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Abstract: The skin is the human body’s largest organ and its cancer is considered among the most
dangerous kinds of cancer. Various pathological variations in the human body can cause abnormal
cell growth due to genetic disorders. These changes in human skin cells are very dangerous. Skin
cancer slowly develops over further parts of the body and because of the high mortality rate of skin
cancer, early diagnosis is essential. The visual checkup and the manual examination of the skin
lesions are very tricky for the determination of skin cancer. Considering these concerns, numerous
early recognition approaches have been proposed for skin cancer. With the fast progression in
computer-aided diagnosis systems, a variety of deep learning, machine learning, and computer
vision approaches were merged for the determination of medical samples and uncommon skin lesion
samples. This research provides an extensive literature review of the methodologies, techniques, and
approaches applied for the examination of skin lesions to date. This survey includes preprocessing,
segmentation, feature extraction, selection, and classification approaches for skin cancer recognition.
The results of these approaches are very impressive but still, some challenges occur in the analysis of
skin lesions because of complex and rare features. Hence, the main objective is to examine the existing
techniques utilized in the discovery of skin cancer by finding the obstacle that helps researchers
contribute to future research.

Keywords: skin cancer; machine learning; deep learning; segmentation; melanoma; classification

1. Introduction

For a better understanding of skin cancer, clinicians should require a basic awareness
of the skin. There are three main layers epidermis, dermis, and subcutaneous fat [1]. Skin
cancer is the state when the uncommon development of the skin cell becomes uncon-
trolled [2]. Every day some old skin cells die, and new cells take their place. However,
when this process takes the wrong direction, a situation occurs when the old cells are not in
the dying stage but become dead and new cells grow when there is no need for them. The
extra number of skin cells creates a mass of tissue and becomes a tumor [3,4]. For the en-
hancement of the diagnostic process, dermoscopy has begun; itis a non-invasive approach
that gets illuminated and enhanced images of skin spots. This approach is utilized by the
dermatologist for skin cancer recognition, traditionally performed by visual inspection
and manual screening which is not accurate and also time-consuming [5]. However, the
improvement has been made on account of the latest approaches of machine learning
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for the timely recognition of fatal cancerous diseases. Some skin tumors are benign and
curable if detected at the early stage, so they hardly turn into cancer. Melanoma is a very
serious and dangerous category of skin tumor. There are further numerous divisions
of skin tumors and each cancer type depends upon the behavior of the abnormal cells.
There are the following categories of skin cancer melanoma [6], squamous and basal cell
carcinoma (together called nonmelanocytic skin cancers [7] and Merkel skin carcinoma [8].
Different types of changes occur in the human body as skin cancer has several symptoms.
The changes that happen are color fadedness of the skin, an increase in the size of the
mole, and ulceration. However, these symptoms can vary from type to type. Usually, the
symptoms of basal cell carcinoma (BCC) include a swollen smooth surface on the shoulder
and neck and blood vessels becoming visible in a tumor. These tumors are developed
with the bleeding from the center point of the tumor, but these types of cancer are treated
completely. In squamous cell carcinoma (SCC) cancer shows in the form of nodules that
look hard in presence. It can result in bleeding from the tumor and ulceration. If this type
of cancer is not treated immediately a large mass appearance occurs on the skin. Merkel
skin carcinoma (MCC) cancer presents as a painless red spot so it is taken as a cyst [9].
UV is a serious revisable harmful agent for skin cancer and others are environmentally
affected skin disorders. UV is also known as a big source of Vitamin D; therefore, UV has a
mixed influence on human health. Excessive intake of UV can cause health risks such as
malignancy, pigmentary modification, wrinkling, and atrophy. The UV molecularly and
epidemiologically has an association with different categories of skin cancers. The genetic
factor becomes another element that may lead to skin disorders [10]. As it is known that
the ratio of skin diseases increases every year, it is essential to take precautionary measures
to avoid such disorders. UV rays are a familiar environmental source of skin cancer so
protection of the skin from these rays is necessary. The measure that one should take to
avoid UV rays is to avoid direct exposure to mid-day sun, and textile protection by wearing
appropriate clothing and by using sunscreen. It is essential to conduct self-examination
and visit a dermatologist for regular check-ups to avoid such fatal diseases [11].

