being

employed for testing. The experiment was approved by the Ethics Committee of the University

of Hertfordshire as complying with the University’s policies regarding studies involving the

use of human participants (study approved by University of Hertfordshire Science and Tech-

nology Ethics Committee and Designated Authority with Protocol No. COM SF UH 00016).

Informed written consent was provided by all participants.

2.1 Controlled system

The non-linear dynamical system controlled by the participants is a pendulum composed by a

massm hanging from a weightless rod of length L (see Fig 1). We denote with θt the angle that

the pendulum has with its vertical axis at time t, where θt = 0 rad indicates the downward posi-

tion. In the experiment we setm = 1 kg and g = 1 ms−2 for the gravitational acceleration g.
Hence, the dynamics of the controlled pendulum is governed by the following differential

equation

€yt¼
: d2yt
dt2
¼
ut � sin yt

L
ð1Þ

where ut represents the contribution of the mass acceleration controlled by the participants at
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time t. In the simulation this equation is approximated using the Euler method for numerical

integration. Given a time interval Δt, in the numerical simulation the pendulum’s angular

speed _ytþDt is computed as follows

_ytþDt ¼ ð1 � dÞ _yt þ €ytDt ð2Þ

where d is a damping coefficient set to 5 × 10−6 in our experiments. Pendulums with different

lengths L will exhibit different periods, with larger values of L implying longer periods. Hence,

a shorter pendulum manifests larger angular velocities _y than a longer pendulum, making it

more difficult to control.

Fig 1. The controlled system is a pendulum with mass m hanging from a weightless rod of length L. The angle

between the pendulum and its vertical axis is denoted by θ, where θ = 0 rad indicates the pendulum’s downward

position. The goal of the task assigned to participants is to swing the pendulum in order to balance it in its upright

position for as long as possible (i.e., θ’ π rad and _y � 1 rad s� 1).

https://doi.org/10.1371/journal.pcbi.1010810.g001
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2.2 Control task

In the experiment, participants were required to balance a pendulum vertically above its axis

in a computer simulation and keep it upright for as long as possible. They controlled the pen-

dulum using two keys of the computer’s keyboard, corresponding to the controlled external

mass accelerations u = ± 0.27 ms−2 respectively. To hold down a key exerts a continuous force

until the key is released (i.e., the participant did not need to repeatedly press a key to exert a

continuous force but just to hold it down). Note that both keys can act as brake or accelerator

according to the direction of the pendulum.

The structure of the experiment was as follows. Prior to starting the experiment, an instruc-

tor demonstrated to the participants what is required to perform the task. Then, the partici-

pants performed 4 practice trials in which they learned how to control and balance the

pendulum. The time allowed to balance the pendulum on each training trial was 3 minutes. In

these practice trials, the length of the pendulum L was varied to let participants experience

tasks of different levels of difficulty: easier for longer pendulums (having smaller angular

speed) and more difficult for shorter pendulums (having larger angular speed). Please note

that we included a learning session to ensure that participants had sufficient familiarity and

skill to address the task, not to study learning dynamics. Therefore, we did not analyze the data

from the learning stage.

The main experiment consisted of 8 trials lasting 2 minutes each, in which participants

were asked to balance pendulums of 8 different lengths L. The values of L are: L = 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8 and 0.9 m, with L = 0.2 m being the most difficult control task and L = 0.9 m

the easiest one. The experimental condition changed according to a within-participants design,

so all participants were tested for all difficulty levels L with the order of trials being randomized

across them. By manipulating the pendulum length L (and hence the speed at which the pen-

dulum swings around its axis) we controlled the difficulty of the task. This allowed us to inves-

tigate the control strategies and the possible reduction of action and/or state variability with

respect to the limits of human processing capacity.

More formally, the objective of each trial is to swing the pendulum from a starting configu-

ration where it is still and downward (θ = 0 rad and _y ¼ 0 rad s� 1) in order to reach the

upright configuration (θ = π rad). Then, participants were required to use the keys to keep the

pendulum balanced in this upright position for as long as possible (i.e., θ’ 0 rad and

_y � 1 rad s� 1). We emphasise that in principle it is possible to design an artificial controller

capable of balancing the pendulum of different lengths using the two provided mass accelera-

tions u. However, in practice, when the task is addressed by humans, their information pro-

cessing capacity is limited and therefore controlling shorter pendulums becomes increasingly

hard.

Participants were informed that balancing the pendulums (especially the shorter ones) was

challenging. They were told that failure to balance may be a possibility but were instructed to

do their best in each case. Furthermore, participants were informed that the times for which

the pendulum was balanced on its axis was measured.

3 Methods

Let us denote by st ¼
:
ðyt;

_ytÞ 2 S¼: ½0; 2pÞ � R the pendulum’s state at time t, being a two-

dimensional tuple composed by the pendulum’s angle θ and angular speed _y. In addition, let

us denote with at 2 A¼: fl; n; rg the action that a participant selects at time t, being either to

press the key that increases the pendulum’s swing in the clockwise direction (“left” action
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at = l), to press the key that increases the pendulum’s swing in the anti-clockwise direction

(“right” action at = r), or simply to do nothing (“no-action” at = n).

For each trial i, we collected the states~Si¼: ðsi
0
; si

Dt; s
i
2Dt; . . . ; sitF Þ visited by the pendulum and

the actions ~Ai¼
:
ðai

0
; ai

Dt; a
i
2Dt; . . . ; aitF Þ chosen by the participant, where Δt denotes the sample

interval and tF the trial’s final time. In the experiment we set Δt’ 0.017 s and tF = 120 s, hence

each trial i is represented by the two time series~Si and ~Ai, each one composed of F = 7026

samples.

To investigate the relationship between skilled control and the variability of actions and

states, we analysed the aforementioned time series measuring the performance and estimating

information-theoretic measures of variability for each participant in each experimental condi-

tion. To measure participants’ performance we employed a mathematical framework com-

monly used in models of sequential decision-making and control [14, 15, 30]. We first defined

the reward as a function of the state space r : S ! f0; cg, which measure the immediate worth

of a state with respect to the given balancing task. In the experiment we defined the reward as

follows

rðstÞ ¼
0 if ðyt 2 ðp � 0:27;pþ 0:27Þ rad Þ and ðj _yt j< 0:2 rad s� 1Þ

c 2 R� otherwise

8
<

:
ð3Þ

In other words, r(st) penalises states that are not close to a balanced configuration, which

are states where the pendulum is far from its upright position and the angular speed is far from

zero. In the experiment we chose c = −3 × 10−3. Then, in order to evaluate an entire trial, we

defined the utility of a trial i, denoted as Ui, as the sum of all rewards accumulated by the par-

ticipant for all time steps of the trial. Hence, for trial i we have

Ui¼
: X

F

n¼0

rðsinDtÞ ð4Þ

We quantify actions’ and states’ variability employing the information-theoretic notion of

entropy, which is used to measure the uncertainty of a random variable [31]. Let us denote by

