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ABSTRACT Early detection of skin cancer, particularly melanoma, is crucial to enable advanced treatment.

Due to the rapid growth in the number of skin cancers, there is a growing need of computerised analysis for

skin lesions. The state-of-the-art public available datasets for skin lesions are often accompanied with a very

limited amount of segmentation ground truth labeling. Also, the available segmentation datasets consist

of noisy expert annotations reflecting the fact that precise annotations to represent the boundary of skin

lesions are laborious and expensive. The lesion boundary segmentation is vital to locate the lesion accurately

in dermoscopic images and lesion diagnosis of different skin lesion types. In this work, we propose the

fully automated deep learning ensemble methods to achieve high sensitivity and high specificity in lesion

boundary segmentation.We trained the ensemblemethods based onMaskR-CNN andDeeplabV3+methods

on ISIC-2017 segmentation training set and evaluate the performance of the ensemble networks on ISIC-

2017 testing set and PH2 dataset. Our results showed that the proposed ensemblemethods segmented the skin

lesions with Sensitivity of 89.93% and Specificity of 97.94% for the ISIC-2017 testing set. The proposed

ensemble method Ensemble-A outperformed FrCN, FCNs, U-Net, and SegNet in Sensitivity by 4.4%,

8.8%, 22.7%, and 9.8% respectively. Furthermore, the proposed ensemble method Ensemble-S achieved

a specificity score of 97.98% for clinically benign cases, 97.30% for the melanoma cases, and 98.58% for

the seborrhoeic keratosis cases on ISIC-2017 testing set, exhibiting better performance than FrCN, FCNs,

U-Net, and SegNet.

INDEX TERMS Skin cancer, skin lesion segmentation, ensemble segmentation methods, deep learning,

melanoma, instance segmentation, semantic segmentation.

I. INTRODUCTION

Cancers of the skin are the most common form of malignancy

in humans [1]. The most common malignant skin lesions

are melanoma, squamous cell carcinoma and basal cell car-

cinoma. It is estimated that in 2019, 96,480 new cases will

be diagnosed with melanoma and more than 7,000 people

will die from the disease in the United States [2], [3]. Early

detection of melanoma can save lives.

It can be difficult to differentiate benign lesions from

skin cancers. Skin cancer specialists examine their patients’

skin lesions using visual inspection aided by hand-held der-

moscopy. They may capture digital close-up (macroscopic)

and dermoscopic (microscopic) images. Dermoscopy is a

means to examine the skin using a bright light and magni-

fication, and employs either polarisation or immersion fluid
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to reduce surface reflection [4]. In common use for the

last 20 years, dermoscopy has improved the diagnosis rate

over visual inspection alone [5]. The ABCD criteria help

non-dermatologists screen skin lesions to differentiate com-

mon benign melanocytic naevi (naevi) from melanoma [6].

Fig. 1 illustrates the ABCD rules for skin lesion diagnosis,

where:

1) A: Asymmetry property checks whether two halves of

the skin lesion match or not in terms of colour, shape,

edges. The skin lesions are divided into two halves

based on long axis and short axis as shown in Fig. 1.

In the case of melanoma, it is likely to have an asym-

metrical appearance.

2) B: Border property. It defines whether the edges of skin

lesion are smooth, well-defined or otherwise. In the

case of melanoma, edges are likely to be uneven, blurry

and jagged.
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FIGURE 1. Lesion diagnosis by dermatologists. ABCD criteria for lesion
diagnosis focuses on finding the certain properties of lesions.

3) C: Colour property. The colour in a melanoma varies

from one area to another, and it often has varying

shades of tan, brown, red, and black.

4) D: Diameter property. It measures the approximate

diameter of the skin lesion. The diameter of a

melanoma is generally greater than 6mm (the size of

a pencil eraser).

End-to-end computerised solutions that can produce accu-

rate segmentation of skin lesions irrespective of types of

skin lesions are highly desirable to mirror the clinical ABCD

Rule. For segmentation of medical imaging, Jaccard Simi-

larity Index (JSI), specificity and sensitivity are deemed as

important performance measures for methods. Hence, com-

puterised methods need to achieve high scores in these per-

formance metrics.

