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Simple Summary: Skin cancer is one of the most fatal diseases for mankind. The early detection of
skin cancer will facilitate its overall treatment and contribute towards lowering the mortalities. This
paper presents the deep learning-based algorithm along with pre-processing for the classification of
skin cancer images. The image resolution of publicly available HAM10000 data after resizing is low
and hence, when we pre-process the data to enhance the image resolution and then subject it to the
deep neural network, overall performance metrics namely accuracy, is typically competitive.

Abstract: Melanin skin lesions are most commonly spotted as small patches on the skin. It is nothing
but overgrowth caused by melanocyte cells. Skin melanoma is caused due to the abnormal surge
of melanocytes. The number of patients suffering from skin cancer is observably rising globally.
Timely and precise identification of skin cancer is crucial for lowering mortality rates. An expert
dermatologist is required to handle the cases of skin cancer using dermoscopy images. Improper
diagnosis can cause fatality to the patient if it is not detected accurately. Some of the classes come
under the category of benign while the rest are malignant, causing severe issues if not diagnosed at an
early stage. To overcome these issues, Computer-Aided Design (CAD) systems are proposed which
help to reduce the burden on the dermatologist by giving them accurate and precise diagnosis of skin
images. There are several deep learning techniques that are implemented for cancer classification. In
this experimental study, we have implemented a custom Convolution Neural Network (CNN) on
a Human-against-Machine (HAM10000) database which is publicly accessible through the Kaggle
website. The designed CNN model classifies the seven different classes present in HAM10000
database. The proposed experimental model achieves an accuracy metric of 98.77%, 98.36%, and
98.89% for protocol-I, protocol-II, and protocol-III, respectively, for skin cancer classification. Results
of our proposed models are also assimilated with several different models in the literature and were
found to be superior than most of them. To enhance the performance metrics, the database is initially
pre-processed using an Enhanced Super Resolution Generative Adversarial Network (ESRGAN)
which gives a better image resolution for images of smaller size.

Keywords: benign; malignant; skin cancer; ESRGAN; CAD

1. Introduction

Skin melanoma occurs due to fast procreation of aberrant skin cells in human anatomy.
The count of skin malignancy cases has significantly increased over the past years [1]. As
the skin is comprised of three lamina, the topmost lamina is the Epidermis, the middle
lamina is the Dermis, and the deepest lamina is the Hypodermis, which is for the formation
of fat and fibrous connective tissue. As skin is the outer most organ of human anatomy, it
is most likely to be affected by fungal growth and bacteria which can be identified under
microscopic examination. It results in varying textures and colours of the skin [2]. Skin
cancer is classified under two sub-classifications, namely non-melanoma and malignant
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melanoma cancer. Non-melanoma cancer is less hazardous and occurs due to repeated
exposure to UV radiation. The most common reason for skin cancer-related mortality is
malignant melanoma. According to the survey by WHO, one out of three patients who
are diagnosed with cancer have a skin cancer specifically. There are nearly 2–3 million
non-malignant patients and 1.32 lakh malignant melanoma patients [3]. Melanoma is
caused due to an imbalance of melanocytes in skin cells. The diagnosis of skin lesions are
difficult due to the lack of standard guidelines for the detection of skin cancer. In addition
to this, skin lesion classification is more challenging due to obscure boundaries, and the
involvement of obstacles like veins, hairs, and moles [4]. The dermatologists who work
on different skin diseases face limitations in visualising the dermoscopic images manually.
Due to the similarity in skin lesions (inter-class similarity of skin diseases) leads to a degree
of subjectivity and thus, human error [5]. There are further issues presented by clinical
examinations: they are costlier and require highly skilled medical experts to operate the
specialized medical diagnostic tools [6]. In recent years, researchers have developed various
techniques, namely via a computer-aided diagnosis (CAD) system in an effort to lessen the
workload of medical professionals by supporting them in providing an accurate diagnosis
of cancer [7]. The CAD systems can categorize the lesion images into the melanoma and
non-melanoma cancer [8]. In this proposed work, we implemented a Custom Convolution
Neural Network (CCNN) which helps us to categorize the seven distinct classes of skin
cancer stated in the database Human Against Machine (HAM10000) [9]. The HAM10000
database, consisting of 10,015 images of dermoscopic skin lesions, is used in this proposed
work. The pre-processing of the HAM10000 database is carried out using an Enhanced
Super Resolution Generative Adversarial Network (ESRGAN) which enhanced the quality
of dermoscopic images to acquire better results compared to existing models. The proposed
model was implemented on the HAM10000 dataset which is split into two subsets stated
as the training and testing datasets in an 80:20 ratio (protocol-I), as well as the train:val:test
split as per protocol-II and protocol-III. The paper is organized as follows. Section 2 presents
the related published works on skin cancer classification. The description of the HAM10000
dataset is mentioned in Section 3. The proposed methodology including preprocessing
techniques, and the design and building of the custom CNN model is indicated in Section 4.
The results of the proposed framework are presented in Section 5. Section 6 concludes the
work and discusses the future scope for further enhancement of performance metrics.

