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Psoriasis pathology is driven by the type 3 cytokines IL-17 and Il-22, but little is understood 26 

about the dynamics that initiate alterations in tissue homeostasis. Here, we use mouse 27 

models, single-cell RNA-seq (scRNA-seq), computational inference and cell lineage mapping 28 

to show that psoriasis induction reconfigures the functionality of skin-resident ILCs to 29 

initiate disease. Tissue-resident ILCs amplified an initial IL-23 trigger and were sufficient, 30 

without circulatory ILCs, to drive pathology, indicating that ILC tissue remodeling initiates 31 

psoriasis. Skin ILCs expressed type 2 cytokines IL-5 and IL-13 in steady state, but were 32 

epigenetically poised to become ILC3-like cells. ScRNA-seq profiles of ILCs from psoriatic 33 

and naïve skin of wild type (WT) and Rag1-/- mice form a dense continuum, consistent with 34 

this model of fluid ILC states. We inferred biological “topics” underlying these states and 35 

their relative importance in each cell with a generative model of latent Dirichlet allocation, 36 

showing that ILCs from untreated skin span a spectrum of states, including a 37 

naïve/quiescent-like state and one expressing the Cd74 and Il13 but little Il5. Upon disease 38 

induction, this spectrum shifts, giving rise to a greater proportion of classical Il5- and Il13-39 

expressing “ILC2s” and a new, mixed ILC2/ILC3-like subset, expressing Il13, Il17, and Il22. 40 

Using these key topics, we related the cells through transitions, revealing a quiescence-ILC2-41 

ILC3s state trajectory. We demonstrated this plasticity in vivo, combining an IL-5 fate mouse 42 

with IL-17A and IL-22 reporters, validating the transition of IL-5–producing ILC2s to IL-43 

22– and IL-17A–producing cells during disease initiation. Thus, steady-state skin ILCs are 44 

actively repressed and cued for a plastic, type 2 response, which, upon induction, morphs 45 

into a type 3 response that drives psoriasis. This suggests a general model where specific 46 

immune activities are primed in healthy tissue, dynamically adapt to provocations, and left 47 

unchecked, drive pathological remodeling. 48 
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INTRODUCTION 49 

Psoriasis pathology is driven by the type 3 cytokines IL-17 and Il-22 (Nograles, Zaba et al. 2008, 50 

Cai, Shen et al. 2011). The dermal inflammation and acanthosis induced by IL-23 are thought to 51 

be mediated by the Th17-cell associated cytokine IL-22. While both IL-17 and IL-22 are produced 52 

at elevated levels in psoriatic skin, the major cell source of these cytokines during disease remains 53 

unclear. In psoriasis patients, γδ T cells were found to be greatly increased in affected skin and 54 

produced large amounts of IL-17, suggesting they may play a key role in pathogenesis (Cai, Shen 55 

et al. 2011). Recently, however, IL-17 and IL-22 producing ILC3s have been proposed to be a 56 

significant source of cytokine production during psoriasis (Teunissen, Munneke et al. 2014, 57 

Villanova, Flutter et al. 2014). These cells are thought to be activated in response to IL-1β and IL-58 

23, whose levels correlate with disease severity, and are decreased following antitumor necrosis 59 

factor-α (anti-TNFα) treatment. The presence of a novel ILC population in psoriatic skin that 60 

responds to one of the most effective biologic therapeutics suggests that dysregulation of ILCs is 61 

a contributing factor to psoriasis pathogenesis. While ILC3s dominate psoriatic skin (Pantelyushin, 62 

Haak et al. 2012), in healthy individuals the majority of ILCs are represented by group 2 ILCs, 63 

defined by IL-5 and IL-13 production (Roediger, Kyle et al. 2013, Spencer, Wilhelm et al. 2014). 64 

We wanted to determine at what point during disease progression the frequency of ILC2s and 65 

ILC3s shifts and whether a potential for conversion between these cell types underlies this disease.  66 

 67 

High parallel single-cell RNA sequencing (scRNA-seq) has become a powerful tool for unbiased 68 

analysis of various cells types. Analyses of immune cell classes, such as ILCs, typically treat them 69 

as collections of discrete immune cell “types”, yet these cell types may share important biological 70 

signals and have been observed in some contexts to essentially continuously span a functional 71 
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spectrum. To capture and explore fluid, mixed transcriptional states, we used latent Dirichlet 72 

allocation (LDA), or “topic modeling”, a statistical data mining approach for discovering the 73 

abstract topics that explain the words occurring in a collection of text documents (Blei 2003). 74 

Applied to scRNA-Seq, each “document” corresponds to a cell, and a “topic” corresponds to a 75 

biological program, modeled as a distribution over expressed genes, rather than words. Given the 76 

number of topics as a parameter, both topics and the mixture weights in cells are inferred without 77 

supervision. LDA was independently introduced in population genetics to model admixed 78 

individuals with ancestry from multiple populations (Pritchard, Stephens et al. 2000). In genomics, 79 

it has been applied to deconvolute cell types in population RNA-seq (Repsilber, Kern et al. 2010, 80 

Schwartz and Shackney 2010, Shen-Orr, Tibshirani et al. 2010, Ahn, Yuan et al. 2013, Lindsay 81 

2013, Quon, Haider et al. 2013, Wang, Gong et al. 2015), and proposed for finding structure in 82 

bulk or single-cell RNA-seq, for example, in inference of confounding batch effects (Dey, Hsiao 83 

et al. 2017). 84 

 85 

RESULTS 86 

To determine which cells are key to initiate psoriatic disease, we studied a subcutaneous IL-23 87 

injection model, which leads to increased skin thickness after five days of daily injections (Fig. 88 

1A, Fig. S1A). First, we assessed the role of different immune cell types in this model (Fig. 1B, 89 

Fig. S1B and C). Consistent with previous results, the Rag2-/- Il2rg-/- double mutant, which lacks 90 

all lymphocytes, did not show any increase in ear thickness, whereas Rag1-/- mice, which have 91 

intact ILCs, showed significant increase in skin thickness over the treatment course. This is also 92 

consistent with an increased number of human ILC3s recently observed in psoriatic patients 93 

(Teunissen, Munneke et al. 2014, Villanova, Flutter et al. 2014). Moreover, while gd T cells have 94 
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been implicated in a longer treatment course (Cai, Shen et al. 2011, Pantelyushin, Haak et al. 95 

2012), analyzing Tcrd-/- mice, which lack only gd T cells, we found no evidence that they contribute 96 

to disease initiation (Fig. 1B). Next, to further confirm the role of ILCs in disease initiation, we 97 

adoptively transferred sorted skin ILCs from untreated WT mice into Rag2-/- Il2rg-/- mice, and 98 

observed significant skin thickening in treated versus untreated recipient mice (Fig. 1C). Finally, 99 

we assessed the contributions of circulatory versus tissue-resident lymphocytes in the psoriasis 100 

model, because recent studies of inflammation in several peripheral tissues suggested different 101 

involvement of circulatory and tissue resisdent ILCs (Dyring-Andersen, Geisler et al. 2014, 102 

