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ABSTRACT Skin lesions are caused due to multiple factors, like allergies, infections, exposition to the

sun, etc. These skin diseases have become a challenge in medical diagnosis due to visual similarities, where

image classification is an essential task to achieve an adequate diagnostic of different lesions. Melanoma

is one of the best-known types of skin lesions due to the vast majority of skin cancer deaths. In this work,

we propose an ensemble of improved convolutional neural networks combined with a test-time regularly

spaced shifting technique for skin lesion classification. The shifting technique builds several versions of

the test input image, which are shifted by displacement vectors that lie on a regular lattice in the plane of

possible shifts. These shifted versions of the test image are subsequently passed on to each of the classifiers

of an ensemble. Finally, all the outputs from the classifiers are combined to yield the final result. Experiment

results show a significant improvement on the well-known HAM10000 dataset in terms of accuracy and F-

score. In particular, it is demonstrated that our combination of ensembles with test-time regularly spaced

shifting yields better performance than any of the two methods when applied alone.

INDEX TERMS Image processing, Deep learning, Classification, Skin lesion

I. INTRODUCTION

Skin lesions are one of the most common types of malignan-

cies, and a considerable increase of cases is expected in the

following years due to pandemics (lockdown). Apart from

other factors like allergies or infections, exposition to the

sun is the leading cause of skin alterations, producing an

abnormal multiplication of melanocytes and, consequently,

melanomas. Searching for beauty, looking for a tan of their

skin with a high exposition to the sun, can have a negative

effect on the appearance of skin lesions, especially after a low

exposition to the sun due to the lockdown and mask-wearing.

Skin cancers initiate from the epidermis, which is the

topmost skin layer. Therefore, it is pretty visible, and a

computer-aided system might use the images of skin lesions

to reveal the preliminary diagnosis without assessing any

other relevant information. Melanoma is one the most lethal

type of skin cancer in humans, while in the current year,

thousands of new cases of melanoma are predicted to be

identified and are estimated to die due to melanoma [1], [2].

However, melanoma is highly curable when detected in its

earliest stages, and it is more likely than other skin cancer

to spread to other parts of the body [3]. There is a high

probability of treatment if the skin cancer is detected in the

early stages. Nevertheless, it is difficult to analyze whether
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the skin lesion is malignant or benign and detect skin cancer

during these early stages since the skin lesions look similar to

one another. In their initial growth phases, melanoma is very

similar to other benign moles in their characteristic, which

makes the diagnosis difficult between what is malignant and

what is benign even for experienced dermatologists [4].

Numerous computational intelligence techniques, includ-

ing genetic algorithms, artificial neural networks, support

vector machines, ABCDE rule, have been proposed to assess

and classify skin lesions either malignant or benign. Most

of the automatic classification systems in medical imaging

have suffered the lack of data availability, provoking an

insufficient generalization of the prediction models. In ad-

dition to this, training datasets lack sufficient quality in the

sense of homogeneity in the acquisition procedure and non-

expected objects present in the image, making it necessary

to carry out several preprocessing steps [5] and segment the

region of interest [6], [7]. Moreover, another commonly used

technique is the extraction of features that are used then to

improve the classification rate [8], [9]. The use of specific

features extracted from the melanoma images was widely

used to develop classification models [10]–[12], although the

main inconvenience of these approaches is the requirement of

specific expertise to extract the adequate features and the high

quantity of time necessary to select the most appropriate.

Moreover, image preprocessing may introduce errors or loss

of essential information that can affect the final classification

rate. A simple example is the low accuracy obtained when

a poor skin lesion segmentation is carried out. Until a few

years, the classical workflow was the use of these traditional

techniques [13], yielding not good enough accuracy. In order

to overcome these limitations, deep learning models have

recently been developed with success, having the ability to

automatically learn the crucial features that can help differ-

entiate among the classes that can be found in digital images.

Deep learning has been applied to resolve very complex

classification and segmentation tasks [14], [15] without the

use of any image preprocessing method. The architecture

of these networks is mainly based on convolutional layers.

These layers filter and extract essential features of the images

to learn to identify different lesions. For example, Zhou et al.

[16] use different modality images to learn the features that

determine dementia cases. Commonly named Convolutional

Neural Networks (CNNs), they have been applied to many

areas of interest, showing exceptional performance in image

and video processing [17], [18]. Nowadays, CNNs use the

power of GPUs to compute a large number of operations in

a few seconds, allowing them to process large datasets to

create reliable models to be applied to image classification,

decision support systems and object recognition and seg-

mentation. With the increase of publicly available datasets,

deep networks have shown excellent performance on medical

image analysis [19]. [20] used neural networks fed with

extra privileged information to carry out strain reconstruction

in ultrasound elastography. Deep learning models have also

been used to detect vessel borders [21] and perceive blood

flow from angiographies [22]. Specifically, recent research

related to skin lesion classification [23], [24] have been

published, although there is still margin for improvement.

This research is based on a two-stage process where deep

networks are used to segment and extract features and then

make the prediction. Moreover, most of them focus on the

binary classification problem. Often different types of skin

pathologies are grouped into the same class and not classi-

fied.