The majority of the state-of-the-art computer-aided

diagnosis based on dermoscopic images are composed of

multi-stages, which include image pre-processing, image

segmentation [7], feature extraction [8] and classification [9].

Using hand-crafted feature descriptors, benign naevi tend to

have small dimensions and a roundish shape, as illustrated

in Fig. 1. (but some naevi are large and unusual shapes). Other

feature descriptors used in previousworks include asymmetry

features, colour features and texture features. Pattern analysis

is widely used to describe the dermoscopic appearance of skin

lesions, for example, the melanocytic algorithm elaborated

by Lio and Nghiem [10]. Ashour et al. [11], [12] proposed a

histogram-based clustering estimation (HBCE) algorithm to

determine the required number of clusters in the neutrosophic

c-means clustering (NCM) method to perform segmentation

on ISIC-2016 dataset and neutrosophic k-means (ONKM)

using genetic algorithm for skin lesion detection in der-

moscopy images. Various computer algorithms have been

devised to classify lesion types using feature descriptors and

pattern analysis based on image processing and conventional

machine learning approaches. Two reviews by Korotkov

and Garcia [13] and Pathan et al. [1] reported that the

majority of these used hand-crafted features to classify or

segment the lesions. Korotkov and Garcia [13] concluded

that there is a large discrepancy in previous research and the

computer-aided diagnosis (CAD) systems were not ready for

implementation. The other issue was the lack of a benchmark

dataset, which makes it harder to assess the algorithms.

Pathan et al. [1] concluded that the CAD systems worked

in experimental settings but required rigorous validation in

real-world clinical settings. Because these systems require

manual tuning of hyper-parameters and composed of multi-

stages.

With the rapid growth of deep learning approaches, many

researchers [14]–[16] have proposed using Deep Convolu-

tional Neural Networks (CNN) for melanoma detection and

segmentation.

II. DEEP LEARNING FOR SKIN LESION SEGMENTATION

This section reviews the state-of-the-art deep learning

approaches for segmentation for skin lesions. Deep learning

has gained popularity in medical imaging research including

Magnetic Resonance Imaging (MRI) on brain [17], breast

ultrasound cancer detection [18]. Recently, U-Net is a pop-

ular deep learning approach in biomedical imaging research,

proposed by Ronneberger et al. [19]. U-Net enables the use

of data augmentation, including the use of non-rigid defor-

mations, to make full use of the available annotated sample

images to train the model. These aspects suggest that the

U-Net could potentially provide satisfactory results with the

limited size of the biomedical datasets currently available.

Researchers havemade significant contributions proposing

various deep learning frameworks for the detection and seg-

mentation of skin lesions. Yu et al. [15] proposed very deep

residual networks of more than 50 layers for two-stage frame-

work of skin lesions segmentation followed by classification.

They claimed that the deeper networks produce richer and

more discriminative features for recognition. By validating

their methods on ISBI 2016 Skin Lesion Analysis Towards

Melanoma Detection Challenge dataset [20], they reported

that their method ranked first in classificationwhen compared

to 16-layer VGG-16, 22-layer GoogleNet and other 25 teams

in the competition. However, in the segmentation stage, they

ranked second in segmentation among the 28 teams. Thework

showed promising results, but the two-stage framework and

very deep networks were computationally expensive.

Bi et al. [16] proposed a multi-stage fully convolu-

tional networks (FCNs) for skin lesions segmentation. The

multi-stage involved localised coarse appearance learning in
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the early stage and detailed boundaries characteristics learn-

ing in the later stage. Further, they implemented a parallel

integration approach to enable fusion of the result that they

claimed that this has enhanced the detection. Their method

outperformed others in PH2 dataset [21] of 90.66% but

achieved marginal improvement if compared to Team ExB

in ISIB 2016 competition with 91.18%.