Gasteiger, Fan et al. 2015, Li, Hodgkinson et al. 2016, Yang, Hu et al. 2016, Huang, Mao et al. 103 

2018). We compared disease phenotype between control mice and those treated with FTY720, 104 

which blocks signaling from the S1P1 receptor, preventing egress of T cells from secondary 105 

lymphoid tissues and limit trafficking of induced ILC2s (Matloubian, Lo et al. 2004, Huang, Mao 106 

et al. 2018). FTY720-treated mice had the expected reduction of circulating total white blood cells, 107 

but showed no difference in psoriasis phenotype induction upon IL-23 administration compared 108 

with untreated controls, in both WT or Rag1-/- (lacking T and B cells) mice (Fig. 1C and E). Thus, 109 

in contrast to a model of lung inflammation (Huang, Mao et al. 2018), in psoriasis, tissue-resident 110 

ILCs are sufficient to drive disease pathology and are critical for amplifying the response to IL-111 

23.  112 

 113 

We observed that skin ILCs expressed the type 2 cytokines IL-5 and IL-13 in steady state, but 114 

showed potential to plastically to assume ILC3-like states. Consistent with prior reports that naïve 115 

mouse skin ILCs are comprised almost exclusively of GATA3+ ILC2s (Roediger, Kyle et al. 2013), 116 

total ILCs isolated from healthy mouse skin and treated with the type 2 alarmin cytokines IL-25 117 
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and L-33 had a strong type 2 activation, as indicated by expression of Areg and Il13 (Fig. S1D). 118 

However, total ILCs treated with IL-23 and IL-1b instead strongly expressed Il22 and Il17a (Fig. 119 

S1D), suggesting that tissue-resident skin ILCs may have potential for type 2-3 plasticity. Such 120 

plasticity has been previously reported in IL-17A co-expressing “inflammatory ILC2s” in the lung 121 

(Huang, Guo et al. 2015, Zhang, Xu et al. 2017), similar to reported type 3-1 plasticity in gut and 122 

tonsil ILCs and type 2-1 plasticity in blood ILCs (Cella, Otero et al. 2010, Bernink, Krabbendam 123 

et al. 2015, Bal, Bernink et al. 2016, Lim, Menegatti et al. 2016, Ohne, Silver et al. 2016, Silver, 124 

Kearley et al. 2016). Moreover, while inflammation and skin thickness reverted to near-baseline 125 

levels within 10 days after the initial IL-23 injection (Fig. 1F), this initial challenge promoted a 126 

stronger type 3 response upon re-challenge. Specifically, mice showed a significantly more severe 127 

phenotype after a second series of IL-23 injections, compared to their initial response (Fig. 1F and 128 

G). This was also observed in mice treated with FTY720 during the primary injection (Fig. S1E), 129 

suggesting that the plastic psoriatic response is not due to ILC recruitment.  130 

 131 

We hypothesized that this plasticity may be encoded epigenetically. To test this hypothesis, we 132 

profiled sorted total skin ILC populations from naïve mice by ATAC-seq. We observed the 133 

expected open chromatin signature at the TSS of Gata3, Il5 and Il13 and not at the TSS of Tbx21 134 

or Rorc, which encode T-bet and Rorgt, the hallmark transcription factors (TFs) of ILC1s and 135 

ILC3s, respectively, or at the TSS of Il22, Il17a, or Il17f (Fig. S1F and G). In support of our 136 

hypothesis, we also observed strong ATAC-seq peaks at at promoters of some type 3 genes in TFs 137 

binding sites, such as Batf, Maf, and Irf (Ciofani, Madar et al. 2012, Li, Spolski et al. 2012, Zhong, 138 

Cui et al. 2016) (Fig. 1H, Fig. S1G), which are known to regulate Th17 cells. Taken together, our 139 

data support a model where IL-23 induces psoriasis by remodeling a heterogeneous, tissue-resident 140 
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ILC population with unexpected potential for differentiation, rather than by recruiting circulating 141 

ILCs to replace a homogenous, terminally differentiated skin-resident ILC2 population. 142 

 143 

To assess the molecular heterogeneity of skin-resident ILCs and its functional implications for the 144 

IL-23 response, we collected massively parallel scRNA-seq profiles from sorted pure total ILCs 145 

from WT and Rag1-/- mice from naïve and IL-23 induced conditions, predominantly uncovering a 146 

large heterogeneous population of cells (Fig. 1I). Specifically, clustering on principle components, 147 

followed by differential expression analysis (Methods), identified a few discrete subsets of cells, 148 

including a Rag1-/--specific subset (A), a cluster of proliferating cells from all conditions and 149 

genotypes (B), and a cluster specific to the induced condition with very high Il22 expression and 150 

some Il13 expression (C) (Fig. 1J, Fig. S1H). However, the vast majority of cells (81%) formed a 151 

single, large heterogeneous and continuous “cloud” (D), which was not simply driven by technical 152 

factors (Methods), with multiple sub-regions enriched for specific functional programs, including 153 

type 2 immune response (Fig. 1J). Importantly, no single partitioning conformed to the expression 154 

of key genes and processes, and moreover, some biological processes were unexpectedly shared 155 

across subsets of the cells from distinct clusters (Fig. 1J). This highlighted the diversity of potential 156 

cell states, and the need to capture them by more nuanced computational analysis.    157 

 158 

To characterize the heterogeneity of ILCs during IL-23 response, we created a generative topic 159 

model based on LDA. Analogous to a text document, a cell is modeled as a mixture of a small 160 

number of topics, where the mixture weights indicate the relative prominence of the corresponding 161 

biological process in that cell. Multiple topics may include the same gene, reflecting the gene’s 162 

roles in different processes. Topic modeling permits a cell to have multiple, non-hierarchical 163 
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“identities” that potentially differ in importance, a feature particularly relevant for analyzing 164 

cellular plasticity (Fig. 2A). Indeed, we observed complex patterns of topic sharing across clusters, 165 

suggesting that topic weights capture relationships not well described by clusters and, through their 166 

functional interpretation, enable a more nuanced view of similarities and differences among cells 167 

(Fig. 2B). Several choices for the number of topics may result in valid models, though too large a 168 

number of topics can result in overfitting and low interpretability. We found that in this dataset, 169 

15 topics captured important changes during disease induction, as well as other signals, without 170 

obvious signs of overfitting (Fig. S2A, Methods).  171 

 172 

Our topics spanned three categories: (1) highly ribosomal- or mitochondrial-dominated (e.g., 173 

Topic 1, 6), possibly reflecting technical quality or cell size, (2) cluster-specific topics (e.g., Topic 174 