Convolutional Neural Networks (CNNs) is one of the most

popular deep learning techniques for image analysis. CNNs

were inspired by the animal visual cortex. They are one of

the first truly successful deep learning architectures, which

have shown outstanding performance in processing images

and videos. Nowadays, with the help of GPU-accelerated

computing techniques, CNNs have been successfully applied

to object recognition (e.g. handwriting, face, behavior...),

decision support systems and image classification. Recent

research shows that deep networks are powerful tools for

medical image analysis [19], [25]. Therefore, they offer great

potential for melanoma classification [26], [27]. In particular,

CNN ensemble methods have proved particularly successful

for this task [28].

In this work, an improved CNN model based on a test-

time regularly spaced shifting technique is proposed. Other

shifting techniques like random shifting have been success-

fully applied to increase the resolution of magnetic resonance

images [29]. In this research a shifting technique with a

regular displacement for the test input image is proposed. The

method is aimed at improving the performance of the CNN

in the classification. It should be noted that this proposal

is not related to train-time data augmentation by shifting

the training images. It is also different from previous ap-

proaches that apply a random shift to the input image [30]

and from previously considered transformations for test time

augmentation [31]. Experimental results show a significant

improvement in terms of accuracy and F1-score when an

ensemble of deep networks is combined with the test-time

regular shifting technique.

Consequently, this paper has the following contributions:

• a successful application of transfer learning for dermo-

scopic image classification;

• an implementation of a test-time regularly space shifting

method to improve the classification;

• the proposal of an ensemble model of deep networks

that takes the benefit of the knowledge learned by sev-

eral classifiers.

The rest of the paper is organized as follows: Section II

sum up the recent works in the field of skin lesion diagnosis.

Section III presents the proposed methodology to carry out

the classification of skin lesions. Section IV describes the

convolutional neural networks used in the ensemble model,

as well as the parameter setup. The experimental setting and

the discussed results are presented in Section V. Finally,

the main conclusions and further works are summarized in

Section VI.
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II. RELATED WORK

Several approaches have been developed for the classification

of skin lesion images during the last years. For that purpose,

many datasets were released to motivate researchers to find

a proper solution to this task. The most famous challenges

are the ISBI/ISIC, created in 2016, which comprises data for

classification and segmentation. Specifically, the ISIC2018

contains the HAM10000 dataset as training data. Next, we

summarize some of the published works using these datasets,

focusing on the performance achieved.

Romero Lopez et al. [32] presented a model based on

VGG16 to classify images of the ISBI 2016 challenge

dataset. This method enhances the conventional CNN perfor-

mances and achieved 81.33% accuracy and 78.6% sensitivity.

In [33] a VGG19 combined with randomized trees is used to

achieve a precision and F-score of 83%.

Yap et al. [34] employed a pre-trained ResNet 50 archi-

tecture using the ISIC 2017 datasets and also utilize data

augmentation techniques. In this work, two parallel archi-

tectures are used to build a multimodal architecture to train

dermoscopic images, and macroscopic images, achieving

72.9% mean average precision. Mahbod et al. [35] proposed

a hybrid model to classify the skin lesion into seven classes.

They combined AlexNet, VGG16, and ResNet18 pre-trained

models to extract features that will further used to train the

SVM classifier. The results were evaluated on ISIC 2016

and ISIC 2017 datasets using data augmentation. The model

achieved an accuracy of 90.69%.

In [36] is presented a comparative analysis of state-of-

art CNN models, Inceptionv3, ResNet50, DenseNet201, and

Inception-ResNet-v2, trained by using transfer learning in

order to classify the HAM10000 dataset. The overall accu-

racy of Inception-ResNet-v2 is 81.62%, and that of DenseNet

is 81.43%. Also, with this dataset, Kadampur et al. [37]

the performances of five deep learning models, including

ResNet, SqueezeNet, and DenseNet, are compared. They

reported precision of 98.19% on the training set.

Mahbod et al. [38] presented an ensemble of pre-trained

CNN models to classify the ISIC 2018 skin lesion images.

It incorporates a three-level fusion method. The prediction

vectors of Efficient Net B0, Efficient Net B1, and SeResNext-

50 are fused with models trained on images of different sizes,

and finally, they are all combined together. It achieved a

balanced multi-class accuracy of 86.25% in the test set of

the ISIC 2018 challenge.

III. METHODOLOGY

In what follows, our proposal is explained in detail. Our aim

is to combine several convolutional deep classifiers which

form an ensemble, by merging the class information provided

by the classifiers when they are run on shifted versions of

the test image, where the shift vectors are distributed on a

regular lattice. This way, the advantages of each classifier

are exploited, while positional invariance is enhanced by the

shifting procedure.

Let us note Fi the i-th deep convolutional classifier, where

i ∈ {1, ..., N} so that N stands for the number of classifiers

in the ensemble. Each classifier produces a vector of class

scores z ∈ R
C for each possible input image X, where C is

the number of considered classes:

z = Fi (X) (1)

Now, let us consider shifted versions X ⊕ s of the input

test image X, where s ∈ Z
2 is a shift vector which indicates

the displacement in pixels that is applied to X. The circular

shift operation is assumed here. Independent on how the

image is shifted and which classifier is employed, the true

class remains the same. The rationale of our approach is that,

under these circumstances, one can merge the outputs of the

networks for various shifts in order to obtain a more accurate

estimation of the class.

