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A portable dual-laser-beam interferometer thai nonintrusively measures skin friction by monitoring the
thickness change of an oil film subject to shear stress is described. The method is an advance over past versions
in that the troublesome and error-introducing need to measure the distance to the oil leading edge and the
starting time for the oil flow has been eliminated. The validity of the method was verified by measuring oil
viscosity in the laboratory, and then using those results to measure skin friction beneath the turbulent boundary
layer in a low speed wind tunnel. The dual-laser-beam skin friction measurements are compared with Preston
tube measurements, with mean velocity profile data in a "law-of-the-wall" coordinate system, and with com-
putations based on turbulent boundary-layer theory. Excellent agreement is found in all cases. (This validation
and the aforementioned improvements appear to make the present form of the instrument usable to measure
skin friction reliably and nonintrusively in a wide range of flow situations in which previous methods are not
practical.)
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Nomenclature

= coefficient in Eqs. (22) and (25)
= local skin friction coefficient, r/q

= external flow pressure gradient
= oil viscosity function, see Eq, (A17)
= gravitational acceleration
=skin friction function, see Eq. (AS)

= incidence angle for interferometer fiat

= incidence angle for oil

= fringe number, see Eq. (A3)
= interferometer flat index of refraction

= oil index of refraction

= free-stream dynamic pressure
= refraction angle for interferometer flat

= refraction angle for oil

= interferometer flat thickness, or temperature
=time

= distance from oil film leading edge
= distance correction for surface tension

= Preston tube coordinates, see Ref. 6

= oil thickness

= initial oil film leading-edge slope

= incremental change in fringe number

= incremental change in time

= beam spacing
= fixed oil sublayer thickness on a surface

=pressure gradient and gravity correction

parameter, see Eq. (A13)
= surface inclination from horizontal

= laser wavelength

= oil kinematic viscosity
= oil density
= local skin friction
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Superscripts

( ) ' =corrected or "effective" value
(-) = average value

Introduction

ECAUSE of the importance of determining skin friction
in turbulent boundary layers, there has been a continuing

effort to develop reliable and practical methods for its

measurement. Winter _ has reviewed the major methods

developed to date. These include the floating-element balance;

mean-velocity profile data, together with the Clauser chart;

the Preston tube; and surface thin-film heat-transfer gages.

Except for the floating-element balance technique, all of the
methods are indirect because they are based on the wall

similarity in turbulent boundary layers. Thus, each one

generally has a limited range of application. The floating-
element balance method has critical gap and alignment

problems, especially when subjected to a pressure gradient,

and it is often too delicate and expensive for general use. The

versatility of all of the methods is limited in that they either

require permanent installation in a surface or they are in-
trusive in the flow.

Recently, Tanner and Blows 2 and Tanner _.4 described a

new viscosity balance method that overcomes many of the

limitations of the other techniques. Their method uses laser

interferometric thickness measurements of oil films flowing
on surfaces subject to shear stress and relates those

measurements to the surface shear stress through a simple

theory. Higher order effects--from surface tension, gravity,

pressure or shear gradients, and three-dimensionality of the

flow--are easily accounted for. The method has several

important advantages. First, it is a direct method like the

floating-element balance technique and does not require

calibration in a known flow. In addition, the instrument is

simple and inexpensive, is potentially very accurate, can be

used in any type of steady flow, is easy to locate at various

points on a surface, and is nonintrusive because the oil film is
usually too thin to significantly affect the air flow. 2

Despite these advantages, the method has not been widely

adopted because of several practical difficulties in Tanner's

original procedure. His method required accurate
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Schematic of dual-laser-beam skin friction interferometer.

measurements of both the distance from the beam focal point
to the oil film leading edge and of the time at which the oil

flow started. Tanner 3 measured the leading-edge distance

before a run by visually setting the focal point of a reference
beam with known spacing from the measurement beam at the

oil leading edge. This can be subject to error in some ap-

plications because of the difficulty in exactly locating the oil

edge and in accounting for oil spreading after the

measurement. In addition, to measure the distance, Tanner
found it necessary to rigidly mount his equipment to the wind-

tunnel top wall; at that location, tunnel vibration and wall

displacements can disturb the measurement, making beam

repositioning difficult. Furthermore, Tanner assumed that the

oil-flow time was equal to the tunnel running time. This also

was subject to error because of prerun oil flow, tunnel starting
transients, and early-run oil surface waves.