7, 14, 15), and (3) “sub-regional” topics, that is, those featured in sub-regions of the “cloud”, also 175 

often simultaneously present in sub-regions of other clusters (e.g., Topics 2, 4, 8, 11, 13) (Fig. 2C 176 

and D, Fig. S2B–D). “Cell quality” topics can help distinguish the influence of technical 177 

confounders better than simple thresholds, but also may reflect a cell’s level of biological 178 

activation (Wallrapp, Riesenfeld et al. 2017). “Cluster-specific topics” are analogous to results 179 

from standard differential expression analysis. For example, cluster C is unique in having large 180 

weights for Topic 15, which is characterized by expression of ILC3-associated genes Il22, Il17a, 181 

and Il17f, as well as the cytotoxic gene Gzmb and the type 2 genes Ly6a (Sca-1) and Il13 (Fig. 2C 182 

and D, Fig. S2B and C). As another example, Topic 7 is uniquely highly weighted in cells from 183 

the Rag1-/--specific cluster A, and features the NK-associated genes Klrd1 and Tyrobp and the 184 

immunoglobulin E receptor Fcer1g, indicating that Rag1-/- mice might have an overrepresentation 185 

of skin-resident ILC1s (Fig. 1J, Fig. S2D).  186 
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 187 

The “sub-regional” topics highlighted functional states that are prominent within the “cloud” and 188 

span across cluster boundaries, showing that ILCs from untreated skin span a spectrum of immune 189 

states, including one characterized by Vps37b expression (Topic 2), a naïve/quiescent-like state 190 

(Topic 8) and an activated state related to antigen presentation (Topic 11). Notably, this may mirror 191 

"functional compartmentalization" reported in gut ILCs in homeostasis (Gury-BenAri, Thaiss et 192 

al. 2016). This spectrum shifted upon disease induction, giving rise to greater representation of 193 

classical Il5- and Il13-expressing “ILC2s” (Topic 13), as well as a mixed ILC2/ILC3-like state 194 

characterized by strong expression of Il13, Il17, and Il22 (Topic 15) (Fig. 2C and D, Fig. S2B). 195 

Specifically, Topic 2, mainly present in the “cloud”, distinguishes between the untreated and 196 

induced conditions, partly through ribosomal genes that may reflect differences in size between 197 

naïve and activated cells (Fig. 2C). Topic 8 is characterized by expression of TFs previously 198 

associated with both T- or B-cell quiescence, such as Klf2/Klf4 (Carlson, Endrizzi et al. 2006, Cao, 199 

Sun et al. 2010) and Zfp36l2 (Galloway, Saveliev et al. 2016, Salerno, Engels et al. 2018), and 200 

with repression of Th17 genetic programs, such as Tsc22d3 (Yosef, Shalek et al. 2013), and may 201 

thus reflect an actively maintained quiescent ILC state (ILC0) (Fig. 2C and D, Fig. S2C). Topic 202 

11, which is present in cells from both WT conditions and the Rag1-/- induced condition, features 203 

genes associated with antigen presentation, including MHCII invariant chain and MIF receptor 204 

Cd74(Schroder 2016) and Cd83 (Kuwano, Prazma et al. 2007), and type 2 ILCs (e.g., Il13, Ccl1, 205 

and Dgat2, though not Il5) (Robinette, Fuchs et al. 2015, Gury-BenAri, Thaiss et al. 2016, 206 

Wallrapp, Riesenfeld et al. 2017, Ricardo-Gonzalez, Van Dyken et al. 2018) (Fig. 2C and D). 207 

Topic 13, highlighting a substantial sub-region of both the “cloud” and induced-specific cluster C, 208 

is more specific to WT disease induction, uniquely expresses Il5, and also includes other type 2 209 
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genes, such as Cxcl2, Il1rl1 (ST-2), Il13, and Ly6a (Sca-1), the latter of which featured in all 210 

induced topics (Fig. 2C and D, Fig. S2B and C). The presence of some cells with high weights 211 

for both Topics 13 and 15 indicates that an activated type 2 response apparently co-exists with the 212 

anticipated type 3 response. Finally, Topic 4, which is largely mutually exclusive with Topic 13 213 

across cells, includes genes involved in actin remodeling, a process previously shown to be 214 

important during T-cell activation (Kumari, Curado et al. 2014) (Fig. 2C and D).  215 

 216 

We hypothesized that cells can transition between some of these programs or states, as such 217 

transitions would be consistent with the dense transcriptional continuum observed. Unlike 218 

pseudotime inference (Trapnell, Cacchiarelli et al. 2014, Haghverdi, Buttner et al. 2016), topic 219 

modeling does not assume the existence of an “axis" of progression, which may not exist in settings 220 

such as the untreated condition. Moreover, when a trajectory does exist, it may be reflected only 221 

in specific aspects of the transcriptional profiles. Indeed, a temporal “induction” dimension in our 222 

data was revealed most clearly when we focused on specific topics related to immune repression 223 

or activation. To identify transitional relationships in the context of the biological processes 224 

reflected by these topics, we created a diffusion map only from those cells highly weighted for 225 

Topics 2,4,8,11,13, and 15, but not for Topics 6 or 7, and used only the most distinguishing genes 226 

for each topic as input (Fig. S3A-C, Methods).  227 

 228 

The diffusion map (Fig. 3A, Fig. S3D) proposes several parallel state transitions that cells undergo 229 

in the tissue, in particular highlighting a quiescence-ILC2-ILC3s state trajectory in the disease. 230 

First, cells from the naïve condition lie in a triangular region in the plane spanned by diffusion 231 

components (DC) 2 and 3 with corners up-weighted for Topic 2 (“resting”), 8 (“naïve-quiescent”), 232 
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and 11 (“antigen presentation”), respectively (Fig. 3A and B.i–iii). Their distribution throughout 233 

the triangle suggests that in the untreated condition, cells range over all mixtures of these states. 234 

Second, DC1 captures the induced response shared in both WT and Rag1-/- mice (Fig. 3A, Fig. 235 

S3D), such that as their DC1 coordinate (“induction”) increases, cells typically have relatively 236 

lower weights for Topics 2, 8, and 11 (Fig. 3B.i–iii, Fig. S3E.i-iii), and higher weights for Topic 237 

15 (“Il22/Il117”), Topic 4 (“actin remodeling”), and, specifically for cells from WT mice, Topic 238 

13 (“Il5/Cxcl2”) (Fig. 3B.iv-vi, Fig. S3E.iv-vi). Genotype-specific differences in the induction 239 

response are further captured by DC4, such that cells from WT and Rag1-/- mice have increasingly 240 

different DC4 coordinates as DC1 coordinate increases (Fig. S3D).  241 

 242 

A focused diffusion map model (Fig. 3C) generated only from cells up-weighted for Topic 8, 13, 243 

or 15 (Methods), shows continuous expression changes from Topic 8 to 13 to 15, as DC 1 (in this 244 

map) coordinate increases (Fig. 3D and E). Indeed, DC1 is particularly well correlated with 245 

expression of the gene Srgn, a proteoglycan that is critical for the trafficking and storage of Gzmb 246 

(Sutton, Brennan et al. 2016), which suggests that expression of this gene could be an early 247 

indicator of a trajectory toward type 3 activation, visible before expression of either Gzmb or type 248 