We propose to employ a regular, square lattice of possible

displacement vectors s which is characterized by two param-

eters: a pixel stride R ∈ N
+ and a maximum Manhattan

distance ρ ∈ R
+. The displacements to be considered are

those that fall into a square of side ρ around the null shift

s = 0 because too large shifts may compromise the ability

of the networks to correctly recognize the class of the shifted

image. Therefore, the set of considered shift vectors is given

by:

S =
{

s ∈ Z
2 | s = (Rs1, Rs2) , (s1, s2) ∈ Z

2, ‖s‖
1
< ρ

}

(2)

where ‖·‖
1

stands for the Manhattan norm.

Each shifted version of the input test image X is tested

with one of the classifiers in the ensemble to yield a set of

tentative class scores. This is done by assigning each shift

vector s ∈ S uniformly at random to one out of N subsets Si,

i ∈ {1, ..., N}, that form a partition of S . The set of tentative

class scores is obtained as follows:

T =

N
⋃

i=1

{Fi (X⊕ s) | s ∈ Si} (3)

Finally, the tentative class scores in T must be merged to

yield a final class score vector ẑ ∈ R
C :

ẑ = g (T ) (4)

where g is a suitable combination function. In our experi-

ments we have chosen g = mean, and g = median.

For sake of clarity, Fig. 1 depicts a summary of the op-

eration of the proposed model1, using the ensemble of two

networks (N = 2). First, the square lattice of displacements

is created and divided into two equally sized subsets. Each of

these subsets are applied to the image and tested through their

respective network. Then, the outputted scores are grouped

and the combination function is applied. The predicted class

is the one which corresponds to the maximum value of the

computed score vector.

1The source code of the proposed method will be published online in case
of acceptance.
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FIGURE 1. Scheme of the operation of the proposed method. The input image is shifted by defining a lattice of displacement vectors around the center of the
image. Then, two subsets of shifted images are passed through the CNNs and the scores are fused using and ensemble function.

IV. ENSEMBLE MODEL
Here the concrete definition of the ensemble model compo-

nents are described, as well as the estimation of the model

parameters.

(a) Residual bottleneck blocks of the MobileNetV2 neural network

Inception module

(b) GoogLeNet (image extracted from [39])

FIGURE 2. Structure of the deep networks used for the proposed ensemble
model.

A. DEEP NETWORKS

The proposed ensemble of neural networks can be config-

ured with any number of classification networks. The more

classifiers, the lower is the computational efficiency. Thus,

reaching equilibrium is very important. In our proposal, we

found that with N = 2, using MobileNetV2 and GoogLeNet

neural networks, the results are satisfactory.

The first deep network is MobileNetV2 [40]. This network

is composed of an initial full convolutional layer followed by

19 residual bottleneck blocks. As shown in Fig. 2a, the latter

are connected by shortcut connections in order to eliminate

the non-linearity and maintain the representation of the data.

This model was created as a light neural network suitable

for its use in mobile devices. It has been trained on the Im-

ageNet dataset and tested with several well-known datasets

(ImageNet, COCO, VOC), demonstrating more efficiency

with fewer parameters and achieving the same accuracy as

its predecessor (MobileNetV1).

We also used a deeper neural network, GoogLeNet [39].

This network has an architecture based on Inception modules

and it is one of the best state-of-art deep networks. The

fundamentals of GoogLeNet is both increasing the depth of

the network and the number of neurons at each layer. As

shown in Fig. 2b, it contains 22 layers. Most of the layers

correspond to Inception modules. Here the convolutional lay-

ers use a ReLU activation function. Experiments with several

datasets showed that the accuracy increases substantially.

Nevertheless, the required processing time is larger than

others networks and of course, more than of MobileNetV2.

The input image size of both networks is 224× 224 taking

RGB color channels with mean subtraction. The deep net-

works were fine-tuned for the melanoma classification prob-

lem in Matlab R2019b, with the following hyper-parameter

values:

• Batch size = 16.

• Learning rate = 0.0001.

• Validation frequency = 10.

• Max. epochs = 10.

B. MODEL PARAMETERS SETUP

The definition of the square lattice depends on the type of

deep networks and the dataset used. First, the input layer of

the networks restricts the maximum values of the displace-

ment vectors s ∈ Z
2. Both MobileNetV2 and GoogLeNet

require an input of size 224× 224 pixels, so the images need

to be resized. Furthermore, the maximum Manhattan distance

allowed is ρmax = 224. Taking into consideration the image

features is essential since oversized shiftings may distort the

original shape of the moles.

Therefore, analyzing the data visually, we found that most

of the moles are placed in the center of the image with a

margin of 40 pixels around each side. Thus, we need to define

ρ << 224. In addition, the square grid can be generated with
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FIGURE 3. Study of optimal hyperparameters. Mean and median accuracy
varying the stride and the maximum shifting. The X and Y axes represent the
stride and the side of the square lattice. 30 random divisions of the lattice were
computed.

different stride sizes. A tiny stride would create a very dense

lattice, augmenting the computational cost. However, a large

stride would produce few score vectors, and the combination

function g would not be precise enough.