Ai 2 A the random variable representing the identically distributed actions chosen at every

time step t by the participant involved in the trial i. Let us also denote by Si 2 �S the random

variable representing the identically distributed states visited at every time step t by the pendu-

lum during the trial i, where �S is a discretised version of S obtained through binning. Let us

also assume that the time series ~Ai and~Si are realizations of sequential samplings of the ran-

dom variables Ai and Si, respectively. Then, the entropy of Si is defined as

HðSiÞ¼: �
X

si2�S

PðsiÞlog PðsiÞ ð5Þ

where we denoted by P(si) the probability of the random variable Si being equal to the state si

(i.e., Pr{Si = si}). The conditional entropy H(Ai|Si) quantifies the uncertainty left about the

action Ai once the state Si is known. It is defined as follows

HðAijSiÞ¼: �
X

si2�S

PðsiÞ
X

ai2A

PðaijsiÞlog PðaijsiÞ ð6Þ

H(Si|Ai) is defined similarly. The reduction of uncertainty about Si once the variable Ai is

known (and vice versa) can be measured by themutual information I(Si;Ai). This also quanti-

fies in bits the amount of information that Si and Ai have in common. The mutual information
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between states and actions is defined as

IðSi;AiÞ¼:
X

si2�S

X

ai2A

Pðsi; aiÞlog
Pðsi; aiÞ
PðsiÞPðaiÞ ð7Þ

The mutual information can also be rewritten as I(Si;Ai) = H(Si) − H(Si|Ai) =H(Ai) − H
(Ai|Si), i.e., it is symmetric.

4 Results

4.1 Information-theoretic data analysis

Here, we used information-theoretic measures to investigate the variability of the states~S vis-

ited by the controlled system and the actions ~A chosen by the participants to control it. Specifi-

cally, we analysed the quantitiesH(Si),H(Ai|Si),H(Si|Ai) and I(Ai;Si) for all trials i. Interpreting

the numerical values of information-theoretic quantities for continuous data requires some

care, especially when considering differential entropy. The latter conceptually does not depend

on a arbitrarily chosen bin size, but is, strictly spoken, not directly interpretable as entropy;

amongst other, it might become negative or diverge (see [32], sec. 8–2, p. 269). More specifi-

cally, differential entropy is essentially the limit of entropy obtained by binning when the bin-

ning becomes arbitrarily fine, subtracting a logarithmic term correcting for the fineness of the

binning; the differential entropy is therefore a “renormalized” version of the binned entropy in

the limit of arbitrarily fine binning. As a consequence, differential entropies have no simple

interpretation, only their differences do. Another alternative could have been to employ

entropy rates. However, given the available data set, a problem in this regard is that we do not

have an ensemble of trajectories that would have allowed us to average across several identical

processes. Here, thus, we instead consider entropies which we obtain from continuous distri-

butions by first binning them. These quantities do have a direct interpretation as entropies,

but their value is shifted by an arbitrary offset which depends only on the choice of binning.

Thus, it is possible to consistently compare binned entropies relative to each other, as long as

the binning used to compute them is the same. This is the approach we use here. To estimate

the above quantities from the time series data collected during the experiment, we adopted the

numerical estimator MIToolbox [33], which employs conditional likelihood maximization to

compute the entropy. To use this estimator for discrete random variables and estimate the

quantities of trial i, we sampled the state time series of trial i at a fix rate. We then discretized

the sampled time series binning the angle interval [0, 2π) rad into 1000 bins of equal size and

the angular speed interval [−10, 10] rad s−1 into 200 bins of equal size.

4.1.1 Direct relation between utility and action entropy in skilled action control. The

first question we addressed is whether, in keeping with classical theories of action routiniza-

tion, skilled control is indexed by low levels of action entropy, given the states where the

actions are executed, i.e.,H(Ai|Si). For this, we investigated how the utility Ui (and hence par-

ticipants’ skill in the pendulum balancing tasks) varies as a function of action entropy. We

found a direct relation between the utility achieved by participants and the entropy of their

action distributions H(Ai|Si) (see Fig 2A). Significant positive Spearman and Pearson correla-

tions were observed betweenH(Ai|Si) and Ui (ρ = 0.944, p< 0.01; r = 0.967, p< 0.01) for the

whole set of trials i, ignoring L, which shows a strong monotonic relationship between the two

variables (i.e., when the entropyH(Ai|Si) increases the utility Ui tends to increase). For correla-

tion analyses, we used IBM SPSS Statistics (Version 25.0). In Fig 2A, each data point is col-

oured according to the difficulty level of the corresponding trial (i.e., pendulum length L). As

expected, utilities Ui are higher for (longer) pendulums that are easier to control than for
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(shorter) pendulums that are more difficult to control. Participants who controlled the pendu-

lums better had a larger variability in their action distribution, represented by a larger condi-

tional action entropy H(Ai|Si), as visible in the figure. To test whether these results are general

across pendulum lengths, in Fig 2B we show the action entropyH(Ai|Si) of the eight different

pendulum lengths L separately, with one subplot for each pendulum length. The positive

Spearman correlation between utility and action entropy is consistent across all values of L, as

shown in Table 1.

Finally, to further investigate the relations between the pendulum length L and action

entropyH(A|S), in Fig 3 we plot the action entropyH(A|S) averaged across all the trials with

the same pendulum length L. The figure shows a directly proportional relationship between

average action entropy and pendulum length. Assuming that participants are generally more

proficient in controlling longer pendulums, this plot confirms that higher skill levels are

indexed by larger action entropy.

Taken together, these results run against the idea that skilled control is indexed by low levels

of action entropy—and indicate instead that they are indexed by high levels of action entropy.