3 cytokines (Fig. 3E). The expression changes observed across Topic 8, 13, and 15 are consistent 249 

with a novel model of immune activation in which a type 3 stimulus (IL-23) causes skin-resident 250 

naïve/quiescent ILCs to undergo type 2 activation, followed by transition to ILC3-like cells.  251 

 252 

Finally, we tested the model’s predictions of a quiescent-ILC2-ILC3 trajectory. First, we validated 253 

the quiescent state by ATAC-Seq of sorted total skin ILC populations from naïve mice. Consistent 254 

with Topic 8 (“naïve-quiescent”) highlighted by the scRNA-seq analysis, the loci for the TFs Klf2, 255 
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Klf4, previously associated with quiescence (Carlson, Endrizzi et al. 2006, Cao, Sun et al. 2010), 256 

Tsc22d3 and Zfp36l2, associated with Th17 genetic program repression (Yosef, Shalek et al. 2013, 257 

Galloway, Saveliev et al. 2016, Salerno, Engels et al. 2018) and Cebpb, involved in hematopoiesis 258 

(Tsukada, Yoshida et al. 2011), had open chromatin signatures at their TSS (Fig. 4A). 259 

 260 

Next, we tested the prediction of a transition during disease of IL-5–expressing ILC2s into IL-261 

22/IL-17A–expressing ILC3-like cells. We generated an IL-5 fate reporter mouse from IL-5-cre-262 

dTomato (Red5) (Nussbaum, Van Dyken et al. 2013) and Rosa26flox-Stop-floxYFP, which we then 263 

combined with IL-17AGFP (Esplugues, Huber et al. 2011) and IL-22BFP expression reporters (Fig. 264 

4B). Consistent with our model, after IL-23 injection, ~10% of the IL-22– and IL-17A–expressing 265 

cells were indeed ex-IL-5 producing cells, as measured by fate mapping of ILC2s, and a second 266 

IL-23 challenge further elevated the number of ex-IL-5 cells producing IL-22 and IL-17A (Fig. 267 

4C and D). Moreover, cells that expressed ILC3 type cytokines no longer expressed IL-5 (Fig. 268 

4D). Our results show the in vivo potential for plasticity among skin ILCs and demonstrates that 269 

some cells expressing ILC3 type cytokines expressed IL-5 at one stage of their lifetime. Finally, 270 

we also tested our model’s prediction that there is a subset of skin ILCs in the psoriasis model that 271 

co-expresses the type 2 cytokine IL-13 with both of the type 3 cytokines IL-22 and IL-17A. Indeed, 272 

intracellular measurements of these three cytokines showed that, consistent with the predictions, 273 

nearly 20% in Rag1-/- and 10% in WT and Tcrd-/- of cells expressing IL-22 and IL-17A also co-274 

express IL-13 (Fig. 4E and F). 275 

 276 

 277 

 278 
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DISCUSSION 279 

Experimentally combining scRNA-seq, ATAC-seq, and in vivo fate mapping in the psoriasis 280 

mouse model with new analytical approaches, we showed the presence of previously undescribed 281 

naïve/quiescent-like tissue-resident ILCs and the ability of activated ILC2s to differentiate to 282 

pathological ILC3s. We further discovered a novel subset of ILCs expressing IL-13 and IL-22/IL-283 

17A in response to IL-23 stimulation. Our work highlights the limitation of experimental and 284 

computational analyses of immune cells that treat them as discrete immune “types”, when immune 285 

cells may share biological signals and span continuous spectra. In our system, we did not observe 286 

any discrete boundaries in single-cell expression profiles that neatly partitioned naïve/quiescent-287 

like ILCs from activated type 2 cells, or type 2 cells from type 3 cells. Rather, the entire population 288 

of skin-resident ILCs was functionally reconfigured and its spectrum shifted by disease induction. 289 

Indeed, imposing stress on an immune cell population may allow rapid shifting of such a spectrum 290 

towards alternative cell fates (Tusi, Wolock et al. 2018), and pathways similar to those we 291 

uncovered in the skin may play roles in other tissues. Importantly, this also suggests that studies 292 

of ILCs sorted on expression of specific cytokines, such as IL-5 (Ricardo-Gonzalez, Van Dyken 293 

et al. 2018), may not have fully assessed this larger continuum. This model substantially revises 294 

previous interpretations and can provide a unified framework for some observations in other 295 

systems, such as “functional compartmentalization” within ILC types and gut ILCs that could not 296 

be readily assigned to a single ILC type (Gury-BenAri, Thaiss et al. 2016). These studies did not 297 

report a differentiation from ILC2 to ILC3, (but rather reported that a core ILC2 module was robust 298 

to antibiotic perturbation, albeit with increased expression of genes associated in homeostasis with 299 

ILC3s (Gury-BenAri, Thaiss et al. 2016), which may reflect tissue-specific differences in ILC 300 

features (Ricardo-Gonzalez, Van Dyken et al. 2018). Computational models and biological 301 
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interpretations that allow for such fluidity, including topic modeling, are thus valuable for 302 

uncovering biological phenomena  because they highlight signals, such as, in our case, type 2 303 

activation, shared by cells in distinct clusters, and reveal drivers of heterogeneity among cells 304 

within a single group, such as the ILC “cloud”. This type of presentation is consistent with recent 305 

studies of HSCs, where individual precursors have probabilistic fate maps, tilted towards  but not 306 

commited to specific outcomes (Carrelha, Meng et al. 2018, Laurenti and Gottgens 2018). Such 307 

approaches should be valuable in uncovering how tissue-resident ILCs, and other cell types, may 308 

globally respond to a stimulus, and undergo dynamic, plastic activation to reach the necessary state 309 

for shaping the tissue landscape.   310 
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METHODS 311 

 312 

Mice. C57BL/6, Tcrd-/- and Rosa26flox-stop-floxYFP Ai3(RCL-EYFP) mice were purchased from the 313 

Jackson Laboratories. Rag1-/- and Rag2-/-IL2rg-/- were purchased from Taconic Biosciences. IL-5 314 

Cre, dTomato (Red5/R5) from Dr Locksley laboratory. The IL-5 fate reporter in this work was 315 

generated by crossing Red5 with Ai3(RCL-EYFP) with IL-17AGFP (Esplugues, Huber et al. 2011) 316 

and IL-22BFP generated in our laboratory. In order to maximize the Cre recombination and increase 317 

the signal of Rosa26YFP positive cells, we used homozygous IL-5dTomato,Cre. We observed little to 318 

no difference in IL-23 induced skin thicknening (Fig. S4A). 319 

 320 

All mice were kept under specific pathogen-free (SPF) conditions in the animal facility at Yale 321 

University. Age- and sex-matched littermates between 10 to 14 weeks of age were used for all 322 

experiments. Unless with special instructions, mice were randomly assigned to different 323 

experimental groups and each cage contained animals of all different experimental groups. Both 324 

male and female mice were used in experiments. Animal procedures were approved by the 325 