In order to study which are the optimal parameters of the

ensemble model, we carried out a parameter optimization,

running a batch of 30 random executions (referred to the Si

sets) varying the values of the square side ρ and the stride

R. These runs were done using a tenth part of the dataset

(details can be found in Section V). The results are shown

in Fig. 3. The mean was used as the combination function

g (similar results were obtained with the median). In this

analysis, where the mean and median among the 30 runs were

computed, it can be observed that an intermediate value of ρ

provides a better overall performance. Besides, using a big

stride R does not provide good performance. In both analysis,

we found that the best configurations are obtained for ρ = 20
or ρ = 22, using R = 1, and in second place, R = 2.

Therefore, we have adopted an intermediate position in our

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

akiec

bcc

bkl

df

mel

nv

vasc

FIGURE 4. Probability histogram of the HAM10000 dataset.

work, taking ρ = 22 and a stride of R = 1 pixels. This

defines a lattice S of 484 displacement vectors. Depending

on the time and precision requirements, these values can be

chosen in a different way. For example, a larger stride (R = 2
or R = 3) can provide similar results with less shifts.

V. EXPERIMENTS
This section describes the dataset, the evaluation metrics, the

experimental setup, and the discussion of the results obtained

from the set of experiments.

A. DATASET

The evaluation of the proposed method is carried out by

using a well-know dataset of labeled dermoscopic images,

called HAM10000 [41]. This dataset contains 10,050 images

divided into seven classes:

1) actinic keratosis (akiec),

2) basal cell carcinoma (bcc),

3) benign keratosis (bkl),

4) dermatofibroma (df),

5) nevi (nv),

6) melanoma (mel),

7) vascular skin (vasc).

This data was collected from the Medical University of

Viena and Cliff Rosendahl in Queensland. These are two

prestigious institutions in Austria and Australia, respectively.

The International Skin Imaging Collaboration (ISIC) 2018

challenge and posterior editions have included this dataset

within their competition. This has become a benchmark for

testing new dermatological classification and segmentation

techniques.

However, the main disadvantage of this dataset is the

irregular distribution of the number of diseases. Most of

the images, exceeding 70% of the total number of images,

correspond to the nevi class. This sets up an extreme dataset

imbalance. This fact severely affects the training, provoking

an extreme specialization in the nevi class. In the second level
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is situated the bkl class, with around 13% of the images. The

rest of classes represent a large minority of the samples. In

particular, the df class, with less than 2%, will be the most

difficult class to predict. Therefore, one may think about

using data augmentation to balance the data and make the

learning procedure more robust. In this work, we show that

this is not an essential requirement for the proposed ensemble

model.

We also carried out a set of experiments with data augmen-

tation using different reflections and rotations of the original

images. The specific type of transformations used include:

• Horizontal and vertical flipping with a probability of

0.5.

• Random image rotations between -90° and 90°, with a

probability of 0.75.

It should be considered that this data augmentation may

smooth but not solve the great ratio between the nevi class

and the others.

B. EVALUATION METRICS

Typical classification measures were used to analyze the

performance of the shifting model. Since we are dealing with

a seven-class problem, these measures will be computed,

binarizing the results depending on the analyzed class. Thus,

the true positives (TP ), true negatives (TN ), false positives

(FP ), and false negatives (FN ) are computed as well as the

following measures:

Acc =
TP + TN

TP + FP + FN + TN
(5)

Sensitivity =
TP

TP + FN
(6)

Specificity =
TN

TN + FP
(7)

Precision =
TP

TP + FP
(8)

F1 = 2 ·
Precision · Sensitivity

Precision+ Sensitivity
(9)

MCC =
TP · TN − FP · FN

√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(10)

which are the accuracy, sensitivity (True Positive Rate),

specificity (True Negative Rate), precision (Positive Predic-

tive Value), F1-score and Matthews Correlation Coefficient,

respectively. The metrics range from 0 to 1, where higher

measures indicate better performance.

The Sensitivity and the Specificity provide a measure of

how well the method is classifying the relevant instances. The

Acc and F1 provide a general overview of the performance,

taking into account the positive and negative samples. The

latter gives equal importance to precision and recall. The

MCC takes into account the TP , TN , FP , and FN , being

a balanced measure that can be used even if the classes are of

very different sizes.

C. EXPERIMENTAL SETTING

Our ensemble model method, which we called Shifted Mo-

bileNetV2+GoogLeNet or Shifted 2-Nets, is compared with

the following methods:

• Raw MobileNetV2 and Raw GoogLeNet: the deep net-

work directly tests the original image once, without any

modifications.

• Shifted MobileNetV2 and Shifted GoogLeNet: the pro-

posed shifting model, using the same configuration

explained in Subsection IV-B, is used with the deep

network to test the image.

We carried out 10-fold cross-validation for all the execu-

tions. The following division of the dataset was used: 70% of

samples for training, 10% for validation, and 20% for testing.