4.1.2 Inverse relation between utility and state entropy in skilled action control. The

second question we addressed is whether, in keeping with perceptual control theory, skilled

control is indexed by low levels of state entropyH(Si) and/or state action-conditioned entropy

H(S0i|Ai). For this, we considered how utility Ui varies as a function of these two entropies. By

Fig 2. (a) UtilityUi of trials i during the balancing task plotted as a function ofH(Ai|Si) for all participants and pendulum lengths L. Larger values of

utility Ui correspond to better performance in balancing the pendulum. Spearman correlation ρ = 0.944; Pearson correlation r = 0.967. In (b) the trials

are separated by pendulum length in different subplots.

https://doi.org/10.1371/journal.pcbi.1010810.g002
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S0i we denote the random variable indicating the state visited by the pendulum 270 ms after an

action Ai has been selected. This interval approximates the estimated time that elapses to exe-

cute a motor control (e.g., for a saccade is between 250–300 ms; see [34]). The quantityH(S0i|
Ai) can be interpreted as the amount of uncertainty left in the joint distribution P(Ai, S0i) about

the state S0i once the uncertainty about the action Ai has been removed. A lowH(S0i|A) means

that to know the chosen action Ai implies small uncertainty and variability about the resulting

state S0i.
Figs 4A and 5A show an inverse relation between utility and both the entropyH(Si) of states

and the entropyH(S0i|Ai) of future states given participants’ actions. As in the previous analy-

sis, utilities Ui are higher for pendulums that are easier to control than for pendulums that are

more difficult to control. The Spearman coefficients of the utility Ui with the entropies H(Si)

Table 1. Action and state entropies’ Spearman coefficients (rHðAi jSiÞ;Ui and rHðSiÞ;Ui , respectively) for all pendulum

lengths L.

L rHðAi jSiÞ;Ui rHðSiÞ;Ui

0.2 m 0.770 (p< 0.01) -0.747 (p< 0.01)

0.3 m 0.902 (p< 0.01) -0.951 (p< 0.01)

0.4 m 0.979 (p< 0.01) -0.992 (p< 0.01)

0.5 m 0.939 (p< 0.01) -0.978 (p< 0.01)

0.6 m 0.953 (p< 0.01) -0.971 (p< 0.01)

0.7 m 0.844 (p< 0.01) -0.974 (p< 0.01)

0.8 m 0.751 (p< 0.01) -0.976 (p< 0.01)

0.9 m 0.719 (p< 0.01) -0.951 (p< 0.01)

all Lengths 0.944 (p< 0.01) -0.982 (p< 0.01)

https://doi.org/10.1371/journal.pcbi.1010810.t001

Fig 3. Action entropy H(A|S) averaged over trials with the same pendulum length L. The abscissa represents the

action entropy and the ordinate represents the pendulum length to allow direct comparison with Fig 2.

https://doi.org/10.1371/journal.pcbi.1010810.g003
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Fig 4. (a) UtilityUi of trials i during the balancing task plotted as a function ofH(Si) for all participants and pendulum lengths L. Spearman correlation

ρ = −0.982. In (b) the trials are separated by pendulum length in different subplots.

https://doi.org/10.1371/journal.pcbi.1010810.g004

Fig 5. Utility Ui of trials i during the balancing task plotted as a function of H(S0i|Ai) in (a) and of I(Ai;S0i) in (b), for all

participants and pendulum lengths L. (a) Spearman correlation ρ = −0.979. (b) ρ = −0.907.

https://doi.org/10.1371/journal.pcbi.1010810.g005
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(ρ = −0.982, p< 0.01) andH(S0i|Ai) (ρ = −0.979, p< 0.01) were computed for all trials i and

independently from L, indicating a strong correlation in the negative direction (i.e., when the

state entropies decrease the utility tends to increase).

As Fig 4B shows, the monotonic relationship between state entropyH(Si) and utility is con-

sistent across all pendulum lengths L. Interestingly, the data points of different pendulum

lengths lie approximately on the same curve and can be nicely matched up, as shown in Fig 4A

(i.e., more capable subjects balancing short pendulums, which are more difficult to control, are

quite comparable to less skilful subjects balancing longer pendulums, which are easier to con-

trol). The possible origins of this alignment will be discussed in Section 5. The negative Spear-

man correlation between utility and state entropy is also consistent across all values of L, as

shown in Table 1. Taken together, these results lend support to the hypothesis that skilled con-

trol is indexed by low state entropy, irrespective of the values of L. They are also compatible with

the idea that expert participants perform actions that decrease the entropy of their future states.

To further investigate the relations between pendulum length L and state entropyH(S), in

Fig 6 we plot the state entropy H(S) averaged across all the trials with the same pendulum

length L. The figure shows that averageH(S) is lower for longer pendulums, which are easier

to control, and greater for shorter pendulums, which are more challenging to control. Hence,

although different values of L lead to similar state entropy trends, these induce different

regimes with respect to state information processing.

The two entropies H(Si) andH(S0i|Ai) in Figs 4A and 5A have a similar trend, but the latter

is slightly smaller on average (their difference, averaged for all trials, is 1.03 bits and close to

1.5 bits for less skilled participants). This shows that most of the information contained in

H(S0i|Ai) comes from the information contained inH(Si) but, compared to the latter, is

reduced by an average difference of about 1 bit. So, although most of the information content

is carried by state information, some information is absorbed (i.e., can be predicted) by the

Fig 6. State entropy H(S) averaged across trials with the same pendulum length L. The abscissa represents the state

entropy and the ordinate represents the pendulum length to allow direct comparison with Fig 4.

https://doi.org/10.1371/journal.pcbi.1010810.g006
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action selected by participants. This represents the amount of information the actions Ai pro-

vide about the resulting states S0i independently from the previous states Si. Note that this

information is not far from log2(3), i.e., the information that distinguishes between the three

regions that the action is pushing the pendulum towards by choosing r, l or n. Since S0i is essen-

tially Si shifted in time, we can assume thatH(Si) is equal toH(S0i). Hence, the aforementioned

difference becomes the mutual information I(Ai;S0i) =H(S0i) −H(S0i|Ai) (see Fig 5B), which

removes from the information contained in S0i the information contained in S0i knowing

already Ai [35–39]. Note that the results involving the mutual information I(Ai;S0i) are consis-

tent with those obtained with the Kraskov-Stögbauer-Grassberger (KSG) method for estimat-

ing the mutual information for time series with continuous data [40], which was used in

addition to [33] to verify our findings. These results are not presented here because they do

not provide additional insights.

The mutual information I(Ai;S0i) is reported here for consistency although in character it is

just reflecting the entropies. The fact that I(Ai;S0i) is basically just the information injected by

the action shows that the environment does not absorb the action entropy, but rather deter-

mines the subsequent behaviour. In other words, the actions chosen by the participants have a

significant effect on the resulting behaviour of the pendulum. The Spearman correlation of the

mutual information I(Ai;S0i) with the utility Ui for all i (ρ = −0.907, p< 0.01) shows the similar

strong negative trend found for the state entropies. The narrow and neat character of the

curves reported in Figs 4 and 5 is a strong indicator that their trends are general across partici-

pants rather than reflecting the particular decisions of a subset of them. The only case where

the data points are more spread is the wide “foot” of the mutual information curve, which

shows that when the pendulum becomes very hard to control, the relationship between infor-

mation and utility becomes fuzzier.