1.1. Motivation and Contribution

Table 1 exhibits the comparison of the presented survey with further reviews of the skin
cancer recognition system. The presented article tries to cover the maximum aspects and
contents of the problem domain. The aim of presenting this review is to confer the computer-
aided diagnosis methods that are available to recognize skin cancer. Systematic reviews are
gathered and existing methods are evaluated according to determined evaluation standards.
All the related information is taken from primary sources and after analysis, it gives the
details about the utilized methods, their results, and issues encountered by the researchers.
The death and death estimation rates in the future due to skin cancer are very high. So,
these facts motivate us to contribute in terms of trying to cover the maximum amount of
literature for a better understanding of the problem domain and its proposed solutions.

Table 1. Comparison of the Presented Survey with Others.

Sr. # Contents Presented
Survey

[12]
2021

[13]
2020

[14]
2020

[15]
2020

[16]
2019

[17]
2017

1. Traditional methods X X X X X X X

2. Deep learning methods X X X X X

3. Benchmark datasets X X X X

4. Challenges X X X X

5. Mobile Apps X

6. Discussion/Findings X X X X
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1.2. Scope and Objectives

The identification of cancer and its classes with the support of machines can launch and
open a new direction in research in an early phase and reduce manual efforts. The rising
cases of skin cancer create an alarming situation, so it becomes essential to find cancer at the
initial phase to rescue the patient’s life. This research is focused on detecting skin cancer and
its classification by reviewing numerous techniques. The entire machine-based processing
is performed by image processing, computer vision, and machine learning approaches.

Section 1 includes an introduction along with the scope, objectives, and contribution
of the presented research article. Section 2 consists of the number of steps utilized for the
skin cancer recognition system. Section 3 includes the number of challenges that occur in
the detection process. Section 4 consists of details about the benchmark datasets, Section 5
covers some mobile applications utilized to examine skin cancer through smartphones.
Section 6 provides a discussion of methods their encountered problems. Section 7 and
its subsection conclude the research article and provide some future suggestion to help
researchers contribute to future research.

2. Skin Cancer Recognition and Classification System

A computer-aided diagnostic system consists of different phases, these phases are
mentioned below:

2.1. Preprocessing

It is a very important step when images carry unnecessary details such as hairs, low
illumination, spots around the lesion, etc. These elements can degrade the performance
of the system. To remove such artifacts [18,19] preprocessing is applied and it also en-
hances the quality of samples. There are several processes in preprocessing approaches
listed below:

2.1.1. Morphological Operations

The artifacts in the skin lesion images can cause the performance to degrade the
system. To remove these artifacts many morphological operations are performed. The
word morphology defines the outline of the shape and structure of a particular object. These
filters are constructed using a set of algebra called mathematical morphology. It is utilized
within the window filter hence these are closely related to order statistical filters. In the skin
cancer recognition process, various morphological operations are performed to remove
the artifacts such as morphology and threshold [20], top-hat approach [21], morphological
closing [22–24], and morphological operator bottom hat transforms [25], etc.

2.1.2. Colorspace Conversion

Recognizing and discriminating the information in color is considered a major aspect
of vision. Color becomes a very useful aspect in the phase of preprocessing, as the color
space conversion utilizes a specific function to improve the quality of an image. In skin
cancer recognition systems the lesion images are most commonly converted to CIELAB
conversion [26,27], HSV color space conversion [28], grayscale [29,30], etc., to improve the
visual effect.

2.1.3. Filtering and Other Enhancement Methods

The noise and artifacts are added to the images by several factors during image ac-
quisition and transmission etc. Once the noise is taken out, it makes a great effect on the
condition of the image. The noise removal [19,31] algorithm is known as a process that
removes and reduces the noise [32] in an image by smoothing the entire image. Image
enhancement [33] makes an image lighter or darker or develops slash contrast. It provides
a boost to the sensitivity of the information in images and presents enhanced input to carry
out other procedures. In skin cancer recognition the research utilized an anisotropic diffu-
sion filter [34,35], median filter [35,36], Dull Razor [37–40], Adam Huang algorithm [41],
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Wiener filter [42], Bilateral filter [43] and Gaussian and Gaussian Blur filter [44,45], Z-score
transformation [46], contrast-limited adaptive histogram equalization [47,48], adaptive
histogram equalization [49], global-local contrast stretching [50], color constancy with
shades of gray [51], adaptive gamma correction [52], gamma and correction [53], etc., for
enhancement and noise removal in the skin recognition process.