Institutional Animal Care and Use Committee (IACUC) of Yale University. Preliminary 326 

experiments were tested to determine sample sizes, taking available recourses and ethical use into 327 

account. 328 

 329 

Psoriasis model 330 

The psoriasis model used in this study is based on rIL-23 subcutaneous injections. The 500ng in 331 

20µl of rIL-23 (provided by Abbvie or purchased from R&D Systems [scRNAseq experiments]) 332 

was injected daily into the ear skin of anesthetized mice in 4 consecutive days. As a control 20µl 333 

of PBS was used with the same injection intervals. For the second challenge experiment, we waited 334 
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10 days, monitoring the skin thickness before repeating 4-day injection regimen. Skin thickness 335 

was measured daily with calipers. When indicated, FTY720 (1mg/kg) was dissolved in PBS and 336 

administered i.p on day -1, 1 and 3 of the experiment. Skin tissue was collected on day 5 for 337 

histology imaging, flow cytometry analysis or cell sorting. 338 

 339 

Isolation of skin lymphocytes  340 

Ventral and dorsal dermal sheets of ears were separated, minced and incubated in RPMI medium 341 

containing 0.4mg ml-1 Liberase TM (Roche Diagnostics) and 60ng/ul DNAseI (Sigma). After 342 

digestion, the suspension was passed through and further mechanically disrupted with syringe 343 

plunger and a 70uM cell strainer. Lymphocytes were enriched by gradient centrifugation in 27.5% 344 

Optiprep solution (Sigma) and RPMI medium containing 5% Fetal Bovine Serum. Spleens were 345 

mechanically disrupted using a syringe plunger in complete RPMI. Cells were filtered through 70-346 

µm nylon mesh and washed  347 

 348 

Flow cytometry and cell sorting 349 

Mouse ILCs were stained with monoclonal antibodies to CD45.2, CD90.2, lineage (CD4, CD8, 350 

CD11b, CD11c, CD19, B220, NK1.1, Ter119, Gr1, FcEr1a), TCRb, TCRg, CD3e. For 351 

intracellular cytokine staining, cells were re-stimulated for 6 h at 37°C with phorbol 12-352 

myristate 13-acetate (PMA) (Sigma, 50 ng ml−1) and ionomycin (Sigma, 1 µg ml−1) in the 353 

presence of Golgistop (BD Bioscience) added after initial 2h of stimulation. Next, cells were 354 

fixed and stained with BS Cytofix/Cytoperm reagent (BD Biosciences) according to the 355 

manufacturer’s protocol. Intracellular cytokines were stained with antibodies to IL-13, IL-17A 356 
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and IL-22. Total ILCs were sorted as live, CD45+, CD90+, lin- (CD4, CD8, CD11b, CD11c, 357 

CD19, B220, NK1.1, Ter119, Gr1, FcEr1a), CD3e- and TCRg/d- cells into PBS/0.2%FBS. 358 

 359 

In-vitro ILC cultures 360 

For in vitro experiments, 5,000 ILCs were cultured per well of a 96-well round bottom plate in 361 

Click’s medium with 10 ng ml-1 IL-2 (R&D Systems) and 25 ng ml-1 IL-25 (R&D Systems) with 362 

10 ng ml-1, IL-33 (R&D Systems) or IL-23 25 ng ml-1 (Provided by Abbvie) with TGFb 10 ng ml-363 

1 (R&D Systems) and IL-1b 10 ng ml-1 (R&D Systems). Cells were collected for RNA extraction 364 

and qRT-PCR after 5 days of culture in 37°C and 5%CO2. 365 

 366 

Adoptive ILC transfer 367 

Total skin ILCs were FACS purified and collected to PBS 5% serum. Cells were washed twice 368 

with 1x PBS and injected (10,000 cells per mouse in 100ul) into retro-orbital vein of anesthetized 369 

Rag2-/-IL2rg-/- mice. IL-23 injection experiments were performed 14 days after the transfer. 370 

 371 

RNA extraction and Quantitative Real time PCR (qRT-PCR) 372 

RNA from in vitro cultures was isolated with RNeasy Mini Kit (QIAGEN) and qPCR was 373 

performed using KAPA Probe Fast qPCR Master Mix 2x Kit (Kapa Biosystems, Wilmington, MA) 374 

with TaqMan probes (Applied Biosystems) in a StepOne cycler (Applied Biosystems, Carlsbad, 375 

CA). The CT values from duplicate qPCR reactions were extracted from the StepOne cycler 376 

(Applied Biosystems, Carlsbad, CA) onto Excel spreadsheets and were analysed with the relative 377 

quantification method 2ΔΔCT. 378 

 379 
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ATAC-seq 380 

Total ILCs sorted from naïve wild type mice were processed for ATAC-seq analysis according to 381 

previously published protocol (Buenrostro, Giresi et al. 2013) with the low cell number input 382 

version (~5,000 ILCs). Libraries from two independent experiments were sequenced on 383 

HiSeq2500 with 75bp paired end reads. Each sample was sequenced to a depth of 150 million 384 

reads.  385 

 386 

ATAC-Seq data analysis  387 

Adapter sequences were trimmed using FASTX-Toolkit (version 0.0.13, 388 

http://hannonlab.cshl.edu/fastx_toolkit/) , after which Bowtie2 (Langmead and Salzberg 2012) 389 

was used to align the reads to the mm10 genome. Picard tools (version 2.9.0, 390 

https://broadinstitute.github.io/picard/ ) were used to remove PCR duplicates. Bedtools was used 391 

to convert the bam file to a bed file, and all mapped reads were offset by +4 bp for the positive 392 

strand and −5 bp for the negative strand. Peaks were called for each sample using macs2 (Zhang, 393 

Liu et al. 2008) using parameters --nomodel --nolambda --shiftsize 75. ATAC-seq peaks were 394 

visualizaed with the Integrative Genomics Viewer (Robinson, Thorvaldsdottir et al. 2011, 395 

Thorvaldsdottir, Robinson et al. 2013) along with publicly available ChIP-seq via Cistrome DB 396 

(Liu, Ortiz et al. 2011). 397 

 398 

Single cell RNA-Seq 399 

Sorted cells were washed with PBS/0.04% BSA and processed for droplet-based 3′ end massively 400 

parallel scRNA-seq: sorted ILCs were encapsulated into droplets, and libraries were prepared 401 
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using Chromium Single Cell 3′ Reagent Kits v2 according to the manufacturer’s protocol (10X 402 

Genomics). scRNA-seq libraries were sequenced using a 75 cycle Nextseq 500 high output V2 kit.  403 