Similarly to our findings, in Lupu et al. [28, 41] the average information-transmission rate

of humans balancing an inverted pendulum is shown to be inversely related with the pendu-

lum’s length. The latter is used by the authors to parameterize the system’s stability and the

time delays experienced by the human participants. In their work, the mutual information rate

of the control systems is considered and is estimated using the Kolmogorov-Sinai entropy,

whereas in our study we estimated the Shannon mutual information of states and actions

directly from data.

To further analyze the relationship between utilities and state entropy, we plotted the sup-

port of Si over the phase spaces of two pendulums: the former longer and easier to control

(L = 0.9 m, see Fig 7A and 7B) and the latter shorter and more difficult to control (L = 0.2 m,

see Fig 7C and 7D). Our results indicate that the support of Si is smaller when the pendulum is

controlled successfully – as it is the case for most participants with a long pendulum (see Fig

7A and 7B for two examples). On the contrary, the support of Si is wider when the pendulum

is not controlled properly—as it is the case for most participants with a short pendulum (see

for instance Fig 7C and 7D). This analysis further supports the idea that a hallmark of skilled

action control consists in maintaining a low entropy of state distributions across the whole

task, providing a visual illustration of the notion of a “narrow corridor” in the phase space of

the task mentioned in the Introduction.

4.2 Analysis of time spent in the balancing region

In this section, we ask whether the relations between the utility Ui and the entropies H(Ai|Si),
H(Si) andH(S0i|Ai) reported in Section 4.1 depend on the time participants spend in the bal-

ancing area and on the specific strategies they adopt in that area. Since the pendulum is an

inherently unstable system, balancing the pole in the inverted position requires moving it
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continuously. Therefore, the fact that more skilled participants spend more time in the balanc-

ing region, alternating the actions l and r repeatedly to keep the pendulum upright, might

explain the direct relation between Ui andH(Ai|Si). Furthermore, when the pendulum is bal-

anced in its upright position, it visits a relatively little area of its phase space and consequently

has a small support of the state distribution. Hence, the fact that more skilled participants con-

sistently spend more time in the balancing region might explain the inverse relation between

Ui and the entropies H(Si) andH(S0i|Ai), because the support’s size of a distribution is one of

the factors that impact the magnitude of its entropy. To validate these hypotheses, we investi-

gated the different strategies that participants adopt when they are in different phases of the

task: namely, when they were within or outside the balancing region.

First, as a sanity check, we tested whether participants spend less time in the balancing

region when the pendulum is more difficult to control. The analysis shown in Fig 8 confirms

this prediction. Furthermore, the analysis of button presses within or outside the balancing

regions indicates that participants do more key presses in the balancing region (Fig 9)—as

several micro-adjustments may be necessary to keep the pendulum in the correct

position – increasing action variability for skilled participants.

A more detailed analysis of the actions performed by participants in the balancing region is

shown in Fig 10. The figure shows the distance travelled by the pendulum when a key is down,

with blue segments representing actions that push the pendulum in the clockwise direction

and red segments representing actions that push the pendulum in the anti-clockwise direction.

Subsequent key presses are reported one below another, starting from the top of the plot. The

three plots of Fig 10 permit appreciating the differences between the key presses required to

Fig 7. Support of Si within the phase space of four representative trials: Two participants swinging the longest

pendulum ((a) and (b)) and other two participants swinging the shortest pendulum ((c) and (d)). Trials start at the

center of the phase space.

https://doi.org/10.1371/journal.pcbi.1010810.g007
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balance a pendulum that is easier to control (L = 0.9 m, see Fig 10A) versus a pendulum that is

more difficult to control (L = 0.5 m, see Fig 10B and 10C). Furthermore, the figures show the

differences between selected participants with higher skill (Fig 10A and 10B) and lower skill

levels (Fig 10C).

In general, controlling successfully the pendulum in the balancing region (keeping it

upright) requires large variability in the choice and timing of actions (Fig 10A and 10B). This

phenomenon is especially present in the case of the more skilled participant who controls the

more challenging pendulum (Fig 10B). This finding generalises to the typical behaviour of

more skilled participants, who spend more time in the balancing region (also during difficult

tasks) and manifest a large variability in their actions, compared to less skilled participants

who spend less time in the balancing region. However, less skilled participants perform fewer

key presses in the balancing region (see Fig 10C), manifesting a smaller variability in their

actions. This analysis shows the strong task-dependence of the relations between the utility Ui

and the entropies H(Ai|Si),H(Si) andH(S0i|Ai), see also Section 5.

4.3 The role of noise in the utility-information curves: A computational

study

In this section, we report the results of a series of simulations that we performed to identify the

source of state and action variability observed in the data. Since the dynamics of the pendulum

controlled by the participants is deterministic, all the variability measured through our infor-

mation-theoretic analysis must come from the actions chosen by the participants. The results

of our numerical study show that the low state variability that we observed in skilled partici-

pants is a direct consequence of the dynamics of the controlled pendulum, which induces

some mandatory trajectories in order to be balanced. Furthermore, the direct relation between

Fig 8. Proportion of the time spent by participants in the balancing region (± 0.27 rad from the vertical axis) for

each pendulum length L.

https://doi.org/10.1371/journal.pcbi.1010810.g008
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action variability and participants’ performance may be explained by both the presence of

noise in the participants’ observation of the pendulum’s state and by their utilization of a sto-

chastic model of the pendulum’s dynamics. Concerning this latter point, it is important to

remind that the most skilled participants spent more time in the balancing region, where the

frequency of key presses is large. In this regard, a deterministic controller would always choose

identical actions in the same states, whereas a non-deterministic controller may choose differ-

ent actions in the same states, increasing the action variability. Hence, the large action entropy

of skilled participants might depend on the fact that they adopt a stochastic decision-making

process.

To this aim, we employed an artificial controller that solves the same pendulum balancing

task addressed by the human participants in the reported experiment (Section 2.2). To simu-

late their behavior, we used a computational model based on Markov decision processes

(MDP) [14, 15]. We used a discrete MDP defined by the tuple ðŜ ;A;T; rÞ, which is composed

as follows: Ŝ is a discrete version of the state space S obtained through uniform binning,

where we used 1000 bins for the angle θ and 1000 bins for the angular speed _y; the action

space A and the reward function r are defined as in Section 3; Tðŝ 0 ĵs; aÞ is the transition proba-

bility distribution, with T : Ŝ �A� Ŝ ! ½0; 1�. In our MDP-based controller, T is character-

ized by the random disturbance d¼
:
dy � d _y , where dy ’ N ð0; sT

y
Þ and d _y ’ N ð0; sT_y Þ are

discrete approximations (via binomial distribution [42]; [43] see sec. 4.5, p. 105) of normally

distributed random variables added to the difference equations of the pendulum’s angle and

angular speed respectively (via Eqs (1) and (2)). Furthermore, we included in the controller a

simple sensor model intended to mimic the perceptual disturbances that participants may

have experienced while controlling the pendulum. This is characterized by the observation

function O : Ŝ ! O, defined as OðŝÞ ¼ ŝ þ Z, with observation space O ¼ Ŝ and observation

Fig 9. Key press activity within and outside balance region (± 0.27 rad from the vertical axis) for each pendulum

length L.

https://doi.org/10.1371/journal.pcbi.1010810.g009
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random disturbance Z¼
:
Zy � Z _y . Also the observation disturbances Zy ’ N ð0; sO

y
Þ and

Z _y ’ N ð0; sO_y Þ are discrete binomial approximations of normal random variables.