2. Related Work

The majority of research on the classification of melanomas focuses on the use of the
dermoscopic data, which provides more visual information and is frequently employed
by professional dermatologists. Recent research on the CAD system for skin lesion cate-
gorization employs deep learning-based approaches. In most of the approaches, it is seen
that the model requires more training time due to larger image size. Furthermore, the
presently available public databases for skin lesion classification are mostly imbalanced,
which hinders the performance of the model. To classify skin lesions, a study was per-
formed by Aladhadh et al. [7] in which they employed a deep learning method based on
vision transformers. A two-layer architecture is used in this work to accurately classify
skin cancer. The transformer splits the augmented data into different patches and feeds the
input to a multi-layer perceptron classifier to define its class with an accuracy of 96.14%.
The study carried out by Bansal et al. [10] have pre-processed the HAM10000 database
using different morphological operations. The handcrafted method for feature extraction
is used to retrieve the features. The two-transfer learning models named EfficientNet-B0
and ResNet50V2 are used for skin lesion classification and obtained an accuracy of 94.9%.
A research study by Basak et al. [11] worked on the HAM10000 database by employing a
multi-focus segmentation network (MFS-Net) based on a deep learning algorithm. The re-
trieval of deep features is performed using the parallel partial decoder technique to produce
a segmentation map. Finally, two different attention modules are implemented to obtain a
segmentation output. The authors achieved a dice score of 90.6% using the prescribed algo-
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rithm. Nakai et al. [12] used a transformer model based on a deep bottleneck. This model
integrates the self-attention block to form a model with deep extracted features. It helped
them to enhance the performance of overall categorization. The model accomplished a total
accuracy of 96.1%. In the research work by Popescu et al. [13], a collective intelligence-based
transfer learning system was presented. This system comprises of nine different transfer
learning models. This individual model is trained using the HAM10000 database and the
outputs of the individual network are combined using a decision-level fusion module. It
helped them to boost their overall performance by 3%. This approach yields an accuracy of
86.71%. Qian et al. [14] used multi-scale attention blocks which are a deep learning-based
approach. This technique was implemented on the HAM10000 database to retrieve special
features which will focus on skin lesion area. It has also adopted a loss weighting which
helped to solve the issue of imbalanced data per class. The performance of this model
gains an accuracy of 91.6%. The study stated in [15] is utilized for the categorization of
skin lesions using the HAM10000 dataset. Multi-Scale Multi-CNN (MSM-CNN), a DL
model built on a three-tier ensemble approach, was employed in this work. The proposed
model results are then compared to the pre-trained CNN models such as EfficientNetB0,
SeResNeXt-50, and EfficientNetB1. The MSM-CNN achieves the highest accuracy of 96.3%
compared to other models. Panthakkan et al. [16] used a concatenation of Xception and
ResNet50 models on the HAM10000 database. A sliding window method is implemented
for the purpose of training as well as testing the system. The presented approach yields
a good accuracy of 97.8% on testing data. In the study article [17], a classification of skin
lesions is performed using the fusion of handcrafted and DL-based features and is further
classified using ML classifiers to achieve an accuracy of 92.4%.

Through these related work studies we have identified some shortcomings which
have been overcome by our proposed model. We can clearly see that there is a scope to
improvise the performance metrics in terms of accuracy. Furthermore, it is identified that
complexion in the model leads to the maximum execution time in training the model.

3. Materials and Methods

This section presents a detailed description of the HAM10000 dataset and also explains
the seven different classes present in it.

3.1. HAM10000 Dataset

To train any neural network for obtaining good classification results, a huge dataset is
required. The datasets used for the classification of skin pigmented lesions were small and
inadequate for training. To overcome this issue, Tschandl and his team released the Human
against Machine (HAM10000) dataset [9]. The dataset consists of 10,000 skin pigmented
lesions of seven different important classes that can be used for the diagnosis of skin cancer.
Due to the diverse population of dermoscopic images, data organization, cleaning, and
defining a workflow to train a neural network is required. The final database version
consists of 10,015 images and was released for academic research purpose and is made
available on ISIC archive [9]. The ground truth of the database was confirmed by the
expert pathologist in the field of dermoscopy. The seven important diagnosis classes are
the following.