In this paper, a dual-laser-beam instrument with fixed beam

spacing, and the procedures for its use are described. This

method of measuring skin friction eliminates most of the

limitations of Tanner's technique. The need to measure the

distance to the oil leading edge has been eliminated. Further,
the theory has been extended to determine the "effective" oil-

flow time from the interference fringe count as a function of

time, rather than by direct measurement. This automatically

eliminates all of the inherent timing errors in the original
method. Finally, all of the instrument components are located

remotely from the wind tunnel. This eliminates nearly all

effects of tunnel vibrations, makes relocating the

measurement point on the surface easy, and leads to an in-

strument that is easily transportable from one tunnel to
another.

Description of Instrument and Theory

A typical wind tunnel installation of the dual-laser-beam
instrument is shown in Fig. 1. The instrument measures the

rate of change in thickness of a flowing oil film at two points
just behind the leading edge of the film. The linearly polarized
output from a He-Ne laser is expanded by a telescope and
passed through a neutral density filter to reduce the beam

power level to a value that avoids excessive oil heating (see
discussion by Tanner 3). The single beam is then divided into
two parallel beams, using an interferometer flat. One beam

passes through a half-wave retardation plate to rotate its
polarization by 90 deg, and both beams are focused on the oil.

The beams reflect off the model surface, are then separated
with a polarization beam splitter, and each is focused on a
photodiode.

AN 3 = -10 --

UPSTREAM "" v v v v
BEAM l.l ,:IN2 " -20

_N 1 " -10 At 2

/ _,,-q

STARTED

BEAM I- -I v --
1 rain

x Ax

r = _v _¥ = const. (N'lt'l - N'2t'21 FlAx, _Ni's. 2,ti'$1

Fig. 2 Typical dual-laser-beam interferometer fringe record from a
wind-tunnel test; beam spacing is 5 ram.

Polarizers and narrow-band interference filters are used at

the detectors for additional noise reduction. The detector

signals are recorded on a two-channel chart recorder. As the

oil thickness changes, the recorded light intensity is

modulated by alternating constructive and destructive in-
terference between beams reflected from the oil and model

surfaces. 2 The transmitting and receiving optics are mounted

on tripods separate from the wind tunnel for versatility in

locating the measurement points.

A typical dual-beam interferometer output record is shown

in Fig. 2. Each crest on a trace represents an oil thickness
corresponding to constructive interference between the

reflections. Thus, by simply counting the number of fringes

over a given time span, the resulting change in oil thickness
can be precisely computed in terms of the known laser

wavelength. The erratic behavior of the signals just after the
tunnel is started is due to transient waves observed in the oil.

Usable traces begin after the waves disappear and after the oil

thins to the point where only a single fringe occurs over the

diameter of the laser focal spot diameter.

The procedure for computing skin friction from in-

terferometer records such as those shown in Fig. 2 is given in

the Appendix. The oil density, index of refraction, spacing
between the two laser measurement beams, and the laser

wavelength are constants that are required as input for the

calculation. Also, the oil kinematic viscosity must be ac-

curately known over the test temperature range. If needed,

this can be easily measured using the dual-beam in-

terferometer from a gravity flow experiment and the

reduction procedure (also given in the Appendix). An ad-

vantage of measuring the oil viscosity in this way is that the
laser beam spacing does not have to be known--as can be seen

from Eqs. (A5) and (A21) of the Appendix, it cancels out of

the final expression for skin friction. Finally, the laser in-
cidence angle with respect to the test surface must be

measured, although if it is close to 90 deg, high accuracy is not
required.

Description of Experiment

Oil Viscosity Measurement

The present dual-beam instrument was first used in a

gravitational flow setup to measure the viscosity of several

Dow Corning 200 silicon oils. As pointed out by Tanner 4
silicon oil is desirable for skin friction measurements because

it is available in a wide range of viscosities that are relatively
insensitive to temperature; moreover, it has low surface

tension and a very low vapor pressure. The viscosity

measurements were made on a polished aluminum disk, on
the back of which a thermocouple was mounted to measure

oil temperature. A timing mark was recorded when the disk
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Fig. 4 Silicon oil viscosities measured with the dual-laser-beam
interferometer.

was tipped from a horizontal to a vertical position to initiate

the flow. Results of the viscosity measurements are given in
the next section.