To enable the numerical study of the relationship between state and action variabilities and

the participants’ performance observed in our experiments, the skill level of the employed con-

troller needs to be parameterized. In this regard, we chose as baseline for the highest skill level

the optimal policy π�, where we denote a behavioral policy with p : Ŝ ! A, which is a state-

action map that tells the controller what action to take in every state. For every state ŝ and time

t, the optimal policy is defined as p�ðŝÞ¼: argmaxpEp½
PF

k¼0
rðŝtþkþ1Þĵst ¼ ŝ�, where the expected

value is taken over all the trajectories generated by using the policy π. Given that π� represents

the controller with maximum skill level, this can be progressively degraded using an epsilon-

greedy strategy [15]. The epsilon-greedy policy is defined as

p�nðŝÞ¼:
p�ðŝÞ with probability 1 � �n

Ufl; n; rg with probability �n

(

ð8Þ

where we denoted with U the uniform distribution and with �n the probability of having the

controller choosing a random action. The epsilon-greedy probability is defined as ϵn¼
: n

N, with

Fig 10. Distribution of key presses in the balancing region for three trials and distance traveled by the pendulum during the key presses. Blue

segments represent actions that push the pendulum in the clockwise direction, red segments indicate actions that steer the pendulum towards the anti-

clockwise direction. Key presses (“balancing episodes”) are reported subsequently from the top to the bottom of the plot. In (a) and (b) the key presses

of two skilled participants are reported, where in (c) the key presses of a less skilled participant is shown.

https://doi.org/10.1371/journal.pcbi.1010810.g010
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n = 0, 1, . . ., N indicating the controller skill level. Hence, the highest skill level n = 0 represents

the optimal controller, the lowest skill level n = N corresponds to a completely random con-

troller and 0< n< N denotes controllers with intermediate skill levels. To compute the base-

line optimal policies π� we used the value iteration algorithm [15] combined with a k-d tree

data structure [44], which is used to efficiently handle the binned state space. The role of the

proposed sensor model is to add noise to the decision-making process, meaning that when the

MDP is in state ŝ the controller selects its action according to pϵnðOðŝÞÞ (no partially observ-

able Markov decision processes (POMDP) computation is used [45]).

We conducted a series of numerical experiments having artificial controllers of N = 26 dif-

ferent skill levels addressing the same pendulum balancing task described in Section 2.2. In

this regard, the same pendulum simulator was used to run 26 simulations for each of the 8 pen-

dulum lengths. Each simulation j = 1, 2, . . ., 208 = 26 × 8 lasted the same number of time steps

used for the human trials, yielding time series~Sj
p

and ~Aj
p

of the same size F. The data analysis

presented in Section 4.1.1 and 4.1.2 was carried out for the time series generated by the artifi-

cial controllers of all simulations j, including the computation of the utilities Uj and the infor-

mation-theoretic quantitiesH(Aj|Sj),H(Sj),H(S0j|Aj) and I(Aj;S0j). In addition, to investigate

the impact that the model and observation noise might have in determining the information-

utility curves that we reported in the previous sections, here we use the artificial controllers to

show how action and state variability relate with utility for disturbances η and δ of different

magnitude. In the following, we present scatter plots of the utility as a function of the quanti-

tiesH(Aj|Sj) andH(Sj) for different values of sT
y
, sT_y , sO

y
and sO_y . We do not report the results

regardingH(Aj|Sj) and I(Aj;S0j) because these do not provide further relevant insights. Similarly

to the previous sections, each data point within the scatter plots represents a different simula-

tion j and data points are colored according to pendulum length L.

4.3.1 Deterministic artificial controllers. In Fig 11, we show the entropiesH(Aj|Sj) and

H(Sj) for controllers that are not affected by any disturbances. While Fig 11B resembles the

inverse relationship between utility and state entropy found analyzing the human data (con-

trollers’ Spearman correlation ρ = −0.960, p< 0.01; participants’ ρ = −0.982), the action

entropy plot (Fig 11A) shows a different trend from the direct relationship observed in the

experiment (controllers’ ρ = 0.67, p< 0.01; participants’ ρ = 0.944). In fact, we can see that for

large utility values the action entropy is decreasing rather than increasing. Since to achieve a

large utility the controller needs to keep the pendulum balanced in its upright position, alter-

nating repeatedly l and r actions, this can be explained by the fact that, in absence of noise, the

same actions are chosen in the same states, decreasing the action entropy. Another difference

with the human data analysis worth noting is the relation between utility and pendulum

length. Indeed, due to human limited processing capacity, participants find longer pendulum

easier to control and, in doing so, when compared with short pendulums, they obtain higher

utility. On the contrary, in Fig 11 (and the following plots) we see that longer pendulums have

lower utility than shorter ones. This due to the fact that we decided to not include any limita-

tion in terms of processing capacity in the employed controllers, because the focus of our

study is the relationship between utility and variability of state and action. Since longer pendu-

lums are slower, and the employed reward function penalizes states that are outside the balanc-

ing area, the artificial agents achieve less utility when controlling them as they take more time

to reach the goal state. Furthermore, we will see that slower pendulum are more sensitive to

angular speed errors. A possible way to address this discrepancy would be assigning different

levels of noise according to the length or speed of the pendulums. But, since we do not have a

concrete hypothesis regarding how to distribute the noise levels according to pendulum length

or speed, we leave this aspect to future work.
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4.3.2 Artificial controllers with observation noise. We hypothesize that the introduction

of a disturbance will lead to an increase of action variability for large utility values, therefore

we made the cognitively plausible choice of introducing the disturbance η in the controllers’

observation of the pendulum state. Since the policies pϵn are computed over states rather than

observations, controllers choose actions via pϵnðOðŝÞÞ for observations OðŝÞ that may be differ-

ent from the actual states of the pendulum ŝ. Consequently, the “entanglement” between

actions and states is reduced and the entropyH(Aj|Sj) is increased.