2.2. Segmentation

Segmentation [54,55] of skin lesions [56] is the most important step as it divides the
single image into various small parts. The researcher proposed several deep learning [57,58]
and traditional segmentation [59] methods for skin lesions.

2.2.1. Traditional Segmentation

A hybrid segmentation framework is proposed by researchers, the model combines
novel hierarchical k-means with a level set technique [60]. A two-phase segmentation is
defined in which firstly the image is segmented with k-means clustering for localization of
a precise lesion region then it gets optimized using the firefly algorithm to execute higher
accuracy [61]. A histogram-based clustering algorithm is utilized with Genetic algorithm,
after that the neutrosophic set are computed by neutrosophic c-mean and at last graph
cut is applied for skin lesion [62]. For the segment, region-growing segmentation based
on fuzzy clustering segmentation is utilized. The fuzzy clustering mean is unsupervised
clustering the extension of k means clustering and region growing Emprise spatial context
by merging adjacent pixels [63]. As the homogeneity is determined by texture and color
features, researchers utilized color features to partition the image thus segmentation is
applied using K-means clustering and histogram calculation [64]. The system described
can segment skin images using a semi-supervised approach shift mean algorithm it does
not require mentioning the cluster’s numbers [65]. The threshold-based segmentation
technique is utilized, as the sample is split into many regions depending on the threshold
merit so that the edges of the cancerous area become clear [66]. A skin lesion segmentation
technique was designed that established adaptive thresholding with the normalization of
color networks for dermoscopic images [67]. The researchers designed an algorithm that
solves the problem of global optimization as it established an auxiliary function that was
smoothed by utilizing Bezier curves and constructed using a local minimizer [68]. Active
contour fusion segmentation is utilized and the main focus is to segment low-contrast
dermoscopic samples [50].

2.2.2. CNN-Based Segmentation

An initial contour without the edge chan-vese optimized with the genetic algorithm
is proposed for recognition of the skin lesion boundary [69]. For the segmentation in
dermoscopic samples, a full convolution encoder-decoder network was optimized expo-
nential neighborhood gray wolf optimization algorithm [70]. The researcher designed a
novel CNN-based architecture end-to-end atrous spatial pyramid pooling for segmentation
of the lesion [71]. A system designed segments skin lesions with the help of Retina-
DeepLab, graph-based techniques, and Mask R-CNN [72]. A dense encoder-decoder-based
framework is utilized in which the combination of ResNet and DenseNet is utilized for
improvement. Moreover, ASPP is used to get multiscale contextual information and skip
connections to recover the information [73]. An automated lesion segmentation using an
adaptive dual attention component with three characteristics is proposed in which the first
characteristic is two global context modeling schemes integrated with ADAM, the second
characteristic is to support the multi-scale fusion for better segmentation and the third is
to harness spatial information weighted technique to reduce redundancies [74]. The most
effective approach based on an enhanced fully convolutional network approach (iFCN)
segments the skin lesion without preprocessing or post-processing. It contributes to the
determination of the center position of the lesion and clears the details on the edge by
removing the unwanted effects [75]. A method is defined that automatically segments the
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skin lesion and introduces the novel segmentation topology approach named FC-DPN that
is made with the combination of a fully convolutional and dual path network [76]. The
researchers proposed an attentive border-aware system for segmentation of multi-scale
lesions through adversarial schooling consisting of different sections, ResNet34 as the
encoding and decoding path, skip connection based on Scale-Att-ASPP and PPM at the
peak of the last convolutional layer in the encoding path [77]. The Mask R-CNN-based
technique [78] proposed for skin lesion segmentation consists of two parts, proposing
the candidate object bounding boxes with RPN and Fast R-CNN classifier and a branch
of binary mask prediction [79]. The researcher proposed effective and novel practice of
lesion segmentation by using the fusion of YOLOv3 and the GrabCut algorithm [80]. A
lesion segmentation system motivated by the Pyramid Scene Parsing Network in which an
encoder-decoder system is designed that uses pyramid pooling blocks, and a skip connec-
tion which can pay back for lost spatial details and aggregate global context is utilized [81].
The skin lesion segmentation which locates the lesion accurately with the deep learning
method depends on DeepLabv3+ and Mask R-CNN which are utilized to increase the
performance [82]. The researchers described the investigation of the relevancy of deep
learning by utilizing a pre-trained VGG16 encoder and combined it with DeeplabV3, Seg-
Net decoder, and TernausNet [83]. A deep learning strategy to perform and refine the
important task of skin lesion segmentation is utilized by 46 layered U-net frameworks
and a modified U-Net framework to achieve a successful lesion segmentation rate [84].
To resolve the challenges of varying size and the appearance of skin lesion segmentation,
a new dense deconvolutional framework is designed. The deconvolutional layers are
utilized to unchange the dimension of input/output, chained residual pooling extract the
contextual background information then fuse multi-level features. Hierarchical supervision
is added to make refinements of the prediction mask and serves as auxiliary loss [85].