The data was distributed in a balanced manner. Thus, we

should find the same distribution of classes within each of the

ten folds. This way, we directly visualize the benefit or deficit

of the ensemble model compared with the original networks.

In addition to this, the proposed method Shifted Mo-

bileNetV2+GoogLeNet entails a random division of the set

of displacement vectors S . Thus, to have a realistic statisti-

cally significant comparison. A total of 30 random divisions

were computed and tested for each execution. The mean

and standard deviation values were calculated as the final

performance of the ensemble method.

D. RESULTS AND DISCUSSIONS

The first batch of experiments are reported in Figs. 5-8.

The result of each of the ten folds of the cross-validation

procedure is reported for each tested method. Besides, the

plotted bar of our proposed model contains a small error

bar in its peak. This represents the variability among the 30

random divisions of the shifting lattice.

In the first instance, the results obtained using the models

trained without data augmentation are presented. In Fig. 5 the

used combination function was the mean. One can observe

that there is a great difference between the ensemble of

2 nets and the simple nets. The former is more than 3%

more accurate in most of the splits. If we focus only on

the shifting models, there are splits where the MobileNetV2

worked better than GoogLeNet, and vice versa, but there is

no clear pattern.

The results of the median combination function are de-

picted in Fig. 6. The tendency is quite similar to the mean

function. The ensemble method yielded larger percentages

of accuracy for all splits. Moreover, in both cases, the error

among the 30 independent runs of the proposed model is min-

imal. This indicates that the method is quite robust regardless

of the type of data tested.

The performance increase using the proposed method is

remarkable. In some cases, like in split 1, there is an im-

provement of almost 6%, being both raw models used in the

ensemble method. Alternatively, the shifting model alone is

not enough to significantly improve the classification perfor-

mance (only around 1%) and sometimes accuracy tends to

decrease.
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FIGURE 5. Comparison of the proposed models (without data augmentation) using the mean as the combination function. Accuracy of each cross-validation split is
presented. The error bar represents the variability of the random divisions of the lattice.
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FIGURE 6. Comparison of the proposed models (without data augmentation) using the median as the combination function. Accuracy of each cross-validation split
is presented. The error bar represents the variability of the random divisions of the lattice.

The next two figures show the outcomes for the models

trained with data augmentation. Fig. 7 represents the results

of the mean combination function. Now there are differences

in the split’s performance since the training was varied with

more data. The ensemble model is still the best classification

method. This is closely followed by the Shifted MobileNetV2.

There are some splits where the Raw MobileNetV2 over-

comes the Shifted GoogLeNet. This indicates that a deeper

network is not always suitable for its application on specific

tasks.

Results of the median combination function (Fig. 8)

present even closer results. Although the simple models

worked well, our proposal is still the best. In split 7, a similar

behavior is noted. The raw model overcomes the shifted one.

The median function yields slightly results than the mean

function. This may indicate that among the 484 shiftings,

there are not outlying classifications.

In general terms, we can state that data augmentation is
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FIGURE 7. Comparison of the proposed models (with data augmentation) using the mean as the combination function. Accuracy of each cross-validation split is
presented. The error bar represents the variability of the random divisions of the lattice.
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FIGURE 8. Comparison of the proposed models (with data augmentation) using the median as the combination function. Accuracy of each cross-validation split is
presented. The error bar represents the variability of the random divisions of the lattice.

vital for the raw and shifting models. This not however the

case for the ensemble model since the overall performance of

the splits (the maximum accuracy reached) is closely similar.

This can be useful if we need to develop an online method

where the model needs to be re-trained again. If no data

augmentation is used, the training time will be reduced.

Next, the confusion matrices are analyzed. Figs. 9 and 10

show the average confusion matrix of the cross-validation

tests. Without loss of generality, since this calculation can

generate fractional numbers, we have rounded the computed

average values. In figuere Fig. 9 the results of the models

without data augmentation are presented. The first observa-

tion is that the number of wrong classifications has been re-

duced in the Shifted MobileNetV2+GoogLeNet model. Here

the number of blank squares is higher (nine instead of six).

Besides, for most classes, the number of correct predictions

has increased. This especially the case for the nv, bcc, bkl,

and vasc classes. The use of the median as the combination

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103410, IEEE Access

Karl Thurnhofer-Hemsi et al.: Skin lesion classification by ensembles of deep convolutional networks and regularly spaced shifting