In Fig 12, scatter plots ofH(Aj|Sj) andH(Sj) for increasing magnitudes of the observation

disturbances η are reported. In Fig 12A, we can observe that with sO
y
¼ 0:01 and sO

y_
¼ 0:02

the action entropy for large utility values is increased. Furthermore, in Fig 12C, by increasing

the observation standard deviations to sO
y
¼ 0:1 and sO

y_
¼ 0:2, we obtain a highly direct rela-

tionship between utility and action entropy with Spearman correlation ρ = 0.908 (p< 0.01)

and Pearson correlation r = 0.980 (p< 0.01), which are close to the correlations found analyz-

ing the human data (ρ = 0.944; r = 0.967). Another consequence of including observation dis-

turbances is to increase the state entropyH(Sj) for simulations that led to large utility (the

minimum ofH(Sj) is 7.95 bits in Fig 12D, whereas it is 5 bits in Fig 4A), because the presence

of noise introduces variability in the system. Finally, by increasing further the standard devia-

tions to sO
y
¼ 1 and sO

y_
¼ 2, we can see that the larger noise significantly impacts the perfor-

mance of the controller, causing the overall achieved utility to decrease and some of the longer

pendulums to not be balanced at all.

4.3.3 Artificial controllers with transition and observation noise. In the previous sec-

tion, we have seen that to introduce observation disturbances has the effect of increasing both

H(Aj|Sj) andH(Sj) for large utility values. Comparing the state entropy’s scatter plot of the arti-

ficial controller with observation noise (Fig 12D) with the one of the human data (Fig 4A), we

notice that the participants are more efficient in reducing the state variability (i.e., the mini-

mum of theirH(Sj) is lower). In this regard, our numerical study has shown that when agents

model the pendulum dynamics with slightly stochastic transitions, the observation random

disturbances are regularized, increasing a little the average performance achieved by the con-

trollers and reducing H(Sj) when the utility is large. This can be explained by the fact that

Fig 11. Utility Uj of simulations j plotted as a function of H(Aj|Sj) ((a)) and H(Sj) ((b)) for all artificial controllers

and pendulum lengths L. These can be compared to Figs 2A and 4A respectively. No observation and transition noise

is employed here (i.e., sO
y
¼ sO_y ¼ s

T
y
¼ sT_y ¼ 0). (a) Spearman correlation ρ = 0.67 (p = 0.334, not significant, due to

the marked non-monotonicity of the data). (b) ρ = −0.96 (p< 0.01).

https://doi.org/10.1371/journal.pcbi.1010810.g011

PLOS COMPUTATIONAL BIOLOGY Skilled control of a pendulum implies low entropy of states but high entropy of actions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010810 January 6, 2023 18 / 28

https://doi.org/10.1371/journal.pcbi.1010810.g011
https://doi.org/10.1371/journal.pcbi.1010810


Fig 12. Utility Uj of simulations j plotted as a function of H(Aj|Sj) ((a,c,e)) and H(Sj) ((b,d,f)) for all pendulum

lengths L and artificial controllers with different observation disturbances η (here σT
θ ¼ σT

_θ ¼ 0). (a) Observation

standard deviations sO
y
¼ 0:01, sO_y ¼ 0:02; Spearman correlation ρ = 0.474 (p< 0.01). (b) sO

y
¼ 0:01, sO_y ¼ 0:02; ρ =

−0.951 (p< 0.01). (c) sO
y
¼ 0:1, sO_y ¼ 0:2; ρ = 0.908 (p< 0.01), Pearson correlation r = 0.980 (p< 0.01). (d) sO

y
¼ 0:1,

sO_y ¼ 0:2; ρ = −0.908 (p< 0.01). (e) sO
y
¼ 1, sO_y ¼ 2; ρ = 0.954 (p< 0.01).(f) sO

y
¼ 1, sO_y ¼ 2; ρ = −0.954 (p< 0.01).

https://doi.org/10.1371/journal.pcbi.1010810.g012
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when an observation o ¼ OðŝÞ is different from the actual state ŝ, the controller acts according

to pϵnðoÞ with the false belief that the next state will be o0 rather than the actual successor state

ŝ0. Hence, when pϵn is computed considering a non deterministic transition function with

Tðŝ0jo; pϵnðoÞÞ > 0, the error that the agent would have committed assuming that the successor

is o0 may be reduced due to optimal policy maximization of average cumulated reward. Note

that, although this simple non-optimal approach was sufficient to reduce the state entropy for

high utility values, in artificial intelligence the optimal policy of an agent with noisy sensors

can be computed using POMDP [45].

In Fig 13A and 13B, we reportH(Aj|Sj) andH(Sj) for sO
y
’ 0:01 and sO_y ’ 0:07. With these

observation disturbances η, when the utility approaches its maximum, the action entropy

slightly decreases and the state entropy reaches a minimum of 8 bits. In Fig 13C and 13D, we

kept the observation disturbances η of the previous plots and introduced transition distur-

bances δ with standard deviations sT
y
’ 0:007 and sT_y ’ 0:014. In Fig 13C, the combination of

observation and transition disturbances have the effect of linearizing the trend ofH(Aj|Sj) for

high utility values. The presence of the transition disturbance δ has the effect of increasing a lit-

tle the average utility. Furthermore, in Fig 13D,H(Sj) is reduced for large utility values and has

minimum of 5.18 bits, which is similar to the minimum of the state entropy (5 bits) reached by

the human participants (Fig 4A). In Fig 13E and 13F, we report the action and state entropies

for disturbances η and δ with large magnitude (sO
y
¼ 1, sO_y ¼ 2, sT

y
¼ 1, sT_y ¼ 2). As expected,

when the noise injected in the system is very large, in most of the simulations the pendulums

are not balanced at all or balanced for a very short time. In addition, the large noise decouples

states and actions, considerably reducing the conditional action entropyH(Aj|Sj) and keeping

the state entropy largeH(Sj) for all simulations.

The scatter plots reported in Fig 13C and 13D resemble the action and state entropy trends

found analyzing the human data. Although the addition of transition disturbances tends to

reduce the positive action entropy’s Spearman correlation (ρ = 0.67, p< 0.01), the Pearson

correlations of the human experiment (r = 0.967) and the artificial controllers (r = 0.961,

p< 0.01) are nicely matched. In addition, the state entropy correlation is ρ = −0.982 when the

pendulum is controlled by the human participants, whereas it is ρ = −0.885 (p< 0.01) for the

artificial controllers. While the trend ofH(Aj|Sj) in Fig 13C is similar to the one found for

human participants, we have observed in all the performed simulations that usually, for large

utility values, the maximum ofH(Aj|Sj) (e.g., 1.17 bits in Fig 12C or 1.34 bits in Fig 13C) is

larger than the maximum H(Aj|Sj) observed in the human experiment (0.78 bits in Fig 2A).