Table 2 presents a detailed summary of the segmentation methods proposed by re-
searchers. It consists of methods, datasets, and the highest result outcome of the experiment
regarding accuracy and Jaccard.

Table 2. Summary of Segmentation Approaches.

Ref # Year Methods Datasets Results

[50] 2019
Local and global contrast starching,

Dull razor, Region based active contour
JSEG fusion

PH2
ISIC 2017

0.917 (ACC)
0.953 (ACC)

[60] 2021
Histogram equalization, max filter,

morphological operations, hierarchical
k-means with level set

PH2
DermoFit

0.946 (ACC)
0.942 (ACC)

[61] 2021
Threshold and morphological

operations, K-means clustering, firefly
algorithm

ISIC 2017
PH2

0.991 (ACC)
0.989 (ACC)

[85] 2018 Adam approach, a Dense
deconvolutional network

ISBI 2016
ISBI 2017

0.959 (ACC)
0.939 (ACC)

[80] 2019 Dull razor, morphological operations,
YOLO, GrabCut

PH2
ISBI 2017

0.929 (ACC)
0.933 (ACC)

[72] 2021 Retina-DeepLab, R-CNN, and
graph-related approaches

ISBI 2017
PH2

DermQuest

0.942 (ACC)
0.898 (ACC)
0.992 (ACC)

[73] 2021
Data augmentation (flipping, rotation,

translation, etc.), dense
encoder-decoder based framework

ISIC 2018 0.969 (ACC)



Life 2023, 13, 146 6 of 18

Table 2. Cont.

Ref # Year Methods Datasets Results

[74] 2020
Bicubic interpolation, data

augmentation, Adaptive dual attention
module

ISBI 2017
ISIC 2018

0.957 (ACC)
0.947 (ACC)

[68] 2020
Median filter, histogram, Auxiliary

function, global optimization
algorithm

PH2
ISBI 2016
ISBI 2017

0.932 (ACC)
0.952 (ACC)
0.976 (ACC)

[66] 2020 Median filter, contrast stretching,
ABCD, Threshold-based segmentation

DermIS
DermQuest 1.00 (ACC)

[62] 2020 GA, OCE-NGC ISIC 2016 0.976 (ACC)

[63] 2017 Fuzzy clustering mean HPH 0.968 (ACC)

[75] 2020 Ifcn PH2
ISBI 2017

0.969 (ACC)
0.953 (ACC)

[77] 2020 Resizing, augmentation, ResNet34,
Scale-Att-ASPP, PPM, GAN

ISBI 2016
ISBI 2017

PH2

0.964 (ACC)
0.931 (ACC)
0.112 (DV)

[79] 2020 LabelMe, R-CNN ISIC 0.910 (recall)

[67] 2019 Gaussian filter, OTSU, SegRNorm,
SegXNorm ISIC 2017 0.800 (JAC)

[81] 2019
Resizing, encoder-decoder deep

convolutional with aggregate
multi-resolution skip connections

ISIC 2018 0.837 (JAC)

[82] 2019 Morphological operations, DeeplabV3+
and Mask R-CNN

ISIC 2017
PH2

0.793 (JAC)
0.839 (JAC)