Skin Friction Measurement

Skin friction measurements with the dual-beam in-

terferometer were made in the test facility shown in Fig. 3.

The facility is an open-cycle, low-speed wind tunnel with a 14-

cm-diam aluminum cylinder extending along the tunnel axis
from the tunnel entrance to the diffuser. The maximum

freestream speed is 50 m/s. A fully developed turbulent

boundary layer exists on the cylinder. The skin friction
measurements were made at three axial stations on the

cylinder at a speed of 37 m/s, and at the central station over a

speed range of 21 to 48 m/s. Large plexiglass side windows
allowed laser beam access in and out of the tunnel. The oil

temperature was measured by inserting a thermocouple in a
metal plug in the tunnel wall. After the laser beams were

located and aligned, oil was placed along a line just upstream

of the forward beam reflection point. When the tunnel was

started and the oil flow initiated, a timing mark was recorded

and the measurements were initiated, as shown in Fig. 2.

For purposes of validation, a simultaneous measurement of

skin friction was obtained with a 1.07-mm-diam Preston tube;

a measurement was also derived from mean velocity profiles.
The Preston tube measurements were made at the same three

axial stations as the oil-flow measurements, as well as at

several azimuthal locations for each station to verify sym-

metry of the tunnel flow. The mean velocity profiles were
taken only on the top of the cylinder at the central station and

only at freestream speeds of 22 and 36 m/s. Skin friction was

computed from the Preston tube data, using the procedures of
Patel. _ The Patel calibration consists of a set of three

calibration curves expressed in terms of the Preston tube

coordinates, x ° and y* [see Eqs. (2-4) of Ref. 5]. These,

however, do not" match at the crossover points that were
suggested by Patel and thus give unnatural discontinuities in

the computed skin friction. Therefore, in this paper, the

intersections of the three calibration curves were numerically
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Fig. 5 Comparison of skin friction measurements at 37 m/s. Note:
The data from each station are spread horizontally for visibility; all
correspond to the same location.

obtained and applied in the data reduction to eliminate the
discontinuities.

Skin friction from the mean velocity profiles was obtained
by plotting the data on a Clauser chart to fit the law-of-the-

wall, as suggested by Coles. 6 Although the boundary layers

were axisymmetric, no transverse curvature effect was ob-

served on these plots.

Results and Discussions

Results of the measurements of Dow silicon oil viscosity
using the dual-beam interferometer are shown in Fig. 4 for

oils of nominally 50- and 200-cS viscosity. The data are

compared with nominal curves from Dow's product

literature. The data were reduced using computed oil-flow

times by the method described in the Appendix. The 50-cS oil
data lie within ±2070 of the Dow curve, and the 200-cS oil

data lie within ± 2076 of a curve that is 97°70 of the Dow curve.

These variations are within the supplier's tolerances and those

by Tanner. 7 Both curves on Fig. 4 were used to obtain the oil

viscosity at a given temperature for the skin friction
calculations.

Measurements of skin friction using 200-cS oil, a boundary-
layer velocity survey, and Preston tube measurements are

compared in Fig. 5. The data were measured at three axial

locations on the cylinder at a freestream speed of 37 m/s.

They are also compared with an axisymmetric turbulent

boundary-layer code that incorporated the Wilcox-Rubesin

Reynolds stress equation turbulence model, s As an initial

condition for computation, the momentum thickness in the

code was matched with the measured momentum thickness at

the tunnel test section entrance. Higuchi and Rubesin 9 found

that this turbulence model and matching condition gave good
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agreement with measured skin friction on an axisymmetric

model similar to that in the present tests. The dual-beam

interferometer data were reduced, using both measured and

calculated flow times for comparison. The error bars shown

represent the maximum scatter measured for several repeated
runs. The Preston tube data include various azimuthal

positions on the axisymmetric cylinder to check for flow

symmetry.
The dual-beam interferometer skin friction results shown in

Fig. 5 are in excellent agreement with both the Preston tube
results at all three locations and with the result from the

velocity profile at the central station. The fairly large scatter
in the Preston tube data at the forward station arises from

flow asymmetry caused by the tunnel entrance screen. All

measurements agree well with the turbulent boundary-layer
calculation at the two downstream stations. The dual-beam

interferometer data at the forward station are a few per-

centage points lower than predicted, possibly because of the

aforementioned flow asymmetry. Finally, notice that the

dual-beam interferometer results are identical, using either
measured or calculated flow times.