3.1.1. Actinic Keratosis (akiec)

Actinic Keratosis is the most common and non-obtrusive carcinoma. It is a sub-variant
of squamous cell carcinoma which is cured locally without any surgical operation. It is said
that akiec is an early sign of cell carcinoma and not a real carcinoma. This akiec lesion may
grow into an intrusive squamous cell carcinoma [18]. Actinic Keratosis mostly appears on
the face of the human body and is induced due to excessive exposure to UV light [9].
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3.1.2. Basal Cell Carcinoma (bcc)

Basal cell carcinoma is a specific class of melanoma which arises in basal melanocytes
that make new cells rather than shedding old ones. It is the most prevalent kind of
melanoma [19]. It is more likely to appear in areas that are susceptible to direct sun light,
such as the neck and head of human body [20]. It generally occurs in the form of pink
growths, recurrent sores, and red patches on the skin. These lesions develop gradually and
hardly disseminate [19].

3.1.3. Benign Keratosis-Like Lesions (bkl)

The bkl category in the database has three distinct classes of lesions that lacked
cancerous traits. These sorts of lesions include Lichenoid Keratosis, Solar Lentigo, and
Seborrheic Keratosis [19]. A benign skin condition known as lichenoid keratosis often
manifests as a tiny, single, grey-brown lesion on the chest and upper limbs [21]. Solar
Lentigo is a kind of macular hyper-pigmented infection that may differ in size, ranging
from a few millimetres to more than one centimetre [22]. Seborrheic Keratosis is a benign
condition that does not necessitate in-depth treatment. It is reddish-brown or greyish
brown in color and often appears on the back, collar, scalp, and chest [23].

3.1.4. Dermatofibroma (df)

Dermatofibroma is a relatively common dermatological condition that mostly impacts
adolescent or elderly humans, with little women preponderance [24]. Clinically speaking,
dermatofibroma presents as stiff soles, or many hard pustules, patches, or lumps, with a
soft surface and a color that may range from pale brown to darkly brown, purplish-red,
or yellow [24]. These benign skin lesions often appear on the upper arm, upper back, and
lower leg [19].

3.1.5. Melanocytic Nevi (nv)

The list of seven subclasses includes all of the innocuous melanocyte malignancies
known as melanocytic nevi, which may have numerous variations [9]. They are skin
tumours brought on by the expansion of melanocytes (the skin’s pigment-producing cells).
It is mainly induced due to UV rays emitted from the sun at the early childhood age [19].

3.1.6. Vascular Lesions (vasc)

The majority of vasc are inherited; however, they may arise later in life and are
seldom malignant. They are sores of various appearances that form on the epidermis and
surrounding tissues and are often referred to as birthmarks [19].

3.1.7. Melanoma (mel)

Malignant melanocytes give rise to melanoma, a cancer that may manifest in many
different forms. If removed at a preliminary phase, it is curable with simple surgical
intervention. Melanomas may be either intrusive or harmless [9]. It is particularly apparent
on sun-exposed body parts that include the face, trunk, hands, collar, and legs. Melanoma
may be identified by patches that have an irregular shape, uneven borders, and distinct
colours, are larger than 6 mm, and tend to expand. It might disseminate to different organs
of the body and can cause fatality if it remains untreated [19].

The HAM10000 dataset comprises seven different classes as described above and the
class-wise categorization for the number of images is stated in Table 1. The distribution
of images seems to be imbalanced. To make it balanced, data is augmented which is
elaborated in the pre-processing section.

Table 1. Class-wise images present in HAM10000 dataset.

Class akiec bcc bkl df nv vasc mel

Images 327 514 1099 115 6705 142 1113
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4. Proposed Methodology

This section elaborates on two different pre-processing techniques implemented in
this proposed work. In addition to pre-processing, we have also discussed the custom
convolutional neural network and we built a CNN model from scratch.

4.1. Pre-Processing

It is one of the most important steps while working with clinical image data [25]. It is
primarily applied on the raw database, before feeding them for training the Convolutional
Neural Network based system [15]. The pre-processing algorithm provides enhancement
in images, which helps to boost the inclusive performance metrics pertaining to the model.
One of the substantive contributions of the proposed research work is to enhance the quality
of HAM10000 data using the ESRGAN algorithm which indeed leads to better extraction
of features from the clinical image by the model. There are two different pre-processing
techniques that are implemented in this study, namely ESRGAN and data augmentation
which are discussed in detail in the following sub-sections.