Yuan et al. [14] proposed an end-to-end fully automatic

method for skin lesions segmentation by leveraging 19-layer

DCNN. They introduced a loss function using Jaccard Dis-

tance as the measurement. They compared the results using

different parameters such as input size, optimisationmethods,

augmented strategies, and loss function. To fine tune the

hyper-parameters, 5-fold cross-validation with ISBI training

dataset was used to determine the best performer. Similar to

Bi et al. [16], they evaluated their results on ISBI 2016 and

PH2 dataset. The results were outperformed by the state-of-

the-art methods but they suggested that the method achieved

poor results in some challenging cases including images with

low contrast.

Goyal and Yap [22] proposed fully convolutional meth-

ods for multi-class segmentation on ISBI challenge dataset

2017. This was a very first attempt to perform multi-class

segmentation to distinguish melanocytic naevus, melanoma

and seborrhoeic keratosis rather than a single class of skin

lesion.

Vesal et al. [23] and Goyal et al. [24] proposed two-stage

segmentation method which used Faster-RCNN in the first

stage and then a modified version of U-Net and deep extreme

method respectively as second stage to achieve segmentation

results.

Soudani and Barhoumi [25] used two deep learning

classification models to recommend the most appropriate

segmentation technique on ISIC-2017 dataset. Recently,

Al-masni et al. [26] proposed a fully resolution convolutional

network (FrCN) to learn full resolution features of each pixel

of dermoscopic skin lesion images for skin segmentation.

They achieved Jaccard Index of 77.11% on ISIC-2017 testing

set.

The research showed that deep learning achieved promis-

ing results for segmentation and classification of skin lesions.

However, there is a huge difference in availability of ground

truths with respect to segmentation and classification in pub-

lic skin lesion datasets. This is mainly because, the expert

annotation for segmentation ground truths is very expen-

sive and laborious when compared with classification labels.

In ISIC 2018 competition, only a total number of 3694 images

were available for the segmentation challenge in comparison

to 11720 images in the classification challenge [27], [28].

The expert annotations used in segmentation tasks are not

always very accurate which could affect the performance

of segmentation algorithms. Some of these examples in

ISIC-2017 testing set are shown in Fig. 2. Other issues

regarding the expert annotation are, some experts tend to

draw a very precise outer boundary of skin lesions while

others draw loose outer boundary to represent skin lesions for

FIGURE 2. Examples of noisy expert annotations from from skin lesion
dataset. (Left) Original Images; and (Right) Ground truth in binary masks.

FIGURE 3. Examples of precise and loose boundary representation of skin
lesions. (Left) Original Images; and (Right) Ground truth in binary masks.

segmentation ground truths as shown in Fig. 3. Depending

on whether the expert annotations precise or loose for the

skin lesion dataset, it is very difficult for any deep learn-

ing algorithm to produce accurate segmentation results. For

precise boundary representation of skin lesions, the algo-

rithm needs to have high Specificity score whereas for loose

representation, high Sensitivity score is desirable. In this

paper, we addressed these issues by developing three fully

automatic CNN-based ensemble methods to suit both precise

and loose lesion boundary segmentation. We trained them

on the ISIC-2017 dermoscopic training set and tested the

robustness of the ISIC-2017 trained algorithms on ISIC-2017

testing set and another publicly available dataset, the

PH2 dataset.
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FIGURE 4. Examples of skin lesion images and labels from
ISIC-2017 dataset. (Left) Original Images; and (Right) Ground truth in
binary masks.

FIGURE 5. Examples of skin lesion images and labels from PH2 dataset.
(Left) Original Images; and (Right) Ground truth in binary masks.

III. METHODOLOGY

This section discusses the publicly available skin lesion

datasets, the preparation of the ground truth, the proposed

ensemble methods, and the performance measures to validate

our results.

A. SKIN LESION DATASETS

For this work, we used two publicly available datasets for

skin lesions, which are ISIC-2017 Challenge (Henceforth

ISIC-2017) [27] and PH2 dataset [21]. To improve the per-

formance and reduce the computational cost, we resized all

the images to 500 × 375.