As an alternative test of the dual-beam interferometer skin

friction technique, additional measurements were made at the

central axial station over a wide range of freestream flow

speed. The results for both 50- and 200-cS viscosity oil are

shown in Fig. 6. The less viscous 50-cS oil was used only at

lower speeds. The scatter in the data represents the maximum

variation for repeated runs at each flow speed. Within this
scatter, the 50-cS dual-beam interferometer data are in ex-

cellent agreement with the 200-cS results. This agreement for
a factor of 4 change in oil viscosity provides increased con-

fidence in the method and demonstrates that the agreement of

the 200-cS oil data with other methods shown in Fig. 5 is not

fortuitous. Finally, notice that the results are again identical,

using either measured or calculated flow times.

Some of the dual-beam interferometer results shown in Fig.

6 are compared in Fig. 7 with Preston tube and boundary-

layer velocity survey measurements, and with the turbulent

boundary-layer prediction. The dual-beam interferometer

data are for both oil viscosities, but using only calculated flow

times. The error bars represent the maximum scatter

measured for repeated runs. For the Preston tube at 21 m/s,
measurements were made at various azimuthal locations.

Within this scatter and the accuracy of the measurements, the

dual-beam interferometer data are again in excellent

agreement with the Preston tube data over the entire speed

range, and also with the two velocity survey results at 22 and

36 m/s. All methods disagree only slightly with the turbulent

boundary-layer prediction, although the measured data

appear slightly higher than the prediction at the lowest speeds.

Part of this discrepancy could be caused by the previously

discussed flow asymmetry. Overall, the measurements for all

three methods and the prediction are within 5% of each other.

A major goal of this study was to verify the present method

in which the oil film leading-edge distance and the flow
duration are computed rather than measured. To test the

method, the leading-edge distances were directly measured in

the gravity flow tests using the method discussed by Tanner, _
and the oil-flow durations were measured in all of the tests.

The flow durations in this study were deliberately chosen to be

fairly long; this was done to minimize the influence on the

described measurements of any transient events, at the start of

the oil flows, that might introduce errors. (The oil viscosity
tests were recorded for 20-60 min, and the skin friction tests

for 2-10 rain, depending on oil viscosity and air speed.)

Although not required for the dual-beam oil viscosity

measurements, the oil-film leading-edge distances can be

computed from Eq. (A20) in the Appendix.

The computed leading-edge distances for the oil viscosity

tests in this study ranged between 93 and 100% of the
measured values. The slightly lower computed values are

consistent with the effect of surface tension on this type of

flow, as discussed in the Appendix. The computed flow-times

ranged between 97 and 103% of the measured values for the

gravity flow tests, and between 98 and 106% for the skin
friction tests. For the latter, the slightly higher computed flow

durations are consistent with the initial presence of surface

waves in the flow, which add to the rate of oil removal. This

close agreement explains why the skin friction results are the

same in Figs. 5 and 6, using either measured or computed flow

times. The above comparisons, plus the previously discussed

good agreement between the dual-beam interferometer skin

friction results and other methods, provide solid confirmation

of the method presented in the Appendix.

The only problem encountered in the operation of the new

dual-beam interferometer arose from occasional dust particles
in the oil. The wind tunnel had no inlet filter and was located

in a fairly dusty area with high daytime activity. Many dust

particles could be observed on the oil surface after most runs.

They could cause two problems: 1) a dust particle exactly at a
beam focal point surely could cause erratic interferometer

behavior; and 2) a large dust particle just ahead of a beam

focal point could locally perturb either the oil or the air flow

enough to influence the skin friction measurement, but could

not be detectable on the interferometer records. In fact, the

latter was probably the largest cause of the oil-flow data

scatter found in this study. Support for this view is found

from the data in Fig. 5. The measurements at the forward
station were taken at a time when there was less dust than

normal in the air, and the scatter there is much less than for
the other measurements.
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Conclusions

A dual-laser-beam interferometer for measuring skin

friction in wind tunnels by monitoring the thickness change of
an oil film at two points has been described. The accuracy of

the present method has been well established by extensive
comparisons with results of conventional measurements and

with predictions based on turbulent boundary-layer theory, at

least for the low-speed two-dimensional turbulent boundary

layer studied here. (Recent tests have successfully applied the

method in supersonic flow as well. That work will be

described in a future publication.) The method that is

developed to compute the required oil-film flow time and

leading-edge distance from the interferometer records has
been verified. The operational problems with the method have

been shown to be minimal, with the possible exception of that

related to dust in the flow. The method appears to be widely
applicable for the nonintrusive measurement of skin friction

in many complex flows where other techniques are limited or

impractical.