4.1.1. Enhanced Super-Resolution Generative Adversarial Network (ESRGAN)

Pre-processing is a crucial step for the enhancement of images which helps in achieving
superior performance metrics [26]. The Super-Resolution Generative Adversarial Network
(SRGAN) is a foundational technique which can generate photorealistic patterns while
super-resolving a single picture. The reckoning of a high resolved image from a low-
resolution image is termed a super-resolution. The major optimization focus of super-
resolution is to cut back the mean square error from the obtained highly resolved image
and original image. GANs offer a potent framework for creating realistic pictures that seem
believable and have excellent perceptual quality [27]. The visual hallucinated features,
though, are very often associated with undesirable effects [28]. The Enhanced SRGAN is
the adaptive technique which mainly addresses the three shortcomings of SRGAN that are
Adversarial loss, Network design, and Perceptual loss. It also facilitates maintenance of
a better ocular peculiarity with more pragmatic and natural-looking colors than SRGAN.
To achieve the Enhanced Super-Resolution Generative Adversarial Network (ESRGAN),
Wang et al. introduced an additional Residual layer in Residual Dense Block (RDB) in [28]
by removing the Batch Normalization (BN) layer. The Residual in Residual Dense Network
(RRDN) comprises four different blocks, namely Dense Feature Fusion, Residual Dense
Blocks, Shallow Feature Extraction, and up-sampling net [29]. The Local Feature Fusion
layer and the Local Residual Learning layer are the two dense layers that form the RRDB.

a. Local Feature Fusion (LFF): It is an adaptive state derived from RRDB and a convolu-
tion layer in a new RRDB and is given by Equation (1).

fd,LF = hD
LFF
({

fd−1, fd,1, . . . . . . , fd,c, . . . .., fd,C
})

(1)

where hD
LFF indicates the convolution layer of size 1 × 1 in the dth RRDB block and fd−1, fd,1,

etc., are the input and output of dth RRDB correspondingly.

b. Local Residual Learning (LRL): It is implemented for the improvement of overall
information flow. It also helps to get the final output of dth RRDB as shown in
Equation (2).

fd =
({

fd−1 + fd,LF
})

(2)

Other than the improvement of visual qualities using RRDB, Wang et al. also calculated
different loss functions which gave the overall performance of the generator. The different
loss functions are stated as [29].
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(i) Discriminator loss: It is the loss calculated during misclassification of real and fake
instances. Some of the fake instances are obtained from the generator by expanding
the equation given in Equation (3).

lRa
D = −Exr

(
log
{

DRa

{
xr, x f

}})
− Ex f

(
log
{

1 − DRa

{
x f , xr

}})
(3)

where log
{

DRa

{
xr, x f

}}
is the probability of classification by generator correctly and

log
{

1 − DRa

{
x f , xr

}}
helps to accurately label the fake images from the generator.

(ii) Generator loss: The generator loss is calculated if the discriminator misclassifies the
fake images which helps the discriminator to improvise. It is given by Equation (4)

lRa
G = −Exr

(
log
{

1 − DRa

{
xr, x f

}})
− Ex f

(
log
{

DRa

{
x f , xr

}})
(4)

It is observed that the generator can achieve better results from both real and generated
data in adversarial training.

(iii) Perpetual Loss: In ESRGAN, the perpetual loss is also improved by confining the
features prior to activation, as compared to features after activation in SRGAN. The
perpetual loss function is given by Equation (5).

lG = lpercep + λlRa
G + ηl1 (5)

where the terms λ and η are the factors to equalize various loss functions and lRa
G is the

generator loss function.

(iv) Content Loss: The element wise Mean Square Error (MSE). It is most broadly used in
targeting the super resolved image and is given by Equation (6)

LSR
MSE =

1
r2wh ∑rw

x=1 ∑rh
y=1

(
iHR
x,y − gθg

(
iLR
)

x,y

)2
(6)

where gθg

(
iLR) is the reformed image and iHR

x,y is the down sampled operation with a factor r [29].
Figure 1 presents the comparison of sample images with their respective ESRGAN-

enhanced images.

4.1.2. Data Augmentation

In order to train the CNN model with multiple variations of the dermoscopic images,
a data augmentation method is included in our research work. Minority oversampling is
the most widely implemented method in restoring the model’s robustness and reducing
the dataset’s bias when there is a significant imbalance in classes [30]. The deep learning
model performs well when it is feed with a huge training dataset. The HAM10000 dataset
used for our proposed work is imbalanced, as seen in Table 1. Data augmentation helps
the network from overfitting issues caused due to imbalanced data. The main reason for
augmenting the data is that there are only 8012 images in the training dataset. The different
augmentation methods are implemented such as rescaling, rotating the image, zooming
with factor of 0.1, and height and width shift with range factor 0.1. It makes the dataset
more balanced and improves overall performance of the model.