 404 

Single cell RNA-Seq data analysis 405 

Initial data processing and QC. Gene counts were obtained by aligning reads to the mm10 406 

genome using CellRanger software (v1.3) (10x Genomics). 407 

  408 

To remove doublets and poor-quality cells, cells were excluded from subsequent analysis if they 409 

were outliers in their sample of origin in terms of number of genes or number of unique molecular 410 

identifiers (UMIs), which eliminated 5.8–7.9% of cells per sample (Fig. S4B), or outliers across 411 

all samples in percentage of mitochondrial genes, which eliminated at most 0.5% of remaining 412 

cells (Fig. S4C). Sample-specific cut-offs ranged from 575–2,400 genes per cell for the Rag1-/- 413 

untreated sample to 850–3,100 genes per cell for the WT induced sample.  414 

 415 

Normalization. To normalize gene counts, we used a scaling factor that reflected the expected 416 

number of UMIs in each sample (Fig. S4D), rather than scaling all cells to a constant size, as in 417 

TPM (Wallrapp, Riesenfeld et al. 2017) Let ws be the mean number of UMIs per cell in sample s. 418 

UMI counts for cells in sample s were scaled to:  419 

10, 000 × (ws/wWT naive) 420 

Taking the log of scaled UMI counts gives the normalized expression values referred to as logTPX. 421 

 422 

Determination of variable genes. We fit the count data to a null model based on a negative 423 

binomial distribution that explains the expected technical variation for each gene, given its 424 
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expression level, as previously described(Pandey, Shekhar et al. 2018). A gene was considered to 425 

exhibit non-technical variability if it had mean counts above 0.005 and a coefficient of variation 426 

at least log(0.5) times that predicted by the null model (Fig. S4E). We performed variable gene 427 

selection separately for each sample as well as for pooled samples from WT mice and, separately, 428 

from Rag1-/- mice. To reduce downstream technical effects of the variation in extremely highly 429 

expressing genes, we then removed any genes that had mean counts above 4 in WT or, separately, 430 

Rag1-/- cells (these were mostly ribosomal protein genes). The resulting conservative set of 271 431 

genes was then used for the singular value decomposition (SVD). We chose this approach to ensure 432 

that noisy variable gene selection was not a cause of the heterogeneity in the “cloud”. Note that 433 

downstream results were qualitatively similar and robust to several parameter settings, which yield 434 

variable gene sets of very different sizes, as well as to other selection approaches (including the 435 

FindVariableGenes() function in Seurat) (Butler, Hoffman et al. 2018).      436 

 437 

Dimensionality reduction, clustering, and visualization. We computed an SVD on z-scored 438 

variable genes, as determined above, using Seurat’s RunPCA() function, with the “weight.by.var” 439 

parameter set to FALSE (Butler, Hoffman et al. 2018). Assessing the decrease in marginal 440 

proportion of variance explained with larger components, we selected the top 18 eigenvectors for 441 

subsequent analysis, and confirmed that the resulting analyses were not sensitive to this exact 442 

choice. We used these components with Seurat’s FindClusters() and RunTSNE() functions, with 443 

other parameter settings set to default, to cluster the cells, and to separately create a t-stochastic 444 

neighborhood embedding (tSNE) for visualization, respectively. As previously described, 445 

FindClusters() optimizes a modularity function on a k-nearest-neighbor graph computed from the 446 

top eigenvectors. 447 
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 448 

Removal of non-ILC clusters. Based on expression of marker genes across clusters, we 449 

determined that a few very distinct clusters were unlikely to be ILCs: cells in those clusters had 450 

little expression of Ptprc (CD45), and high expression of Col1a2, or Tie1 and Pecam1, or Krt15. 451 

Cells from these non-ILC clusters were removed, and the steps of normalizing the data, selecting 452 

variable genes, performing PCA, and creating a tSNE were repeated as before, but the top 20 453 

components of the SVD were used for subsequent analysis. After these steps, 18,852 cell profiles 454 

remained, with 4,619–4,857 cells per sample. 455 

 456 

Topic modeling. We fit an LDA topic model on the full, sparse counts matrix (18,852 cells and 457 

27,998 genes) using the FitGoM() function from the CountClust R package (Dey, Hsiao et al. 458 

2017), with the number of clusters K set to 15 and the “tol” tolera˜nce parameter set to 10. This 459 

package is heavily based on the maptpx R package, which implements a posterior maximization 460 

approach to fitting the model (Taddy 2012). Some approaches to selecting an appropriate value of 461 

K rely on having labeled training data for the model. Since we do not have such a model, we fit 462 

the model for a range of values and computed the Akaike and Bayesian information criteria (AIC 463 

and BIC) using the estimated likelihood returned by FitGoM() (Fig. S2A). Since AIC and BIC risk 464 

under- and over-penalizing the fit, respectively, we selected a value of K at a point where the AIC 465 

curve had begun to decrease less steeply and the BIC curve had begun to climb.  466 

 467 

Diffusion maps. To select cells and genes for the construction of diffusion maps, a cell was 468 

considered “highly weighted” for a topic if its weight for the topic was above a topic-specific 469 

threshold capturing the upper tail of the distribution (Fig. S3A and B). The analysis is not sensitive 470 
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to the exact choice of threshold. Cells were used in the large diffusion map (Fig. 3A) if they were 471 

highly weighted for any of topics 2, 4, 8, 11, 13, or 15, but not 6 or 7 (Fig. S3B and C). A gene 472 

was considered to be in the “top n genes” for a topic if it was returned by the CountClust function 473 

ExtractTopFeatures(), which selects genes that are most critical for separating one topic from the 474 

others (similar to differential expression analysis between clusters), with the following parameter 475 

settings: top_features=n, method=“poisson”, options=“min”, shared=TRUE. For visualization, the 476 

“Score” shown for top genes (Fig. 2C, Fig. S2D) was computed as 100*x, where x is the Kullback-477 

Leibler divergence score output by ExtractTopFeatures(), and then plotted on a logarithmic scale. 478 

Genes were included in the large diffusion map if they were in the top 50 genes for topics 2, 4, 8, 479 

11, 13, or 15, but not in the top 5 genes for any other topics. For the smaller diffusion map (Fig. 480 

3C), cells and genes were selected in an analogous way, but only for the three topics 8, 13, and 15. 481 

Overall, the larger diffusion map was computed on 7,888 cells and 245 genes, and the smaller one 482 

on 3,785 cells and 130 genes. To build the diffusion map, we gave the expression data for these 483 

cells and genes as input to the DiffusionMap() function from the destiny R package (Angerer, 484 

Haghverdi et al. 2016), with parameter settings k=50 and sigma=“local”.   485 
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Figure 1. An epigenetically poised, heterogenous population of tissue-resident ILCs drive initial IL-23–induced 

pathology. (A) Study overview. From left: Psoriasis mouse model is based on a series of subcutaneous IL-23 injections 

in WT, Rag1-/- and Tcdr-/- mice, phenotypic measurement of skin thickness, and tissue collection and cell isolation for 

assessment by scRNA-seq, in vitro assays and cytokine expression. (B,C) Tissue resident ILCs are necessary and 

sufficient for increase in ear skin thickness in response to IL-23 treatment. Increase in skin thickness (mm, y axis) over 

time (days, x axis) in (B) WT (black), Rag1-/- (lack all T and B cells, blue), Rag2-/- Il2rg-/- mice (also lack ILCs, magenta), 

and TCRgd-/- ( lack gd T cells, grey) (n=7 for each group) as well as in (C) Rag2-/- Il2rg-/- mice with (blue) and without 