[83] 2019
Data augmentation, VGG16 encoder,
DeeplabV3, SegNet, threshold with

dilations
ISIC 2018 0.876 (JAC)

[84] 2019 Linear filter, restoration, enhancement,
U-Net 46 layered, U-Net 32 layered ISIC 2018 0.933 (JAC)

[64] 2017
Illumination correction, histogram
calculation, Frangi vesselness, K-

means clustering
ISIC 2017 0.548 (validation

set)

[65] 2017 Dull razor, ABCD, Shift mean
algorithm ISIC 0.972 (JAC)

[70] 2022 Image Resize, FCEDN, EN-GWO ISIC 2016
17

0. 964 (JAC)
0.868 (JAC)

[69] 2021 Dull razor, Initial contour optimization,
GA ISIC 2016 0.831 (JAC)

[71] 2021 Downsampling, translation, rotation
and scaling, Atrous dilation CNN

ISIC 2016
17
18

0.904 (JAC)
0.818 (JAC)
0.891 (JAC)

[76] 2020 Augmentation, resizing, FC-DPN ISBI 2017
PH2

0.800 (JAC)
0.835 (JAC)

The segmentation experiment is evaluated using different parameters. The graph in
Figure 1 shows the comparison among segmentation results in terms of accuracy, while
Figure 2 compares segmentation outcomes for Jaccard. However, the process of segmen-
tation is a tough task because of various hurdles such as low illumination and further
artifacts. This makes it tricky to identify the exact ROI in the samples. Although researchers
designed several algorithms this area is still under development.
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2.3. Features Extraction, Selection, and Fusion

It is utilized to recognize different features using a variety of machine-learning tech-
niques. It is also the part of dimensionality reduction in which the initial data are first
divided and then reduced in a manageable form. The large dataset has several variables
that required a lot of computing and some of the variables were also not relevant to the
objective. Thus, feature extraction [86] and selection [87,88] help to select the more rel-
evant [89], prominent, and significant features [90,91] and effectively decreased a large
mass of variables. In skin cancer recognition, several feature extraction and fusion [92]
approaches utilized by researchers are listed below:

2.3.1. Features Extraction

The features were extracted using ABCD, color features were brought out by three-
color spaces HSV, LAB, RGB, and texture features by GLCM, after that the most relevant
features were selected by a genetic algorithm [93]. In feature extraction, the researchers
proposed to refine the bag of words technique by the combination of the features gain
from first-order moments and color histogram with HOG [94]. The researchers employed a
Local Binary Pattern, Local Vector Pattern, and LTrP that determine eight connections to
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the neighbors at distance D and also encode them with the help of CST. The combination
of LBP+ LVP obtained higher results as compared to other features [95]. The researchers
utilized the ABCD method that extracts attributes of symmetry; border, color, and diameter
while GLCM and HOG extract the texture features of the lesions in classification SVM
provides the best outcomes regarding accuracy [96]. The texture features consider one
of the dominant features in the image to obtain second-order texture attributes GLCM of
spatial and color features, a color histogram is used to gain color attributes from three color
spaces including OPP, HSV, and RGB [97]. The global texture is computed through GLCM
and the local features of the sample are taken out using Speeded Up Robust Feature. The
comparison shows that SURF features perform better than GLCM and SIFT features and
SVM performs better than KNN in classification [98]. The statistical feature standard devia-
tion, mean texture, smoothness, skewness, and energy are extracted by the Local Binary
Pattern [99]. In the phase of feature extraction color and textural features combine with a
bag of words. Moreover, HL and HG were bagged separately and combined with other
bagged Zernike and bagged angles of color vector to emprise the color information [100].
To extract color-based features standard deviation, min, mean, skewness, and kurtosis were
calculated for each R,G,B component, and texture-based features were extracted by wavelet
transform [101]. The researchers present four ReliefF, Chi2, RFE, and CFS approaches, after
that feature normalization is performed using standard score transformation [102].