4.2. Custom Convolutional Neural Network

CNN is a category of deep-learning system which detects and extracts features from
images automatically [31]. It has acquired significance in medical image analysis, as it has
in many other fields as a result of its higher performance. The layers of a standard CNN
include convolution layer, dropout layer, activation function, fully connected layer, and
pooling layer [32]. The image pixels need to be processed and are given as an input to the
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CNN. The original input pixels are subjected to detecting feature vectors, also termed as
filters, in the convolution layer in order to extract a collection of features [33]. CNN’s primary
function, convolution, allows automated feature extraction [34]. During the step of pooling,
a dimensionality reduction process is conducted by applying filters to an input vector [33].
The reduction technique is carried out by taking the minimum, maximum, or median of the
values in the filtering window, which is strung across the initial input vector [19].

Figure 1. Comparison of sample images with their respective ESRGAN enhanced images.

In neural network models, overfitting problems can arise, especially when the mani-
fold training samples is insufficient. With a view to address this issue, a dropout operation
was used, which increased the network’s capacity to alter distinct environments by arbitrar-
ily deactivating a fraction of its neurons during training. The fully connected layer helps
the process go on to the categorization stage. The output matrix is flattened before being
sent on to the classifier after the feature extraction and pooling procedures. The proposed
algorithm is shown in Figure 2.

The dataset has two fundamental aspects. The first component aspect is a metadata file
that contains specific data for cancer lesion images. The skin lesion’s location, the patient’s
age and gender, the lesion’s diagnosis, and the skin lesion directory are all included in the
metadata file. The second and primary section of the collection is comprised of visual files.

The objective of this study is to categorize skin lesions only based on digital images.
Thus, the data file was reorganized to simply include the lesion type and the image file
directory. Each lesion’s textual labelling was transformed into digital values between 0 and
6. Each subtype labelling codes are shown in Table 2.

The original dermoscopic images are of 600 × 400 pixels resolution and are saved in
the RGB format. It was observed that the processing burden increases proportionally with
picture size. Hence, image size reduction increases processing speed. Therefore, all samples
in the collection are downsized to 24 × 24 pixels. Since the colour is a distinguishing factor
in diagnosing the kind of lesion, the original colours of the photographs were maintained.
The sharpening filters are implemented to enhance the contrast of every applied image.
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Figure 2. Overview of the proposed ESRGAN-based CNN algorithm.

Table 2. Notations for each class in the HAM10000 database.

Class akiec bcc bkl df nv vasc mel

Label 0 1 2 3 4 5 6

4.3. Building a Custom CNN Model

When dealing with a large dataset, deep learning is typically regarded as an effective
algorithm [35]. Conventionally, deep learning techniques demand a significant amount of
computing time and large storage space [25]. Figure 3 depicts the customized CNN network
model for classifying skin lesions. The custom CNN model is comprised of 4 × 2 layers.
RGB input image of size 28 × 28 was utilized. The convolution operation is performed on
the first two layers in each of these layers and 3 × 3 sized 32 filters are applied with a ReLu
activation function. It is followed by the implementation of max pooling 2D layer with pool
size of 2 × 2 and a batch normalization layer. In the second layer, the same convolution
operation is performed with change in the parameters. In this layer 3 × 3 sized 64 filters
are used with a ReLu activation function. After ReLu function, a max pooling 2D layer of
2 × 2 size and a batch normalization layer are employed. As a part of the third layer, the
same convolution operation is performed with alteration in the parameters. In this layer, 3
× 3 sized 128 neurons are implemented with a ReLu activation function. It is then followed
by the max pooling 2D layer of 2 × 2 size and a batch normalization layer. The fourth layer
contains the similar convolution operation is performed with another set of parameters.
In this layer, 3 × 3 sized 256 filters are used which are then followed by max 2D pooling
of size 2 × 2, batch normalization layer, a dropout layer of 20%, and a flattening layer. In
the final stage, the classifier receives the output of the flattening layer. Tables 3 and 4 show
the summary and hyper parameters used for designing the model, respectively. Proposed
method for classification of skin lesions is illustrated in Algorithm 1.
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Algorithm 1: Proposed algorithm for classification of skin lesions

Step 1: Pre-processing

a. Raw input images are first pre-processed using the ESRGAN generator model.
b. The images are then resized to 28 × 28 for faster classification using the CNN model.
c. The imbalanced dataset is balanced using the data augmentation processes.
d. The augmented data is first split up into training data and testing data.

Step 2: Training custom CNN model

a. Feature map Fmap are extracted from the input images
b. Set Fc = 2D Conv (Fmap, size(32));
c. Set Fr = ReLu (Fc);
d. Set Fp = MaxPooling2D (Fr);
e. Set Fb = BatchNormalization (Fp);
f. size1 = [64,128,256]

for i = 0 to 2:

Set Fc1 = 2D Conv (Fmap, size1(i));
Set Fr1 = ReLu (Fc1);
Set Fc2 = 2D Conv (Fmap, size1(i));
Set Fr2 = ReLu (Fc2);
Set Fp1 = MaxPooling2D (Fr2);
Set Fb1 = BatchNormalization (Fp1);

end for

g. Set Ff = Flattening (Fb1);
h. Set F∂ = Dropout (Ff );
i. size2 = [256,128,64,32]

for j = 0 to 3
Set Fd = Dense (F∂,size2(j));
Set Fb = BatchNormalization (Fd);
end j

j. Set Foc = OutputClassifier (Fb);

Figure 3. Layered architecture of proposed CNN model.
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Table 3. CNN Model Summary.