1) ISIC-2017 SEGMENTATION DATASET

The International Skin Imaging Collaboration (ISIC) is a

driving force by providing the digital skin lesion image

datasets with expert annotations from around the world for

automated CAD solutions for the diagnosis of melanoma and

other cancers. This community also organises yearly skin

lesion challenges to attract wider participation of researchers

to improve the diagnosis of CAD algorithms and spread

awareness regarding skin cancer [27]. The 2017 segmen-

tation competition category consists of 2750 images with

2000 images in the training set, 150 in the validation set and

600 in the testing set. Fig. 4 is an example of loosely drawn

boundary by experts to label ground truths in the dataset.

Hence the algorithms need to achieve high sensitivity to

perform well in this testing set. Even though ISIC Challenge

2018 [27] was conducted last year, they did not share the

ground truth of their testing set. Therefore, our work was

based on the ISIC-2017.

2) PH2 DATASET

PH2 dataset has 200 images in which 160 images are naevus

(atypical naevus and common naevus), and 40 images are of

melanoma [21]. In this dataset, the ground truths represent the

precise and true boundaries of skin lesion (high specificity),

as shown in the Fig. 5. We used this dataset as additional

testing set for deep learning models trained on the ISIC-

2017 segmentation training set.

B. ENSEMBLE METHODS FOR LESION BOUNDARY

SEGMENTATION

We designed these end-to-end ensemble segmentation meth-

ods to combine Mask R-CNN and DeeplabV3+ with

pre-processing and post-processingmethods to produce accu-

rate lesion segmentation as shown in Fig. 6. This section

describes each stage of our proposed ensemble method.

1) PRE-PROCESSING

The ISIC Challenge dataset comprised of dermoscopic skin

lesion images taken by different dermatoscopes and camera

devices all over the world. Hence, it is important to per-

form pre-processing for colour normalization and illumina-

tion with colour constancy algorithm [31]. We processed

the datasets with Shades of Gray algorithm [32] as shown

in Fig. 7.

2) DEEPLABV3+
DeeplabV3+ is one of the best performing semantic segmen-

tation networks achieving the test set performance of 89.0%

and 82.1% in PASCAL VOC 2012 and Cityscapes datasets

respectively [29]. DeeplabV3+ is an encoder-decoder net-

work which makes the use of CNN called Xception-65 with

atrous convolution layers to get the coarse score map and

then, conditional random field is used to produce final output

as shown in Fig. 8. To train DeeplabV3+ on skin lesion

dataset, we used a pre-trained model on PASCAL VOC

2012 and adjusted the final output of 21 classes to a single

class for segmentation of skin lesion [33]. It assigns semantic

label lesion to every pixel in a dermoscopic image.

3) MASK R-CNN

Mask R-CNN is a recent deep learning architecture to pro-

vide instance segmentation i.e. identifying object outlines

at the pixel level [30]. Mask R-CNN is inspired by the

Faster R-CNN for object detection by adding a branch for
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FIGURE 6. Complete flow of our proposed ensemble methods for automated skin lesion segmentation.

FIGURE 7. Examples of pre-processing stage by using Shades of Gray
algorithm. (a) Original images with different background colours; and
(b) Pre-processed images with more consistent background colours.

predicting an object mask in parallel with the existing branch

for bounding box recognition [30], [34]. The framework

is Mask R-CNN is detailed in Fig. 9. We fine-tuned a

pre-trained Mask R-CNN with ResNet-InceptionV2 model

(henceforth Mask R-CNN) onMS-COCO dataset for a single

class as skin lesion for this experiment [35]. In some cases,

Mask R-CNN generated more than one output due to the

generation of 2k proposals from the Region Proposal Net-

work (RPN) in the initial stage of Mask R-CNN. To limit

the single output mask of highest confidence per image,

we set the value of Top N proposals to 1 from RPN at test

time.