akiec
bcc bkl df

mel nv
vasc

Predicted Class

akiec

bcc

bkl

df

mel

nv

vasc

T
ru

e
 C

la
s
s

Raw MobileNetV2

25

4

4

1

1

1

7

65

4

1

1

7

1

19

14

156

2

41

59

1

2

2

2

13

2

8

6

5

18

1

90

37

6

13

37

5

86

4

2

2

2

22

1227

akiec
bcc bkl df

mel nv
vasc

Predicted Class

akiec

bcc

bkl

df

mel

nv

vasc

T
ru

e
 C

la
s
s

Raw GoogLeNet

25

8

7

2

6

2

9

67

9

3

5

8

2

15

9

133

4

26

36

1

1

1

1

6

2

8

4

22

1

104

41

1

7

13

47

7

82

3

2

1

1

2

21

1251

akiec
bcc bkl df

mel nv
vasc

Predicted Class

akiec

bcc

bkl

df

mel

nv

vasc

T
ru

e
 C

la
s
s

Shifted MobileNetV2

25

3

3

1

1

1

5

64

3

1

1

5

1

23

15

164

3

39

58

1

3

2

1

13

2

7

5

4

13

1

97

33

6

14

34

4

82

4

2

1

2

22

1235

akiec
bcc bkl df

mel nv
vasc

Predicted Class

akiec

bcc

bkl

df

mel

nv

vasc

T
ru

e
 C

la
s
s

Shifted GoogLeNet

23

7

6

1

4

1

8

64

6

2

4

6

2

16

10

134

5

24

31

1

1

1

1

6

2

11

6

26

2

115

46

1

8

14

46

7

76

3

2

1

2

21

1255

akiec
bcc bkl df

mel nv
vasc

Predicted Class

akiec

bcc

bkl

df

mel

nv

vasc

T
ru

e
 C

la
s
s

Shifted MobileNetV2+GoogLeNet

25

4

4

1

1

6

70

4

2

2

4

20

10

160

3

28

32

1

1

1

1

11

1

7

5

16

1

111

27

6

13

36

5

79

3

2

1

1

23

1275

(a) g =mean

akiec
bcc bkl df

mel nv
vasc

Predicted Class

akiec

bcc

bkl

df

mel

nv

vasc

T
ru

e
 C

la
s
s

Raw MobileNetV2

25

4

4

1

1

1

7

65

4

1

1

7

1

19

14

156

2

41

59

1

2

2

2

13

2

8

6

5

18

1

90

37

6

13

37

5

86

4

2

2

2

22

1227

akiec
bcc bkl df

mel nv
vasc

Predicted Class

akiec

bcc

bkl

df

mel

nv

vasc

T
ru

e
 C

la
s
s

Raw GoogLeNet

25

8

7

2

6

2

9

67

9

3

5

8

2

15

9

133

4

26

36

1

1

1

1

6

2

8

4

22

1

104

41

1

7

13

47

7

82

3

2

1

1

2

21

1251

akiec
bcc bkl df

mel nv
vasc

Predicted Class

akiec

bcc

bkl

df

mel

nv

vasc

T
ru

e
 C

la
s
s

Shifted MobileNetV2

25

3

3

1

1

1

5

64

3

1

1

5

1

23

15

164

3

39

58

1

3

2

2

13

2

7

4

4

14

1

97

33

6

14

34

4

82

4

2

1

2

22

1235

akiec
bcc bkl df

mel nv
vasc

Predicted Class

akiec

bcc

bkl

df

mel

nv

vasc

T
ru

e
 C

la
s
s

Shifted GoogLeNet

23

7

6

1

4

1

8

63

6

2

4

6

2

16

10

134

5

23

32

1

1

1

1

6

2

11

7

27

2

115

46

1

8

14

46

7

76

3

2

1

2

21

1254

akiec
bcc bkl df

mel nv
vasc

Predicted Class

akiec

bcc

bkl

df

mel

nv

vasc

T
ru

e
 C

la
s
s

Shifted MobileNetV2+GoogLeNet

25

4

4

2

2

1

6

70

4

2

2

4

1

19

10

157

4

27

28

1

1

1

1

9

1

9

4

17

1

112

28

6

13

37

5

80

3

1

1

1

23

1278

(b) g =median

FIGURE 9. Comparison of the confusion matrices for the five tested models trained without data augmentation. This statistics were generated rounding the
average of the confusion matrices of the cross-validation procedure.

function yielded similar outcomes. Only two or three pre-

dictions by class varied. The raw models misclassify most

the melanoma, basal cell carcinoma, benign keratosis and the

nevi classes. Some improved results can be observed by the

shifting models. However, the results can be a bit contradic-

tory. For instance, Shifted MobileNetV2 is good at predicting

bkl. This not the case for the Shifted GoogLeNet model. The

second model is good at predicting melanomas but not the

first one. The ensemble model achieves an equilibrium.

The outcomes of the augmented data are displayed in Fig.

10. The overall performance is better than the predictions

of the previous figure. Analyzing the results class by class,

we found that the number of true positives (the predominant

class nv) is high, but the true negatives (the rest) are low. This

fact depends on the training, so a direct comparison between

both methodologies is not entirely fair. Nonetheless, the nv

and bcc classes have improved their predictions (1279 and

75 correct classifications, resp.). This indicates that the data

augmentation improved results but it is not enough to solve

the imbalance between the seven classes. Focusing on the

results of this specific comparison, the tendency is similar.

Our proposal improves or adopts an intermediate position

between the two shifting models. The raw models provided a

small improvement, but they are still far from the ensemble

model. Finally, the values of the differences between the

mean and median are not too high. The mean achieves 9

blank squares instead of the 8 of the median, so the latter

achieved lower results.