Appendix

Skin Friclion Theory

Tanner and Blows 2 show that an oil film on a surface

subject to a constant shear stress will assume the linear shape

x=ryt/pv (AI)

(This equation is exact only for constant shear stress. But as

Tanner and Blows 2 discuss, it will hold with good accuracy

near the leading edge of an oil film, whatever the shear stress

distribution, as long as the percentage change in shear over

the distance from the leading edge to the measurement point is

small. The appropriate technique would then be to deposit oil

droplets at points of interest and to determine r for the

position of each droplet by applying the above equation. The

technique can also be extended to large shear gradients by
solving an integral for r over x (see Ref. 2), but that is not

done in this report.) Tanner 3,4 observed that a very small

layer of oil, with thickness 5 of the order of a few nanometers,
will always stick to a surface without flowing. He also in-

troduced a finite initial leading-edge slope a to approximately
account for any prerun oil flow. Tanner 2 showed by com-

putation that the effect of leading-edge surface tension is

unimportant for the case of skin friction acting on the oil.

Taking these effects into account, Eq. (AI) may be written as:

r(y-6)t
x=-- +a -1 (y-d) (A2)

pv

To relate the oil thickness to a laser interferometer beam with

wavelength X, the quantity y can be expressed in terms of the

fringe number N by

NX = 2noYCO_ t r) (A3)

where
sin(i)

By this definition, N will assume integer values for oil

thicknesses corresponding to reflected beam constructive
interference. Combining Eqs. (A2) and (A3), and defining

rX 2noScos(r)
H= , N'=N , t'=t+ov/ctr (AS)

2n op_Cos (r ) X

Eq. (A2) becomes

x = HN' t' (A6)

In Eq. (A6), N' and t' are now defined as the effective fringe
number and oil flow time, respectively. They differ from the

original variables by unknown constants. Notice, however,
that the incremental change is the same for either effective or

original variables. Furthermore, the effective fringe number
will not necessarily assume integer values at the crests of the

interferometer traces as the original fringe number does.

[ 2R t
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FUOW\ INCmeNt _/" yV2t-"_
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Fig. At Geometry and notation for dual-laser-beam interferometer
oil film measurement.

The geometry and notation for the dual-laser-beam oil-film

measurement is shown in Fig. AI. Using this and the notation

of Fig. 2, a difference form of Eq. (A6) may be written as

Ax Ax
H = - (A7)

A(N't') (N'_t'l-Njt_)

This equation forms the basis for the dual-beam in-

terferometer with known beam spacing, Ax.
To solve for the fringe numbers (N') and oil flow times

it' ) in Eq. (A7), notice from Eq. (A6) that the product N't' is

constant at each beam location, because x and H also are

constant. Thus, equating the product N't' at different ar-

bitrary times on each interferometer trace, one obtains (in the

notation of Fig. 2)

-1 (AS)

N, ),_ At I( ,w +1 (A9)
t z - - \ AN I

(,')' "_ + I (A10)
N 2 = _ AN 3 AG

Note that, although Fig. 2 illustrates beam one as the
downstream beam, this choice is arbitrary. Also note that
once the time t; is computed from Eq. (A9), this immediately
makes the time of any other point on either fringe record
known by measuring from t; the incremental change forward
or backward to that point on the chart record. The time t;
which appears in Eq. (AI0) is computed in this manner.

In this study, the time intervals are measured from the
crests of the fringe traces, as shown in Fig. 2, although the
choice is arbitrary. Tanner 3 measured time from the trace
zero-crossing points, but that would work well only when
there is no drift in the average signal level with time. Also, the
arbitrary choice was made in this study to compute the ef-
fective flow time from the downstream beam record because

of the larger number of fringes that occurred there.
The beam spacing 6x can be either measured or computed

from geometric optics as (see Fig. AI for notation)

Ax=2Tcos(I) tan(R) (All)

where

tan (R) = tan [arcsin(sin (1)/n_ ) ]

In the above equations, notice that Ax can be arbitrarily

chosen by tilting the beam-splitting flat. With Ax known, Eq.