4) POST-PROCESSING

We used basic image processing methods, i.e. morphological

operations to fill the region and remove unnecessary artefacts

of the results as illustrated in Fig. 10. These issues were only

countered by DeeplabV3+ as in the case of Mask R-CNN,

we have not had these issues. Hence, post-processing is only

used for the semantic segmentation methods like FCNs and

DeeplabV3+.

5) ENSEMBLE METHODS

We used two types of ensemble methods called Ensemble-

ADD and Ensemble-Comparison. First of all, if there is

no prediction from DeeplabV3+, the ensemble methods

pick up the prediction of Mask R-CNN and vice versa.

Then, Ensemble-ADD combines the results of both Mask

R-CNN and DeeplabV3+ to produce the final segmenta-

tion mask. Ensemble-Comparison-Large picks the larger

segmented area by comparing the number of pixels in the

output of both methods. On contrary, Ensemble-Comparison-

Small picks the smaller area from the output. The ensem-

ble methods are illustrated in Fig. 11 where (a) shows

Ensemble-ADD; (b) shows Ensemble-Comparison-Large;

and (c) represents Ensemble-Comparison-Small. For con-

venience, we used the abbreviation as Ensemble-A for

Ensemble-Add, Ensemble-L for Ensemble-Comparison-

Large, and Ensemble-S for Ensemble-Comparison-Small.

Ideally, Ensemble-S is designed for performing well

in Specificity i.e. to have precise segmentation masks

whereas Ensemble-A and Ensemble-L are designed for high

Sensitivity.

C. PERFORMANCE METRICS

We evaluated the performance of the segmentation algorithms

by using Jaccard Similarity Index (JSI). In addition, we report

our findings inDice Similarity Coefficient (Dice), Sensitivity,

Specificity, Accuracy and Matthew Correlation Coefficient

(MCC) [37].

Sensitivity =
TP

TP+ FN
(1)

Specificity =
TN

FP+ TN
(2)

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(3)

JSI =
TP

(TP+ FP+ FN )
(4)

Dice =
2 ∗ TP

(2 ∗ TP+ FP+ FN )
(5)

MCC =
TP ∗ TN − FP ∗ FN

√
(TP+FP)(TP+ FN )(TN + FP)(TN+FN )

(6)
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FIGURE 8. Architecture of DeeplabV3+ on skin lesion segmentation [29].

TABLE 1. Performance evaluation of our proposed methods and state-of-the-art algorithms on ISIC Skin Lesion Segmentation Challenge 2017.

FIGURE 9. Architecture of Mask R-CNN on skin lesion segmentation [30].

Sensitivity is defined in eq (1), where TP is True Positives

and FN is False Negatives. A high Sensitivity (close to 1.0)

indicates good performance in segmentation which implies

all the lesions were segmented successfully. On the other

hand, Specificity (as in eq. (2)) indicates the proportion of

True Negatives (TN) of the non-lesions. A high Specificity

indicates the capability of a method in not segmenting the

non-lesions. Accuracy in segmentation methods report the

FIGURE 10. Examples of post-processing stage by using image processing
methods: (a) Results from CNN segmentation with artefacts and holes
within the lesions; and (b) Post-processed result after morphology
operations.

percent of pixels in the image which were correctly classified

as in eq. (3). JSI and Dice is a measure of how similar

both prediction and ground truth are, by measuring of how

many TP found and penalising for the FP that the method
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FIGURE 11. Illustration of ensemble methods: (a) Ensemble-ADD
(b) Ensemble-Comparison (Large) (c) Ensemble-Comparison (Small).

found, as in eq. (4) and (5) respectively. MCC has a range

of −1 (completely wrong binary classifier) to 1 (completely

right binary classifier). This is a suitable measurement for

the performance assessment of our segmentation algorithms

based on binary classification (lesion versus non-lesions),

as in eq. (6).

IV. EXPERIMENT AND RESULTS

This section presents the performance of our proposed

methods and various state-of-the-art segmentation methods

on ISIC-2017 testing set (600 images) and PH2 dataset

(200 images) with given expert annotations [21], [27].