The previous plots provided a detailed analysis of the accu-

racy for each method. In order to have a better comparison of

the performance, the mean and standard deviation of several

evaluation metrics are presented in Tables 1 and 2. In addition

to the accuracy, which has been commented on before, the

ensemble model (Shifted 2-Nets) generated the best statistics

for most cases. That is, the specificity, precision, F1-score,

and MCC are quite better for both g = mean and g =
median.

Analyzing the case of the models trained without data

augmentation (Table 1), the mean accuracy reached 83.6%

and the average specificity of the seven classes is 95.5%. This

indicates a high level of negative predictions. The median

function yielded similar results but slightly worse than the

mean of scores. Across the tested models, a great difference

is appreciable, having an increment of 3% of accuracy and

almost 7% of MCC and F1-score in some cases. Shifted

GoogLeNet has not shown any improvement with respect to

the raw model. However, the MobileNetV2 network is shows

higher accuracy with an improvement of around 2% in all

measures.

Regarding the augmented models (reported in Table 2), the

highest accuracy obtained is of 83.5%, while the highest F1-

score is 68.8%. Since the classes are unbalanced, the second

value is more significant to compare the methods because it

considers both the precision and recall of all classes. Thus,

Shifted MobileNetV2 model reached 67% in the F1, and

the raw models are far from this percentage. Similar error

differences are found with the other measures. Comparing

the mean and the median, the first one seemed to be more

effective.

Comparing both types of training, the main conclusion

that can be extracted is that data augmentation does not

contribute significantly to the shifting and ensemble models,

obtaining very similar results. However, for the raw models,

it is necessary to include this preprocessing to have a better-

generalized model. That is, our model eliminates the need to

use data augmentation.

The comparison with the previous works reported in Sec-

tion II should be made carefully since the datasets and
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FIGURE 10. Comparison of the confusion matrices for the five tested models trained with data augmentation. This statistics were generated rounding the average
of the confusion matrices of the cross-validation procedure.

TABLE 1. Evaluation metrics for the five compared models trained without data augmentation. Mean and standard deviation values of the cross-validation
procedure are reported.

Function g mean

Measure Raw MobileNetV2 Raw GoogLeNet Shifted MobileNetV2 Shifted GoogLeNet Shifted 2-Nets

Accuracy 0.798± 0.012 0.803± 0.008 0.809± 0.012 0.807± 0.011 0.836± 0.006
Sensitivity 0.626± 0.040 0.580± 0.025 0.636± 0.049 0.576± 0.032 0.649± 0.033
Specificity 0.947± 0.004 0.947± 0.003 0.950± 0.004 0.948± 0.004 0.955± 0.003
Precision 0.677± 0.029 0.667± 0.033 0.703± 0.030 0.678± 0.039 0.760± 0.025

F1 0.634± 0.020 0.606± 0.020 0.648± 0.030 0.607± 0.030 0.687± 0.022
MCC 0.593± 0.021 0.566± 0.020 0.613± 0.030 0.569± 0.030 0.656± 0.021

Function g median

Accuracy 0.798± 0.012 0.803± 0.008 0.809± 0.012 0.807± 0.010 0.835± 0.007
Sensitivity 0.626± 0.040 0.580± 0.025 0.637± 0.047 0.575± 0.031 0.638± 0.025
Specificity 0.947± 0.004 0.947± 0.003 0.950± 0.004 0.948± 0.004 0.954± 0.003
Precision 0.677± 0.029 0.667± 0.033 0.703± 0.029 0.674± 0.035 0.756± 0.032

F1 0.634± 0.020 0.606± 0.020 0.649± 0.029 0.607± 0.027 0.677± 0.016
MCC 0.593± 0.021 0.566± 0.020 0.613± 0.028 0.568± 0.028 0.647± 0.017

evaluation employed are not always the same. The works

that used the same dataset as us [36]–[38] also used transfer

learning, but only one was evaluated using HAM10000. They

reported 81.62% and 81.43% of overall accuracy, while our

method yielded 83.6% accuracy.

To end, we carried out a visual inspection of the predic-

tions to check and understand the behavior of the ensemble

model. For that purpose, Table 3 depict four examples, with

their respective grid division and prediction and the outputs

of each model. Please note that the number of circled stars

(assigned to MobineNetV2) is the same that the number of

non-circled stars (assigned to GoogLeNet) since the random

division has the same size but different positions.

The first image corresponds to actinic keratosis. The Mo-

bileNetV2 model predicted more incorrect shifts (yellow)

than correct ones (red). The final prediction was wrong.

Nevertheless, all the predictions of GoogLeNet (non-circled

red stars) were identified as the akiec class. That is because,

in this case, the GoogLeNet model worked better.

The second example is that of basal cell carcinoma. This

case is very interesting since the Raw MobileNetV2 outputted

a bkl, while most of the shifted images yielded the nv or the

bcc classes. The reason is unknown, but we can observe a

yellow star near the center of the lattice (s = 0), which would

explain this behavior. The MobileNetV2 network predicted

more bcc’s than GoogLeNet, and that caused the different

outputs. Thus, these two first examples showed that there

are cases where one network works better than the other.

Compensation is achieved when the predictions of both are

merged.

The third example concerns the class dermatofibroma.

This is am underrepresented class within the HAM10000

dataset. If the image is shifted to the upper-left, the networks

were not able to have a firm decision on the predicted class.