2.3.2. Features Selection and Fusion

The hybrid features are extracted to classify skin cancer in a machine vision approach.
The GLCM and first-order histogram features are combined, moreover, dimensions get
reduced with the help of PCA [103]. The researchers extract modified ABCD by using
cumulative level difference mean and prominent attributes selected by the Eigenvector
centrality feature ranking and selection approach [104]. To recognize melanoma, the
network training is performed on the most significant features, the features gained by the
GLCM approach, and it gets optimized by a binary bat algorithm which provides a relevant
set of features [105]. The novel approach described is called an optimized framework
of optimal color feature selections and the best and optimal features get selected using
higher entropy value features with PCA [106]. The motive is to distinguish the cancerous
and non-cancerous lesions with the help of an accurate feature extraction method so the
researchers proposed the fusion of speeded-up-robust features with a bag of features [107].

The researchers proposed several approaches to extract the worthiest features, but to
reduce the error rate that occurs due to complex features there is a need to extract more
optimal features along with optimization.

2.4. Classification

Classification [108,109] is considered the most significant step in skin cancer recogni-
tion as it categorizes skin lesions [110]. Firstly, the classifier is trained on some label data
after good training, some un-label images are provided to the classifier for testing purposes.
There are many machine learning classifiers [111], their variants [112], and CNN [113]
models utilized for classification purposes.

2.4.1. Traditional Machine Learning Classifiers

In the domain of skin cancer recognition machine learning [114] performs very well. A
method proposed to discover melanoma skin cancer using the ISIC dataset for classification,
the researchers utilized an SVM and achieved an accuracy of 96.9% [115]. The researchers
utilized different classifiers SVM, KNN, Ensemble, and Decision Tree for melanoma discov-
ery with accuracies of 100%, 87.5%, 87.5%, and 75.0%, respectively [116]. The researchers
designed a manner to classify the skin lesion with a decision tree-based Random Forest
classifier on ISIC 2017 and HAM 10,000 datasets with an accuracy of 97% [117]. The Naïve
Bayes classifier was utilized for dermoscopic classification using the Dermatology Informa-
tion System and DermQuest with an accuracy of 98.8% [118]. The researchers utilized SVM,
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KNN, Ensemble classifiers, and Artificial Neural Network classifier and their variants. The
SVM variant gives the best accuracy of 83% [119]. For melanoma, keratosis, and benign
discovery the Naïve Bayes give accuracies of 91.2%, 92.9%, and 94.3%, respectively [120]. A
system was proposed based on fuzzy decision ontology for the recognition of melanoma
with the help of a KNN classifier on DermQuest and Dermatology Information System
with an accuracy of 92% [121]. The researchers designed a system for the acknowledgment
of melanoma with ANN and SVM classifiers which obtained an accuracy of 96.2% and 97%,
respectively [122].

2.4.2. Deep Learning Models

Deep learning [123] is strengthening its roots in every research domain nowadays.
Various advanced and deep learning [124,125] building blocks are employed by researchers
to acquire worthy performances. A stacked ensemble framework based on CNN is de-
signed to recognize melanoma in the initial stage, in which the multiple sub-CNN models
for classification tasks are an ensemble. A task is performed on the ISIC dataset having
two classes with an accuracy of 0.957 [126]. The researchers utilized three models VGG16,
VGG19, and Inception V3 using the ISIC and obtained accuracies of 77%, 76%, and 74%,
respectively [127]. A methodology is defined that classifies samples of skin cancer with
the help of ResNet, VGG19, and InceptionV3 on more than 24,000 samples. Moreover,
experiments show that inceptionV3 performs best [128]. The classification of skin lesions
was performed with EfficientNets and ensemble models using the ISIC 2020 melanoma
classification dataset, the best result is recorded using the entire EfficientNet B6 models
ensemble and one is EfficientNet B5 with a 0.944 ROC curve [129]. A CNN architecture
was utilized for pigmented lesion categorization using the HAM10000 dataset with an
accuracy of 91.51% [130]. The VGG 16 and AlexNet were utilized which were serially fused
and optimized using PCA. The classification was performed using PH2, ISBI 2016, and
2017 datasets with an accuracy of 99% [131]. A system was proposed that distinguishes
different classes of skin cancer through five pre-trained CNN and four ensemble models
on the HAM-10000 dataset in which pre-trained ResNetXt101 and ensemble InceptionRes-
NetV2+ ResNetXt101 provide the best accuracies of 93.20% and 92.83%, respectively [132].
The GoogleNet model performed classification using the ISIC 2019 with an accuracy of
94.92% [133]. The researcher designed a hyper-connected CNN called HcCNN for the dis-
crimination of skin lesions in a multimodality test on a seven point checklist and achieved
an accuracy of 74.9% [134]. The classification using CNN with a Novel Regularizer is
proposed which is a binary approach that distinguishes malignant and benign lesions
tested on ISIC and provides an accuracy of 97.49% [135]. The ensemble of CNN networks
for classification for melanoma recognition including InceptionV4, SENet154, InceptionRes-
NetV2, and PNASNeT-5-Large was utilized, in which PNASNeT-5-Large gives an excessive
validation outcome that is 0.76 on the ISIC 2018 dataset [136]. The insufficient training data
problem gets resolved by intra-class difference and inter-class alikeness by designing the
ARL-CNN using ISIC 2017 with an accuracy of 85% [137]. The CNN framework MobileNet
proposed for the categorization of skin lesions using the HAM-10000 dataset in which
accuracy is a little bit higher without data augmentation is 83.93% [138]. The GoogLleNet,
VGG, and their ensemble were utilized for the categorization of seven classes utilizing the
ISIC 2018 and the models are 79.7%, 80.1% and 81.5% accurate, respectively [139]. The
summary of the existing classification approaches along with highest obtained results are
mentioned in Table 3.