We trained all the networks on a GPU machine with the

following specification: (1) Hardware: CPU - Intel i7-6700

@ 4.00Ghz, GPU - NVIDIA TITAN X 12Gb, RAM - 32GB

DDR5 (2) Software: Tensor-flow.

We tested the different hyper-parameters including learn-

ing rates (1e-1 to 1e-4) depending on the deep learning

models to train the models on ISIC-2017 training and

validation segmentation dataset. We used 100 epochs for

training the both deep learning architectures. We selected

the models on the basis of minimum validation losses for

the evaluation. For training DeeplabV3+, we used a CNN

architecture of Xception-65 which use depth-wise separable

convolutions, we set the batch_size of 1, weight for

l2_regularizer as 0.00004, and train_crop_size

of 513 × 513. The base_learning_rate of 0.001,

decay_factor of 0.1 and decay_step of 2000, and

momentum optimizer value is set at 0.9. For Mask R-CNN,

we set the weight for l2_regularizer as 0.0, initial-

izer that generates a truncated normal distribution with

a standard deviation of 0.01. For training, we used a

batch_size of 1, optimizer as momentum with manual

step_learning_rate with an initial rate as 0.0003,

0.00003 at step 30000 and 0.000003 at step 45000. The

momentum optimizer value is set at 0.9. We did not use any

data augmentation techniques to train these models. We com-

pared the predictions of each algorithm with given ground

truths of testing sets.

A. COMPARISON WITH ISIC CHALLENGE 2017

Table 1 summarises the performance of our proposed meth-

ods when compared to the best method in the ISIC-2017 seg-

mentation challenge and other segmentation algorithms using

default competition performance metrics presented in [26].

Our proposed methods achieved the highest scores in the

default performance measures in this challenge when com-

pared to the other algorithms. As mentioned earlier for

ISIC-2017, the ground truths are annotated loosely by the

experts, the performance of algorithms in this dataset depends

upon Sensitivity score. Our proposed method Ensemble-A

achieved highest Sensitivity of 89.92% in comparison to other

algorithms. Hence, Ensemble-A achieved a JSI of 79.34%

for ISIC testing set 2017 which outperformed the first posi-

tioned algorithm in the competition by 2.8%, second posi-

tioned method by 3.1%, U-Net by 17.7%, SegNet by 9.7%,

and FrCN by 0.5%. For Specificity. Ensemble-S outper-

formed other algorithms with a score of 97.94% which

is marginally better than competition winners and a sig-

nificant difference of 3.9% from Ensemble-A. Otherwise,

Ensemble-A received the highest score in other categories

of performance metrics that are Sensitivity, Accuracy, and

Dice.

B. JACCARD SIMILARITY INDEX COMPARISON WITH

TRAINED DEEP LEARNING MODELS

In Fig. 12, we compared the JSI scores produced by the

proposed ensemble methods with DeeplabV3+ and Mask
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FIGURE 12. Comparison of JSI scores of our proposed methods for skin lesion segmentation of ISIC-2017 testing set.

TABLE 2. Performance evaluation of our proposed methods and state-of-the-art segmentation architectures on ISIC 2017 testing set (SEN denotes
Sensitivity, SPE is Specificity, ACC is Accuracy, and SK denotes Seborrhoeic Keratosis).

R-CNN. This figure provides further clarification of the

performance of each proposed method regarding the JSI.

For JSI <= 0.5, Ensemble-A has minimum total number

of cases (44), while DeeplabV3+ has a maximum (55).

For 0.8 < JSI <= 1, Ensemble-A has a maximum number

of cases of 404 out of the 600 images in the testing set,

which is at least 13 cases more than the other algorithms.

Overall, Ensemble-A performed the best in the evaluation

metrics.