However, bottom-right shifts clearly yielded the df class.

In this case, both networks have similar behavior. The last

image is a nevus. This image is challenging because the skin

contains many irregularities. MobileNetV2 predicted more
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TABLE 2. Evaluation metrics for the five compared models trained with data augmentation. Mean and standard deviation values of the cross-validation procedure
are reported.

Function g mean

Measure Raw MobileNetV2 Raw GoogLeNet Shifted MobileNetV2 Shifted GoogLeNet Shifted 2-Nets

Accuracy 0.810± 0.013 0.805± 0.010 0.819± 0.013 0.805± 0.008 0.835± 0.009
Sensitivity 0.649± 0.037 0.588± 0.042 0.659± 0.031 0.581± 0.046 0.656± 0.032
Specificity 0.951± 0.004 0.947± 0.005 0.952± 0.004 0.947± 0.005 0.954± 0.004
Precision 0.687± 0.040 0.689± 0.026 0.714± 0.037 0.685± 0.038 0.766± 0.024

F1 0.653± 0.030 0.613± 0.040 0.670± 0.031 0.608± 0.046 0.688± 0.026
MCC 0.614± 0.030 0.576± 0.035 0.634± 0.029 0.571± 0.044 0.659± 0.023

Function g median

Accuracy 0.810± 0.013 0.805± 0.010 0.819± 0.013 0.805± 0.008 0.832± 0.009
Sensitivity 0.649± 0.037 0.588± 0.042 0.659± 0.031 0.581± 0.045 0.644± 0.034
Specificity 0.951± 0.004 0.947± 0.005 0.952± 0.004 0.947± 0.005 0.953± 0.004
Precision 0.687± 0.040 0.689± 0.026 0.714± 0.037 0.685± 0.035 0.761± 0.021

F1 0.653± 0.030 0.613± 0.040 0.670± 0.031 0.608± 0.044 0.678± 0.027
MCC 0.614± 0.030 0.576± 0.035 0.634± 0.030 0.572± 0.041 0.649± 0.023

TABLE 3. Examples of the outputs generated by the compared models (trained with data augmentation). The color represents the class, and the circle/no-circle is
the division of the grid into two sets: circle are for MobileNetV2 and no-circle for GoogLeNet.

Image

Lattice

Legend akiec bcc bkl df mel nv vasc

Raw MobileNetV2 bkl bkl nv bkl

Raw GoogLeNet akiec nv df bkl

Shifted MobileNetV2 bkl bcc df nv

Shifted GoogLeNet akiec nv df bkl

Shifted 2-Nets akiec bcc df nv

GT akiec bcc df nv

nv and mel, while GoogLeNet classified it as bkl and nv.

Here the combination function was essential to making an

adequate prediction. Our ensemble model dealt with many

bkl predictions because the nevi class scores were higher in

most of the predictions.

VI. CONCLUSIONS
A new methodology to perform skin lesion classification

with deep convolutional neural networks was proposed. It

consists of constructing an ensemble of convolutional neural

networks that cooperate to yield a more accurate assessment

of the lesion. This is attained by considering multiple shifted

versions of the test input image so that the shift vectors form a

regular lattice. Each shifted version is allocated to one of the

networks of the ensemble. After that, the shifted versions of

the test image are processed. The resulting class score vectors

are combined by a suitable aggregation function in order to

produce the final classification result. This strategy exploits

the strengths of the networks that comprise the ensemble.

The aggregation scheme alleviates the deleterious effect of

individual classification failures. Therefore, our proposal is

more robust than the standard convolutional neural network

classification procedure. Also, it must be highlighted that our

approach is not related to standard train time data augmenta-

tion by training image shifting.

Experimental results demonstrate how the proposed shift-

ing technique outperforms traditional deep learning tech-

niques for skin lesions classification. The proposed ensem-

ble+shifting model is around 3% better than the deep net-

works with shifting and almost 6% better than the simple

network in all classification performance measures. This is

VOLUME 4, 2016 11



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103410, IEEE Access

Karl Thurnhofer-Hemsi et al.: Skin lesion classification by ensembles of deep convolutional networks and regularly spaced shifting

particularly the case in F1-score that is the harmonic mean

of the precision and recall. The plain models behaved better

when the ones trained with data augmentation. However

this technique was unnecessary for the ensemble model to

achieve the same results, with almost an 84% accuracy on

the HAM10000 dataset. The lack of enough training images

affected the generalization of all networks. The effect appears

to be more severe for the raw models. The Shifted Mo-

bileNetV2+GoogLeNet compensated this effect by defining

an extensive set of displacements that covered many trans-

formations of the original input image. Note that each deep

network was trained and tested with the same configuration

to fairly compare all models’ performance with the same

parameter values.

Further works will be focused on the testing of more

deep networks and other topologies of the lattice. The image

features are crucial to understand each class and to generate

an adequate classifier for dermoscopic images. Other image

transformations, such as rotations combined with the pro-

posed shifts, may improve the generalization level of the

model. The inclusion of more complex combination func-

tions, such as probabilistic models, is another path to be

explored to enhance predictive accuracy.
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