We believe that this may be due to the tendency of the artificial controllers to change their

actions more frequently or, in other words, to the inclination of the participants to choose the

action n (i.e., no-action) more often. Finally, since we have seen that the data points ofH(Sj)
can be fit by a function shaped as a “half-parabola” in both the run simulations (when the

noise is not too large) and in the human experiment, we believe that this trend may be inde-

pendent from the employed control strategy and rather be a consequence of the relationship

between the adopted reward function and the pendulum dynamics.

5 Discussion and conclusions

In this study, we asked whether low entropy of action or state distributions could be consid-

ered as signatures of mastery of a pendulum balancing task [28, 46, 47]. Our results indicate

that for inverted pole control skilled participants keep the variability of the states they occupy

under control, whereas this variability is higher in less skilled participants (Figs 4 and 5). In

other words, our results indicate that skilled participants actively reduce state information to

perform efficient control—with this compression of the state space indexed byH(Si), which is
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Fig 13. Utility Uj of simulations j plotted as a function of H(Aj|Sj) ((a,c,e)) and H(Sj) ((b,d,f)) for all pendulum

lengths L and artificial controllers with different observation disturbances η and transition disturbances δ. (a)

Observation standard deviations sO
y
¼ 0:01, sO_y ¼ 0:07; transition standard deviations sT

y
¼ sT_y ¼ 0; Spearman

correlation ρ = 0.694 (p< 0.01). (b) sO
y
¼ 0:01, sO_y ¼ 0:07; sT

y
¼ sT_y ¼ 0; ρ = −0.957 (p< 0.01). (c) sO

y
¼ 0:01,

sO_y ¼ 0:07; sT
y
¼ 0:007, sT_y ¼ 0:014; ρ = 0.67 (p< 0.01), Pearson correlation r = 0.961 (p< 0.01). (d) sO

y
¼ 0:01,

sO_y ¼ 0:07; sT
y
¼ 0:007, sT_y ¼ 0:014; ρ = −0.885 (p< 0.01). (e) sO

y
¼ 1, sO_y ¼ 2; sT

y
¼ 1, sT_y ¼ 2; ρ = 0.582 (p< 0.01).

(f) sO
y
¼ 1, sO_y ¼ 2; sT

y
¼ 1, sT_y ¼ 2; ρ = −0.574 (p< 0.01).

https://doi.org/10.1371/journal.pcbi.1010810.g013

PLOS COMPUTATIONAL BIOLOGY Skilled control of a pendulum implies low entropy of states but high entropy of actions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010810 January 6, 2023 21 / 28

https://doi.org/10.1371/journal.pcbi.1010810.g013
https://doi.org/10.1371/journal.pcbi.1010810


lower for higher levels of utility. On the contrary, the variability of actions during the control

tasks is higher for skilled participants (Fig 2A). Our results are in keeping with perceptual con-

trol theory and related accounts [16–18]. These suggest that accurate motor control requires

reducing the variability of states, including those that are outcomes of the chosen actions—

whereas this state compression can be achieved by variable means (hence corresponding to a

high variability of actions). Our results are instead incompatible with theories that associate

skill mastery with the routinization of action and the decrease of their variability [48, 49].

An important issue here is the task-specific amount of variability that controllers inject into

the system. The compensation a skilled controller has to perform might be a driving factor

behind the level of action entropy. In our task, skilled participants spend more time in the bal-

ancing regions (Fig 8), which require more fine-grained control and motor variability, leading

to more action entropy. This is a feature of a range of control problems, where motor variabil-

ity rather than being only important during early phases of learning due to exploration,

remains high also during the successful execution of challenging tasks [9–13]. In this regard,

the classification of variability sources in advanced stages of motor learning of redundant tasks

proposed in [50] suggests an interesting unifying framework. In this classification, tasks can be

characterized by a decrease of action variability when noise reduction plays a major role in suc-

cessful performance. Alternatively, they can be characterized by both a decrease of state vari-

ability and a large actions dispersion when action variables need to co-vary to increase

invariance and accuracy in the state space. This may help explaining why in the case of balanc-

ing an inverted pendulum we found that the action variability of skilled participants increases

rather than decreases. A further study in this direction is left for future investigations.

In general, it is not easy to disambiguate how much of the measured variability and result-

ing entropies is a result of a given task structure and how much is a result of noise introduced

by the controller. One way to disambiguate between these different variability sources is to

compare the human data with data generated by a synthetic controller, such as the MDP con-

troller used in our study. We chose to computationally model the pendulum balancing task

with a standard Markov decision process for the sake of simplicity and reproducibility (the

readers interested in the implementation of a PCT-based model for inverted pendulum control

may have a look at [19]). For the studied pendulum task, the human data shows that the

observed action variability can not be fully explained by a deterministic controller. To add ran-

dom disturbances, both in forms of observation and transition noise, creates behaviour that is

a much closer fit, and shows similar relationships to the observed empirical data, indicating

that the measured action variability originates from the specific participants’ control strategy.

Fig 11A shows that in principle multiple solutions of the pendulum balancing task are possible

for large utility values (similarly, this is shown in Figs 12A and 13A). Some of these solutions

have large action entropy, others (in the upper left portion of the plot) have small action

entropy. On the contrary, our results show that the solutions adopted by the biological control-

lers do not span this large set of strategies, but only a subset of the possible solutions (i.e., those

with large action entropy for large utility). This phenomenon could be explained by the fact

that the human controllers operate under sensory uncertainty over the state of the pendulum

and its dynamics, as shown by the artificial controllers in Sections 4.3.2 and 4.3.3 respectively.

In favour of this interpretation, Fig 13 contains the plots that better reproduce the trend of the

human action and state entropies (compare Figs 13C with 2A and 13D with 4A, respectively).

An alternative interpretation of our results is that the action entropy plots are simply a neces-

sary consequence of the structure of the pendulum task, and it would be impossible to design a

controller that formalizes the routinization hypothesis. However, we performed a control sim-

ulation (see S1 File) showing that a controller that formalizes the routinization hypothesis is
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possible and hence our results indeed reflect characteristics of the human controller and not

just of the structure of the task.

The fact that in all the performed simulations we found a similar monotonic decreasing

trend for the state entropy, seems to show that the observed state variability comes from the

relationship between the employed utility measure and the pendulum dynamics. As a further

caveat, we need to consider that it is possible that more than one mechanism is responsible for

the state compression that we report here. Firstly, to balance the pendulum its trajectories

must be squeezed into the right part of phase space. To obtain such entropy reduction the

needed information [51] needs to be reflected in the actions. Then, at the level of representa-

tion, experts could abstract the state space to use less information to codify the task, encoding

some portion of the state space more precisely and other portions in a more coarse manner. In

the experiment, a more compact representation of the state space for more skilled participants

is indicated by the number of effectively visited states. This was confirmed by our analysis,

where more skilled participants visited a smaller portion of the phase space (compare Fig 7A

and 7B with 7C and 7D). To establish whether experts would be better than non-experts in

appropriately coding the state space is left to future work, together with determining which

resulting latent space these may use to efficiently balance the pendulum. The problem of iden-

tifying which of the pendulum’s dimensions may be more relevant for the control task is

addressed by the “uncontrolled manifold” hypothesis [52], which states that irrelevant dimen-

sions usually remain uncontrolled by agents.