Layer Output Shape Parameters

Input Layer [(None, 28, 28, 3)] 0

Convolution 2D_1 (None, 28, 28, 32) 896

MaxPooling2D_1 (None, 14, 14, 32) 0

Batch Normalization_1 (None, 14, 14, 32) 128

Convolution 2D_2 (None, 14, 14, 64) 18,496

Convolution 2D_3 (None, 14, 14, 64) 36,928

MaxPooling2D_2 (None, 7, 7, 64) 0

Batch Normalization_2 (None, 7, 7, 64) 256

Convolution 2D_4 (None, 7, 7, 128) 73,856

Convolution 2D_5 (None, 7, 7, 128) 147,584

MaxPooling2D_3 (None, 3, 3, 128) 0

Batch Normalization_3 (None, 3, 3, 128) 512

Convolution 2D_6 (None, 3, 3, 256) 295,168

Convolution 2D_7 (None, 3, 3, 256) 590,080

Batch Normalization_4 (None, 1, 1, 256) 0

Flatten (None, 256) 0

Dropout (None, 256) 0

Dense_1 (None, 256) 65,792

Batch Normalization_5 (None, 256) 1024

Dense_2 (None, 128) 32,896

Batch Normalization_6 (None, 128) 512

Dense_3 (None, 64) 8256

Batch Normalization_7 (None, 64) 256

Dense_4 (None, 32) 2080

Batch Normalization_8 (None, 32) 128

Classifier (None, 7) 231

Table 4. Hyper parameters for training the model.

Parameter Value

Batch size 128

Number of epochs 25

Number of iterations 294

Optimizer Adam

Optimizer parameters Lr = 0.00001

5. Results and Discussion

In this section, we discuss the model’s performance over a range of metrics and present
a comparative study that illustrates how the suggested technique outperforms the current
melanoma detection algorithms.

5.1. Performance Metrics

To assess the efficiency of the presented model, we used performance metrics such
as Accuracy, F1-Score, Recall, and Precision. Performance metrics shown in Table 5 are
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calculated from a confusion matrix and are given by Equations (7), (8), (9) and (10), respectively.
Performance measurement of the deep learning model comprises the following terms: (a) True
Positive (Tp), (b) True Negative (Tn), (c) False Positive (Fp), and (d) False Negative (Fn) [36].

Table 5. Performance metrics and their formulas.

Performance Metrics Formula Equation

Accuracy (Tn+Tp)
(Tp+Fp+Fn+Tn)

(7)

F1-Score (2∗Precision∗Recall)
(Precision+Recall) (8)

Recall
Tp

(Tp+Fn)
(9)

Precision
Tp

Tp+Fp
(10)

5.2. Protocol-I (Train:Test = 80:20 Ratio)

After performing data augmentation, the entire dataset is split into two partitions,
namely, train and test with the ratio of 80:20. For protocol-I, for this augmented data, the
total number of training images is 37,548 and of test images is 9387. The details of class-wise
training and test images are depicted in Table 6.

Table 6. Class-wise images present in HAM10000 dataset with protocol-I.

Class akiec bcc bkl df nv vasc mel

Training Samples 5383 5352 5408 5417 5325 5341 5322

Testing Samples 1322 1353 1297 1288 1380 1364 1383

The model was trained for 25 epochs on the Google Colaboratory Pro platform with
12 GB RAM and Python 3 Google compute backend engine GPU Accelerator. We interrupt
the model’s continuing execution using the early stopping method and record the model’s
best-performing parameters, such as its maximum accuracy and minimum cross-entropy loss.
Every time the model fails to reach an accuracy greater than those acquired in the previous
two epochs, we decreased the learning rate of the model to prevent additional stalling in
the learning phase. The training and testing accuracies and loss graphs are displayed in
Figures 4 and 5, respectively. The highest testing accuracy was obtained as 98.77% on the
25th epoch. Accuracy is one of the important metrics to characterize the achievement of the
model if the dataset is proportionate. To get the different evaluation scores, we have used the
confusion matrix which gives the exact classifications as shown in Figure 6. In this experiment,
a confusion matrix is incurred for seven classes as mentioned in the dataset. The confusion
matrix scores are computed to examine the performance of the model for different classes.
From Table 7, it can be observed that the model works very well in classifying class 0, class 3,
and class 5. The scores obtained for class 4 are slightly low.