(black) intravenously transferred ILCs (n=4 for each group). (D) FTY720 blocks white blood cell circulation. Total 

circulatory white blood cell (WBC) numbers (103/µl; y axis) in untreated (“Non-Tx”) and FTY720-treated (“FTY720-

Tx”), WT and Rag-/- mice. (E) IL23-dependent increases in ear skin thickness does not require circulating cells. Increase 

in skin thickness (mm, y axis) over time (days, x axis) following IL-23 treatment, in WT (top) and Rag-/- (bottom) mice, 

with (red) and without (black) FTY720-treatment (Methods) (n=3 WT both groups, n=2 Rag1-/- NonTX n=4 Rag1-/- 

FTY720). (F,G) A secondary challenge with IL-23 increases susceptibility. Increase in skin thickness (mm, y axis) over 

time (days, x axis; top) or at the end (bottom) of a primary (white bar) or secondary (blue bars) challenge with either IL-

23 (n=14) or saline control (PBS) (n=5). (H) ILCs in untreated mice are epigenetically poised to become ILC3s. Mapped 

ATAC-seq reads (top track) at the Il22 (left) and Il5 (right) promoter loci (bottom track) from sorted skin ILCs from 

untreated mice, show open chromatin peaks (beige and blue bars) at key TF binding sites (beige), previously identified 

in CD4+ T cell ChIP-seq data (middle tracks), and at the TSS of Il5 but not Il22 (blue). (I,J) ILC heterogeneity highlighted 

by scRNA-seq. t-Distributed stochastic neighbor embedding (tSNE) of 27,998 single cell (dots) profiles (Methods) 

colored by either in vivo treatment and genotype (i), or by cluster assignment or expression of key genes (color bar, 

logTPX (Methods)) (J). Annotated clusters (J, top left) include a Rag1-/--specific cluster (A) expressing the ILC1-

associated gene Klrd1, cycling cells (B), an Il22-high cluster co-expressing Il13 (C), and a heterogeneous “cloud” (D), 

without discrete boundaries between clusters yet with multiple patterns of graded gene expression. Error bars, SD; 

**p<0.021, ***p<0.0002, ****p<0.0001 by unpaired t test (b) or two-way ANOVA (d, e, g). 
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Figure 2. Topic modeling of skin ILCs highlights repressive, quiescent-like state and multiple, distinct states of 

activation combined in cells. (A) Topic model concept in the context of single cell expression. Topics (top) consist of 

genes (middle), with distinct weights (gradient, Methods) based on their importance in the topic. Cells (bottom), are 

scored based on the contribution of each topic (color) in them; a cell can thus have multiple topics. (B–E), Results of 

LDA on ILCs with 15 topics (Methods). (B,C) Topics reveal complex relationships among clusters. TSNE of cells 

colored if they are highly weighted for Topic 11 and gray otherwise, with color code reflecting cluster membership as 

in Fig. 1J (B, left), or by expression (color bar, logTPX (Methods)) of Cd83, a Topic-11 associated gene (b, right). 

Analogous plots for Topic 13 (c, left) and its associated gene Srgn (C, right). (D,E) Topics with high weights in cells 

from untreated (Topics 2, 8, and 11) vs. induced (Topics 4, 13, and 15) conditions. (D) For each topic shown are a bar 

plot of top scoring genes (y axis), ranked by a score (x axis, logarithmic scale) of how well the gene distinguishes this 

from other topics (Methods); a tSNE (as in Fig. 1I) with cells colored by the topic’s weight in the cells (column j of 

the cell-by-topic weight matrix q (q*,j) for Topic j); and a graph of the empirical cumulative density function (y axis) of 

topic weights q*,j (x axis) for cells grouped by treatment or genotype (as in Fig. 1H). (E) Examples of topic-associated 

genes. Gene expression (y axis, logTPX) as a smoothed function of the topic weight (log q*,j, x axis), for each of the 

topics highlighted in D (color) 
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Figure 3. Inference of an IL-23–induced dynamic trajectory from quiescent-like ILCs through classically 

activated ILC2s to pathological I13/Il17a/Il22-expressing ILC3-like cells. (A,B) Distinct topics suggest a dense 

continuum of states undergoes a dynamic transition during psoriasis induction. Shown is a diffusion map constructed 

only from cells highly weighted for selected topics (Topics 2, 4, 8, 11, 13, or 15) and the corresponding topic-specific 

genes (Methods). Plots of DC2 (x axis), DC3 (y axis) and DC1 (z axis), show cells (dots) colored by either in vivo 

treatment and genotype (A) or by topic weight (log q*,j, color bar) (B). Gray arrows (A) indicate an implicit direction 

of induction. (C,D) A naïve-induced trajectory across DC1 in a focused diffusion map from Topics 8, 13, and 15. DC 1 

(x axis), DC2 (y axis), and DC3 (z axis) of a focused diffusion map, with cells colored as in A by in vivo treatment and 

genotype (C), or as in B by topic (D). (E), Key genes associated with the trajectory from quiescent-like ILCs to 

activated ILC2s to ILC3-like cells. Expression (color scale, logTPX) of genes (rows) in cells (columns) associated with 

Topics 8 (“naïve-quiescent”), 13 (“Il5/Cxcl2”), and 15 (“Il22/Il17a”), with cells marked by in vivo condition and 

genotype (top bar; colored as in A). Grey scale bars: Topic weights for cells (log q*,j) (horizontal bars) and genes (log 

bj,*, where b is the topic-by-gene weight matrix; vertical bars) illustrate mixtures of functional states. 
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Figure 4. In vivo validation of the trajectory from quiescent-like ILCs in healthy skin to differentiation of ILC2s 

to ILC3-like cells during IL-23–induced response. (A) ATAC-seq confirms quiescent-like ILCs. Open chromatin 

peaks (light blue shaded boxes) of ATAC-Seq reads (blue tracks) from sorted skin ILCs from untreated mice at TSS of 

key genes (bottom track) responsible for quiescence and repression of type 3 programs. (B-D) ILC2-ILC3 plasticity 

revealed by IL-5 fate mapping and IL-22BFP and IL-17AGFP reporter mouse. (B) Fate mapping scheme. IL-5 Fate mouse 

reporter combined with IL-17AGFP and IL-22BFP reporters showing possible outcomes of skin ILC activation, in a 

scenario with ILC2 to ILC3 differentiation (top) vs. direct ILC3 differentiation (bottom). (C) IL-23 induction increases 

the number of IL-22– and IL-17A–producing cells, including among cells formerly producing IL-5 (“exIL-5”), especially 

after secondary challenge. Number of cells (y axis) with each reporter configuration (top label) in IL23-treated and PBS 

controls (x axis) in the first (circles) and second (squares) challenge. (D) exIL-5 cells that transdifferentiated to produce 