In the classification process, the problem of less training data, overfitting, and underfit-
ting of the model cause misclassification and make the wrong prediction. Figure 3 presents
a visual representation of the outcomes of the CNN classification.
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Table 3. Summary of Classification Techniques.

Ref # Year CNN Models Datasets No. of
Classes

Results
(ACC)

[126] 2022 Stacked model ISIC 2020 2 0.957

[127] 2021 VGG16, VGG19, InceptionV3 ISIC 2018 7
0.770
0.760
0.740

[128] 2021 ResNet, InceptionV3, VGG19 ISIC archive 2
0.753
0.869
0.731

[129] 2021 EfficientNet B6 models ensemble
and EfficientNet B5 ISIC 2020 2 0.941(ROC

curve)

[130] 2021 CNN architecture HAM-10000 7 0.915

[131] 2020 VGG 16 + AlexNet
PH2+

+ISBI 2016
+ISBI 2017

2 0.990

[132] 2020
ResNetXt101,

InceptionResNetV2+
ResNetXt101

HAM-10000 7 0.932
0.928

[133] 2020 GoogleNet ISIC 2019 8
0.949

0.798(SEN)
0.970 (SPE)

[134] 2020 HcCNN 7 point check 7 0.749

[135] 2019 CNN + Novel Regularizer ISIC archive 2 0.974

[136] 2019 PNASNeT-5-Large ISIC 2018 7 0.76 (V.score)

[137] 2019 ARL-CNN ISIC 2017 3 0.850

[138] 2019 MobileNet HAM-10000 7 0.839

[139] 2018 GoogleNet, VGG 16, and their
ensemble ISIC 2018 7

0.797
0.801
0.815
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3. Challenges in the Existing Literature

The processing task on skin-infected images is very challenging due to several reasons.
The most important reason is low contrast which makes it difficult to differentiate the
infected and normal skin. Other factors include the presence of hair, bubble, ruler, and ink
artifacts. So it is important to consider these artifacts while making algorithms [140]. The
other challenges include extensive training, images of light-skinned persons in standard
datasets, small interclass variation, multi-sized and multi-shape images, and unbalanced
classes of datasets.

4. Benchmark Datasets

Following is the list of standard available datasets: HAM-10000: The dataset contains
seven classes of skin lesions. The dermatoscopic images are stored in different modalities.
The total number of samples are 10,015 which are publicly obtained through the ISIC
archive [141]. MED–NODE: The dataset contains 170 samples [142]. PH2: It consists of 200
dermoscopic images [143] with three classes of normal, abnormal, and melanoma [144].
DermoFit: The DermoFit consists of macroscopic images [145] and the repository contains
1300 images with 10 classes with parallel binary segmentation masks [146]. ISBI 2016: The
dataset is provided by the ISIC archive. The whole count of samples in the dataset is 1279 of
which 900 are training and 379 are testing images [147]. ISBI 2017: It contains a total of 2750
images, out of which 150 are for validation, 2000 for training, and 600 for testing. [148]. ISIC
2018: The ISIC is the world’s largest database that provides 12,500 images with three tasks.
The first task is lesion segmentation, the second task is the detection of lesion attributes, and
the last task is a classification of lesion disease. The dataset consists of seven classes [149].
ISIC 2019: The data in ISIC 2019 come from HAM-10000, BCN_20000, ViDIR Group, and
anonymous resources. The dataset consists of 25,331 dermoscopic samples with eight
classes [150]. ISIC 2020: The dataset consists of 33,126 samples. The dataset presents two
formats that are DICOM, where pixels data are encoded with JPEG [151].