Various Approaches That Follow Protocol-I

Table 8 specifies accuracies in the context of current research performed on the
HAM10000 database. In the Agyenta et al. [37], the authors carried out research work
on the HAM10000 database. Transfer learning techniques like InceptionV3, ResNet50,
DenseNet201, and comparative study is accomplished on the HAM1000 database and
achieved accuracies of 85.80%, 86.69%, and 86.91%, respectively. The authors have reached
the highest accuracy for the DenseNet201 model. In another work by Onur et al. in [19], the
presented approach included a custom CNN model and experiments with an image size of
75 × 100. An accuracy of 91.51% was achieved in this study. Qian et al. [14] presented an
experimental study using the CNN model concatenated with the Grouping Of Multi-Scale
Attention Blocks (GMAB) technique. This study achieved an accuracy of 91.6 %. Shetty
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et al. [8] developed a CNN model along with a k-fold cross-validation method. The accu-
racy of this model was 95.18%. The study carried out by Panthakkan et al. [16], and was
based on the Concatenated Xception-ResNet50 model for the diagnosis of skin cancer. This
model yields competitive results with an accuracy of 97.8%. The proposed work presents a
custom CNN model and implements it on pre-processed data using the ESRGAN algorithm
to achieve an accuracy of 98.77% which is much higher when compared to other literature
studies carried out on the HAM10000 database.

Figure 4. Accuracy graph for training and testing for protocol-I.

Figure 5. Training and testing losses for protocol-I.
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Figure 6. Confusion matrix for protocol-I (80:20 Train:Test split).

Table 7. Class-wise performance measures of the model.

Lesion Class Precision Recall F1-Score

0-akiec 1.00 1.00 1.00

1-bcc 0.99 1.00 0.99

2-bkl 0.97 1.00 0.99

3-df 1.00 1.00 1.00

4-nv 1.00 0.92 0.96

5-vasc 1.00 1.00 1.00

6-mel 0.96 1.00 0.98

Table 8. Highest Accuracy for protocol-I.

Sr. No. Work
Data Augmentation/Balancing? (Yes/No).

Total Number of Images after Data
Augmentation/Balancing

Methodology Accuracy (%)

1 Agyenta et al. [37] Yes,
7283

InceptionV3 85.80%

ResNet50 86.69%

DenseNet201 86.91%

2 Qian et al. [14] Yes,
Not mentioned

Grouping of Multi-scale Attention
Blocks (GMAB) 91.6%

3 Shetty et al. [8] Yes,
1400 Convolutional neural network (CNN) 95.18%

4 Panthakkan et al. [16] No Concatenated Xception-ResNet50 - 97.8%

5 Proposed algorithm Yes,
46,935 ESRGAN-CNN 98.77%

5.3. Protocol II

For the purpose of parameter tuning with more test images, the following protocol-II is
chosen where the dataset is split into the following ratio ((Train + Val):Test) = ((90 + 10):20).
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It indicates that at first, the dataset is divided into 80: 20 Train: Test split. Subsequently, the
training set is subdivided into 90% for training and 10% for validation. For this augmented
data the number of training images is 33,793, validation images is 3755 as well as 9387 test
images. Class-wise samples for this experimentation are depicted in Table 9. The model was
trained using a machine with 12 GB RAM and GPU attached to it. Training and validation
accuracies and losses are indicated in Figures 7 and 8, respectively. The confusion matrix
for protocol-II is indicated in Figure 9.

Table 9. Class-wise images present in the HAM10000 dataset with protocol-II.

Class akiec bcc bkl df nv vasc mel

Training Samples 4845 4817 4867 4875 4792 4807 4790

Validation Samples 538 535 541 542 533 534 532

Testing Samples 1322 1353 1297 1288 1380 1364 1383

Figure 7. Accuracy graph for training and testing for protocol-II.

Various Approaches That Follow Protocol-II

Table 10 specifies accuracies in the context of current research performed on the
HAM10000 database. In Sevli et al. [19], a deep convolutional neural network was im-
plemented for the classification of skin lesions. This study accomplished an accuracy of
91.51%. Saarela et al. [38] worked on the HAM10000 dataset for skin-lesion classification.
In this study, the robustness, stability, and fidelity studies of the deep convolutional neural
network are carried out. Their model gives a classification accuracy of 80%. The proposed
method for protocol-II gives a better accuracy of 98.36% as indicated in Table 10.
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Figure 8. Training and testing losses for protocol-II.

Figure 9. Confusion matrix for protocol-II.
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Table 10. Highest accuracy for protocol-II.