IL-22 and IL-17A do not produce IL-5 anymore. FACS plots of the expression of YFP (x axis) and IL22-BFP (x axis, 

top) or IL17A-GFP (x axis, bottom). (E,F), IL-23 treatment induces IL-13/IL-22 and IL-13/IL-17A double-producing 

populations and elevates IL-13/IL-22 double production in Rag1 deficient mouse. (E) Levels of IL-13 (x axis) and IL-

22 (y axis) measured by intracellular cytokine staining of skin ILCs in wild type (top), Rag1-/- (middle) and Tcrd-/- 

(bottom) mice. (F) Mean number of cells (y axis) among single producers and co-producers in each mouse genotype (x 

axis). Error bars, SD; *p<0.0332, **p<0.021, ***p<0.0002, ****p<0.0001 by two-way ANOVA. 
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Figure 4 
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Figure S1. Characterization of skin immune cells to IL-23 induction, Related to Figure 1 

(A) Increase in ear skin thickness is significantly higher in response to IL-23 treatment than PBS vehicle and 

is dependent on Rorc. Increase in ear thickness (y axis, mm) following treatment with IL-23 (blue) or PBS 

vehicle (black) in WT (top) or Rorc-/- (bottom) mice.  

(B and C) Immune cell composition and skin phenotype in different mouse genotypes. (B) Top: Number of 

cells (y axis) producing IL-22 or IL-17 (x axis) among ILCs (black bars), abT cells (grey bars) and gd T cells 

(white bars) in WT, Tcrd-/- (lack gd T cells), Rag1-/- (lack all T and B cells), and Rag2-/- Il2rg-/- mice (also lack 

ILCs) mice. Bottom: Number of total CD45+ (left, y axis) or total ILCs (right, y axis) in WT, Tcrd-/-, Rag1-/-, 

and Rag2-/- Il2rg-/- mice (x axis). (C) H&E stains of ear sections in each genotype except Rag2-/- Il2rg-/- mice. 

Arrows: Acanthosis. 

(D) Expression of type 2 and type 3 related genes in cultured naïve skin ILCs. Shown are relative expression 

levels (y axis, by qPCR) in ILCs cultured with different cytokines (x axis, table at bottom).  

(E) FTY720 treatment does not impact increased susceptibility to a secondary challenge with IL-23. Skin 

thickness (y axis, 0.1mm) over time (x axis, days) in mice following treatment with either IL-23 or IL-23 and 

FTY720. Bottom bars: period of primary (left bar) and secondary (right bar) challenge. 

(F and G) ATAC-seq of sorted skin ILCs from untreated mice. Mapped ATAC-seq reads from sorted skin 

ILCs from untreated mice (top tracks) at different loci (bottom tracks) of interest. Blue shaded areas: TSS; 

Beige shared areas: open chromatin peaks at key TF binding sites, previously identified in CD4+ T cell ChIP-

seq data (middle tracks). (F) Open chromatin peaks at TSS of Gata3 (associated with mature ILC2) but not 

Rorc (ILC3) and Tbx21 (ILC1). (G) Open chromatin peaks at TF binding sites in the Il17a and Il17f promoter 

(beige), and at the TSS of Il13 but not Il17a,Il17f (blue).  

(H), Cluster B reflects cycling ILCs. tSNE of 27,998 single ILC profiles (dots) colored by expression level 

(logTPX, color bar) of Stmn1. 
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Figure S1 
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Figure S2. Topic modeling also distinguishes cluster-specific, cell size, and cell quality related topics, 

Related to Figure 2.  

(A) Selecting the number of topics. Akaike Information Criterion (AIC, red) and Bayesian Information 

Criterion (BIC, blue) value (y axis) for a range of the number K of topics. K=15 (dotted line) is at a point 

where the AIC curve decreases less steeply and the BIC curve begins to rise.  

(B and C) Expression of example genes associated with key topics. (B) tSNE of 27,998 single ILC profiles 

(dots) colored by expression level (color bar, logTPX (Methods)) for genes in Topics 2, 4, 8, 11, 13, and 15. 

(C) Gene expression (y axis, logTPX) as a function of the topic weight (log q*,j, x axis), for each of these topics 

(color), for repressive gene Zfp36l2 and activation-associated gene Ly6a.  

(D) Summary of remaining topics not included in Fig. 2c. For each topic shown are a bar plot of top scoring 

genes (y axis), ranked by a score (x axis, logarithmic scale) of how well the gene distinguishes this from other 

topics (Methods); a tSNE (as in B) with cells colored by the topic’s weight in the cells (column j of the cell-

by-topic weight matrix q (q*,j) for Topic j); and a graph of the empirical cumulative density function (y axis) 

of topic weights q*,j (x axis) for cells grouped by treatment or genotype (as in Fig. 2c).  
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Figure S2 
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Figure S3. Diffusion map analysis based on topic model highlights an IL-23–induced dynamic trajectory, 

Related to Figure 3. 

(A-C) Cell selection for diffusion map in Fig 3A and B. (A) Chosen topic weight thresholds. Empirical 

cumulative density function (y axis) of topic weights q*,j (x axis) of cells grouped and colored by in vivo 

treatment and genotype. Dotted line: topic weight threshold. (B and C) Cells with high weights in at least one 

key topic are chosen for the diffusion map. tSNE of 27,998 single ILC profiles (dots), with cells colored if 

they are weighted above the corresponding topic threshold from A (B, red) and chosen for the diffusion map 

(C, black), if they are highly weighted for Topics 2, 8, 11, 4, 13, or 15, but not for Topics 6 or 7.  

(D and E) Topics 8, 13, and 15 highlight a potential naïve-induced trajectory across DC1. Plots of DC1 (x 

axis), DC3 (y axis), and DC4 (z axis) show cells (dots) colored by either in vivo treatment and genotype (D) 

or by topic weight (log q*,j, color bar) (E). Gray arrows (D) indicate an implicit direction of induction.  
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Figure S3 
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Figure S4. Computational and experimental quality control and data processing.  

(A) IL-23 skin injection model in Il5dTomatoCre (Red5) mouse strain. Increase in skin thickness (mm, y axis) 

over time (days, x axis) in homozygote Red5/Red5 mouse strain lacking expression of IL-5 cytokine (black) 

and Red5/+ mouse (blue) shown little difference.  

(B and C) Quality control and filters in scRNA-Seq. (B) Minimum and maximum thresholds (red) of log UMI 

counts (x axis) and log gene counts (y axis) for each condition. Cells (dots) that were filtered out are marked 

in red. (C) Left: Histogram of the % of mitochondrial genes detected across all cells. Right: Box plot of the % 

of mitochondrial genes of all detected genes in each sample type. Dashed lines: thresholds.  

(D) Distributions for the number of UMI counts in each sample, used to compute logTPX (Methods).  

(E) Variable gene selection. For each sample (panel) shown are the coefficient of variation (CV, y axis) as a 

function of mean counts (x axis) for each gene (dot). Black curve: null model (Methods). Blue: genes with 

sufficiently greater CV than in the null model, which are retained as variable genes. 
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Figure S4 
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