Behind the reduction ofH(Si) and the increase ofH(Ai|Si) there is the need of controlling

the state at the expense of increasing action variability to perform efficient control. However, it

is important to distinguish between controlled and uncontrolled variability. For the case of

controlled variability, experts can actively choose to be variable (as it happened for Ai in Fig

2A); or they can choose to minimize the variability of the future trajectory (as it happened with

S and S0i in Figs 4 and 5). However, there is a component of human control that is not part of

the participants intentions and that is injected in the pendulum dynamics and effectively

becomes part of the uncontrolled variability of the system. All the system’s uncertainty is ulti-

mately generated by the participants, because the pendulum dynamics is deterministic and

almost conservative. So, uncertainty in control is essentially translated by the pendulum in

uncertainty of its dynamics, which in the end is transformed in the uncontrolled variability of

the state. But the entropyH(Si) alone does not allow us to distinguish between the controlled

and uncontrolled variabilities of the state and ways to detect this difference will be investigated

in future work

Another important objective for future research is understanding the generality of the find-

ings reported in this study. We reported that while performing a particular kind of skilled

behaviour—here, the control of an inverted pendulum—people show low entropy of states but

high entropy of actions. However, it remains to be understood to what extent this result

extends to other kinds of skilled behavior that may have different characteristics and whether

the prevalence of low entropy of states or of actions is task-dependent. A large body of research

has shown that when learning and performing skills that require the manipulation of objects,

people use sophisticated strategies; for example, they select appropriate initial conditions for

the control task that simplify subsequent interactions [53] and make the object dynamics pre-

dictable [54]. Moreover, in keeping with classical work of Bernstein [55], recent studies found

that people and animals modulate various aspects of the variability of their actions and sensa-

tions during learning in adaptive ways; for example, they counteract the maladaptive effects of

noise by channeling it into task-irrelevant dimensions and increase their movement variability

when their performance is poor [50, 56–58]. Understanding which specific task characteristics
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cause the low entropy of states reported in this study and the more sophisticated strategies

reported above is an open objective for further investigations.

The compelling structure of the reported utility-entropy curves and the clear correlations

that emerged from our analyses prompt the question of where the nature of this trade-off

comes from. In general, we expect that the specific nature of the task is important—and that

the trade-offs that emerged from our analysis could be especially compelling in tasks which

require reaching well defined (goal) states. For example, in the pendulum task, the final goal

state distribution must have low entropy by definition (e.g., the correct position of the pendu-

lum is almost unique). Especially in difficult tasks, there might be a very limited number of

ways to achieve these goal states, forcing (skilled) participants to reduce the entropy of their

trajectories to the goal states—or in other words, forcing them to pass through a “narrow corri-

dor” of states to achieve the desired goals. For example, some aspects of skilled behavior, such

as perfecting serving in tennis in order to put the ball in a specific location, requires a long

training that could lead to low-variance, stereotyped movements. Other tasks, have fewer con-

straints to fulfill in order to be completed, such as simply putting the ball over the net. Usually,

goals with high state variability can be achieved by many possible trajectories, implying large

state and action entropy. A characterization in this regard would be to look at the entropy of

the task’s goal state as possible factor determining state and action entropy for skilled behavior

(e.g., in cooperative vs. antagonistic tasks). Nevertheless, this characterization would not be

complete. In fact, although the pendulum balancing task has small goal entropy, and few spe-

cific trajectories must be traversed in order to reach it, the actions entropy for skilled behavior

is large rather than small. Since its goal is an unstable state, once reached, this needs to be sus-

tained, requiring large action entropy. Hence, when there are random disturbances in the con-

trol system, also the stability of the goal may determine the action entropy of skilled behavior.

Therefore, it is likely that in the balance between entropy generation by the system, vs. by the

agent’s actions and/or observations, all play some role in determining the precise form of inter-

play between state and action variability and task mastery.

In summary, in this study we observed the relationship between skilled performance and

low entropy of states and high entropy of actions for the inverted pendulum balancing task. If

these relationships generalize to other tasks is subject to further study. We do provide a syn-

thetic model which can, with the modeling of observation and transition noise, produce simi-

lar-looking information-theoretic measures, but we recognize that even in this seemingly

simple task one can find alternative explanations for how those relationships could be

generated.

Supporting information

S1 File. SupplementaryMaterial.pdf. This document contains an additional numerical study

based on a computational model of information-theoretic bounded rationality (i.e., the Rele-

vant Information formalism) that supports the routinization hypothesis for the pendulum bal-

ancing task presented in this paper. The reported relevant information policy has low action

entropy for high levels of skill. This shows that in principle the routinization hypothesis,

although confuted by our study on human motor control, has a certain degree of plausibility

for the pendulum balancing task, highlighting the biological significance of our findings.

(PDF)

S2 File. ExperimentalData.zip. The dataset within the file contains the data collected during

the experiment. Each CSV file named “FRI_p_l.csv” corresponds to a different trial, where “p”

stands for an unique numerical participant’s identifier and “l” stands for pendulum length

(where “2” corresponds to 0.2, “3” to 0.3 m, “4” to 0.4 m, etc.). In every file, rows correspond
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to subsequent time steps, sampled with a frequency of 0.017 s. For every recorded time step,

each column contains:

1. the action selected by the trial’s participant (“action”). The value 0 corresponds to a “no

action”, the value 1 represents an action that pushes the pendulum towards the clockwise

direction and the value 2 corresponds to an action that pushes the pendulum towards the

anti-clockwise direction.

2. the angular velocity of the pendulum at that time step (“ang. velocity”), measured in rad s−1.

3. the angle of the pendulum at that time step (“angle”), measured in rad with values in the

interval [0, 2π) rad. The angle 0 rad corresponds to the pendulum oriented in its upright

position.

4. the single utility value associated to the whole trial (“utility”).

(ZIP)

S3 File. InfoAnalysisResults.csv. The file contains the results of the information-theoretic

analysis of the aforementioned data. Each row of the spreadsheet represents a different trial.

For each trial, the columns contain:

1. pendulum length (“Pend. Length”).

2. trial’s utility (“Utility”).

3. entropy of the state (“H(S)”).

4. conditional entropy of action given state (“H(A|S)”).

5. conditional entropy of next state given action (“H(S’|A)”).

6. mutual information between action and next state (“I(A;S’)”).

(CSV)
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