Sr. No. Work
Data Augmentation/Balancing? (Yes/No).

Total Number of Images after Data
Augmentation/Balancing

Methodology Accuracy (%)

1 Onur et al. [19] Yes,
Not Mentioned Convolutional neural network (CNN) 91.51%

2 Saarela et al. [38] No Deep Convolutional neural network (CNN) 80%

3 Proposed algorithm Yes,
46,935 ESRGAN-CNN 98.36%

5.4. Protocol III

For the purpose of parameter tuning with fewer numbers of images for testing, the
following protocol-III is implemented where the dataset is split into the following ratio
((Train + Val):Test) = ((90 + 10):10). It indicates that at first, the dataset is divided into
90: 10 Train: Test split. Subsequently, the training set is subdivided into 90% for training
and 10% for validation. For this augmented data, the number of training images is 38,017,
the number of validation images is 4224, and the number of test images is 4694. Class-wise
samples for this experimentation are depicted in Table 11.

Table 11. Class-wise images present in HAM10000 dataset with protocol-III.

Class akiec bcc bkl df nv vasc mel

Training Samples 5346 5557 5338 5184 5500 5513 5579

Validation Samples 594 617 593 576 611 613 620

Testing Samples 660 686 659 640 679 681 689

The CNN model was trained using a machine with 12 GB RAM and GPU attached
to it. Training and validation accuracies and losses are indicated in Figures 10 and 11,
respectively. The confusion matrix for protocol-III is indicated in Figure 12.

Figure 10. Accuracy graph for training and testing for protocol-III.



Appl. Sci. 2023, 13, 1210 17 of 20

Figure 11. Training and testing losses for Protocol-III.

Figure 12. Confusion matrix for Protocol-III.

Various Approaches That Follow Protocol-III

Table 12 specifies accuracies, in the context of current research performed on the
HAM10000 database. The research article presented by Aldhyani et al. [2] focused on kernel-
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based CNN. In this study, a lightweight dynamic kernel deep-learning-based convolutional
neural network is implemented. This algorithm achieved an accuracy of 97.8% when the
model was tested on the HAM10000 database. Alam et al. [39] presented an approach that
works on the segmentation-based sub-network. In this study, the S2C-DeLeNet algorithm
was applied on skin cancer data. This algorithm has obtained an accuracy of 90.58%. The
proposed Custom CNN using ESRGAN technique achieved an accuracy of 98.89%.

Table 12. Highest accuracy for Protocol-III.

Sr. No. Work
Data Augmentation/Balancing? (Yes/No).

Total Number of Images after Data
Augmentation/Balancing

Methodology Accuracy (%)

1 Aldhyani et al. [2] Yes,
54,907

Lightweight
Dynamic Kernel

Deep-Learning-Based
Convolutional Neural Network

97.8%

2 Alam et al. [39] No S2C-DeLeNet 90.58%

3 Proposed algorithm Yes,
46,935 ESRGAN-CNN 98.89%

6. Conclusions and Future Scope

Melanocyte cells are responsible for the formation of pigmented lesions. Skin ma-
lignancies such as melanoma are caused by the unregulated division of melanocyte cells,
which may have a damaging effect on the human body. The dermatologists with extensive
training interpret dermoscopic images. Due to the insufficiency of educated specialists
and the need to minimize human-induced mistakes, the use of computer-assisted systems
is emphasized. Convolution neural network, a method for deep learning that retrieves
features from images, achieved huge success in the domain of computer vision. The pre-
processing with ESRGAN helps us to reduce the size of images with better resolution and
overall execution time for the experiment. The complexion in the model in terms of image
shape that it considers as an input leads to maximum execution time in training the model.
Hence, in this work, we have used images with a resolution of 28 × 28 pixels. Before
resampling the images, the original images were enhanced using the ESRGAN dataset
which helps to preserve the eminent features in the input images after down sampling. In
this experimental analysis, we have implemented a HAM10000 dataset having 10,015 im-
ages of skin lesions and are categorized into seven different classes using a custom CNN
model. The experimental model achieved accuracies of 98.77%, 98.36%, and 98.89% for
protocol-I, protocol-II, and protocol-III, respectively, and it is seen to be competitively high
as compared to the pretrained models presented by different researchers.

In the future, our aim is to work on the diagnosis of real-time skin lesions with
improvement in the testing accuracy. We also hope to implement our proposed model to
work on larger datasets if available for skin-cancer image categorization. It will in turn
help us to enhance the performance metric scores. It is anticipated that the proposed
work will help the dermatologist to examine and classify the class of skin cancer in lesser
time duration and with more precision. Additionally, it will assist in reducing the total
costs associated with skin cancer diagnosis. There is a scope for further enhancement in
performance metrics such as accuracy, precision, and recall.
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