(A7) is solved for H, and finally, Eq. (A5) is solved for r.

If an external flow pressure gradient or gravity force is

acting on the oil together with shear stress, as shown in Fig.

AI, no simple oil-shape solution is possible. However, Tanner

and Blows 2 derived an approximate expression to account for

these forces as long as their effect is small compared to the

effect of the shear stress. They define a small perturbation
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parametere,suchthat
r' = (1-_) -/r (AI2)

where

o=[ 2o,xl (0)] (A13)
To further simplify Eq. (AI3), assume that the shear stress

within the bracket is the uncorrected value, set y equal to Yt,

eliminate x through Eq. (A1), and introduce the fringe

number through Eq. (A3). The result is:

X1V_ [dp _ogsin(O) ] (AI4)
_'-_ 2no.rCos(r ) _x

Notice that _ can be made arbitrarily small by allowing the oil

to thin, thus reducing N_. The parameter _ was zero for the

present study. However, introducing typical values from this
study into Eq. (A14) and assuming a vertical surface gives
values for _ between 2× 10 -2 and 3 x 10 -2. Thus, at least for

similar conditions, the small perturbation analysis of Tanner

and Blows is justified.

Oil Viscosity Theory

With gravity as the only force, Tanner and Blows 2 show
that an oil film will assume the parabolic shape

x=y2tgsin (0)/_ (A15)

Introducing _5and a as before, and introducing a correction to
x for the effect of surface tension near the film leading edge, 7

xs, results in Eq. (AI5) becoming

x=[(y-,5)2tgsin(O)/v]+_-I(y-_)+xs (AI6)

Then, obtaining the fringe number from Eq. (A3) and using
the definition of effective fringe number appearing in Eq.

(A5), we define

G= _.2gsin (0)/4_n_cos 2 (r) (AI 7)

Equation (Al6) then becomes

x_xs=GN,2[t+ 2vnoc°s(r)_Xgsin (0)N' ] (A18)

Unlike the previous analysis for shear stress, notice that the
introduction of _ here results in a variable term containing N'

rather than a constant term added to the time. Tanner 7 also

derived an expression for x s and found it to depend on N'.
However, Tanner 3._ estimated that after "reasonable" oil-

flow times, x s and the term containing ot are both quite small

compared to x and t, respectively. Thus, good accuracy would

be retained by neglecting these small-terms in Eq. (AI8)

altogether. However, a more general analysis can be made by

assuming that the incremental changes in N' for any set of
measurements from interferometer records are small com-

pared to N' itself. (This can be ensured by taking the

measurements over a small enough time interval.) Then, an
effective distance and time can be defined, respectively, as

2_n°c°s(r) (A19)
x' =x-_s, t' =t+ cthgsin(0)/C_l'

where -¢s and A/' are average values during a measurement

time interval. With these definitions, Eq. (AI 8) becomes

x' = GN' 2t' (A20)

and a difference version may be written as

Ax Ax
G = - (A21)

A(N'2t ' ) (N't2t't-Nj2tj)

Equation (A21) forms the basis of the dual-beam in-

terferometer measurement of oil viscosity. Notice that -_s is
eliminated from this equation.

To solve for the N's and t's, we can take advantage of the

fact shown in Eq. (A20) that the product N' 2t' is constant for
fixed x'. In an analysis similar to the one for shear stress, this

leads to a cubic equation for N_ as

N_ 3 + _ N_ 2 + C3 N_ + C-5 = 0 (A22)
CI CI

where

C,=2[Ate AN2La,, ]

[4AN2 (At2 __/)+At" (AN2'_"]c 2= aN_ t aN_ \-_j _ - \aN_ / J

C_ = ANt (AN2) L_-_-I

Also,

and

t,l=_Atl[( N_ 2 N' l +,)]

where

and

(A24)

12 r
N 2 +CsN 2+C 6=0 (A25)

C 5=2AN 3[(lf_/At 3)+1]

C6 = ( AN 3 ) 2 [ (t; / At_ ) + 1] (A26)

Finally, the oil viscosity is computed from Eq. (A27), which is
the result of combining Eqs. (A21) and (AI7), and of knowing

Ax.

X2gsin(0) (N'pt I

V=4n_cos'(r) [ Ax-N_'2t2) ] (A27)
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