5. Mobile Apps for Skin Cancer Detection

The users can perform a self-examination of skin lesions and determine the risk of
melanoma by taking a picture from a smartphone. There are several applications some of
which are discussed below: Mole Mapper: the application collects the data provided by the
participant and measurements of the mole with behavioral and demographic information
that is related to the risk of melanoma. The application should be downloaded from
the Apple App store [152]. m-Skin Doctor: utilizing image processing and computer
vision approaches, the researchers described a real-time mobile healthcare system that can
recognize melanoma. The Gaussian removes noise and segmentation is undertaken by
the GrabCut algorithm. In the last step, SVM performs the classification. The application
provides a specificity of 75% and a sensitivity of 80% [153]. SkinVision: this is a smartphone
application with 900,000 users worldwide. There are different versions of the app, and
the latest version was launched in October 2018 which is the fifth version. The app uses a
conditional generative adversarial neural network and SVM. It obtains 78% specificity and
95% sensitivity [154]. UMSkinCheck: the application was developed by the University of
Michigan. The full-body survey required the taking of 23 photographs in seven positions
for future lesion comparison. The risk calculator discovers the risk of the development
of melanoma built on the ten previously detected risk factors [155]. SpotMole: it is an
android application that allows the direct submission of an image captured using the app
and in-direct submission using the gallery. The application provides a specificity of 80%
and a sensitivity of 43% [156].

6. Discussion

According to the facts, melanoma has become among the most rapidly increasing
cancers all around the globe, but it can be cured if detected at its initial stage. It should
be noted that many state-of-art-techniques consist of various problems, which affect their



Life 2023, 13, 146 12 of 18

achievements and generate faulty outcomes while recognizing skin cancer. This research
article presented a comprehensive literature review on automated skin cancer identification
processes with deep learning and machine learning approaches. Different approaches
were analyzed and compared on benchmark datasets. However, issues such as noise,
poor contrast, border irregularity, etc. [126] reduced the effectiveness of the approaches, so
the algorithms must be able to handle these hurdles. Existing standard datasets contain
samples of light-skinned persons [157], datasets having enough images of both light and
dark-skinned people are necessary to increase the accuracy of skin cancer recognition
systems. Sometimes classes of datasets are unbalanced [138] and due to the problem of
deficient training data, so the dataset must be augmented to balance each class, to draw
strong generalizations.

7. Conclusions

The examination of a lesion by the naked eye is not accurate and the medical procedure
of skin cancer diagnosis is reliable, but it takes lots of time. Accurate lesion segmentation in
dermoscopy samples is an important and difficult job. Thus, a computer-aided diagnosis
system is utilized to perform these tasks more accurately. This comprehensive survey
article has discussed several noninvasive machine and deep learning approaches for skin
cancer recognition and classification. Multiple steps required for the skin cancer recognition
system, including preprocessing and segmentation go along with feature extraction and
classification. This survey focused on the latest approaches designed for the identification
of skin cancer. Every algorithm has its own merits and limitations so that specific selection
of algorithms according to the problem is the best outcome. However, CNN provides
better outcomes than other traditional approaches while classifying image samples and
segmentation because it is more interconnected to computer vision than others. This article
provides extensive literature on the techniques utilized for the skin cancer detection process.

Future Direction

In the future, researchers may survey skin cancer detection systems by more cat-
egorization in sections. Traditional segmentation is further divided into region-based,
clustering-based, threshold-based, etc. Similarly, the feature extraction should be catego-
rized into color features, shape features, and texture features. Although the results obtained
from CNN are impressive still, some limitations such as optimization and generalization
exist which could be solved in the future using Quantum computing.
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