C. COMPARISON WITH THE STATE-OF-THE-ART BY

LESION TYPES

In ISIC-2017 segmentation task, the participants were asked

to segment the boundaries of lesion irrespective of the lesion

types. In this section, we compare the accuracy of segmenta-

tion results based on three lesion types: Naevus, Melanoma,

and Seborrhoeic Keratosis (SK).

In Table 2 and 3, we present the performance of our

proposed method with other trained fully convolutional net-

works. We trained FCNs, DeeplabV3+, Mask R-CNN, and

ensemble methods on the ISIC 2017 training set and tested

on ISIC 2017 testing set. Since Ensemble-Smethod compares

and picks the smaller area, it performed best in the Specificity

category with a score of 97.94% by outperforming other

algorithms overall and also for each lesion type in Table 2.

Hence, Ensemble-S achieved the best position to perform

well for evaluation metric Specificity as per our claim. For

Sensitivity, Ensemble-A and Ensemble-L performed the best

among other algorithms with a score of 89.93% and 88.70%.

Hence, we proved our claim of designing these algorithms

for high Sensitivity. Ensemble-A is marginally better in the

Accuracy than other methods. Particularly, in Naevus cate-

gory, DeeplabV3+ performed better than Ensemble-A with a

fine margin.

In Table 3, we reported the performance of algorithms in

terms of Dice, JSI, and MCC. Ensemble-A method outper-

formed all the participating segmentation algorithms for each

skin lesion type.

D. COMPARISON ON PH2 DATASET

To test the robustness of our method and cross-dataset perfor-

mance, we evaluate our proposed algorithms on PH2 dataset.
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TABLE 3. Performance evaluation of our proposed methods and state-of-the-art segmentation architectures on ISIC 2017 testing set (DIC denotes Dice
Score,JSI is Jaccard Similarity Index, MCC is Mathews Correlation Coefficient, and SK denotes Seborrhoeic Keratosis).

TABLE 4. Performance evaluation of different segmentation algorithms on PH2 dataset.

It is worth noted that Ensemble-A produced the best

results in ISIC 2017 testing set where as in PH2 dataset,

Ensemble-S achieved best scores in PH2 dataset except

Sensitivity in which Ensemble-A performed best, as shown

in Table 4. This again proved our claim of performance of

our Ensemble-S method for high Specificity and Ensemble-A

for high Sensitivity. In PH2 dataset, the expert annota-

tions are very precisely drawn for outer boundary of skin

lesions, hence, that is why Ensemble-S performed the best on

PH2 dataset.

V. CONCLUSION AND FUTURE SCOPE

Robust end-to-end skin segmentation solutions are very

important to provide inference according to the ABCD

rule system for the lesion diagnosis of melanoma. In this

work, we designed the fully automatic ensemble deep

learning methods which combine one of the best seg-

mentation methods, i.e. DeeplabV3+ (semantic segmenta-

tion) and Mask R-CNN (instance segmentation) to pro-

duce notably more accurate results in different skin lesion

datasets comprised of noisy expert annotations. According

to our claim, Ensemble-L and Ensemble-A performed best

in Sensitivity whereas Ensemble-S in Specificity in both

ISIC 2017 testing set and PH2 dataset. We also utilised

the pre-processing by using a colour constancy algorithm

to normalise the data and then, morphological image func-

tions for post-processing to produce segmentation results.

Our proposed method outperformed the other state-of-the-

art segmentation methods and 2017 ISIC challenge winners

with good improvement on popular performancemetrics used

for segmentation. Further improvement can be made by

fine-tuning the hyper-parameters of both networks in our

ensemble methods. This study only focuses on the ensem-

ble methods for segmentation tasks on skin lesion datasets.

While incorporating more pre-processing techniques such as

removing hair follicles and using data-augmentation tech-

niques such as natural data-augmentation [38] can further

improve the performance of these algorithms. In this work,

we utilised the momentum as our optimization algorithm

and cross-entropy as loss function, it would be interesting to

see the impact of different optimizers such as Adam, SGD

and loss functions such as Dice, JSI, FCE loss with these

algorithms. Lastly, it can be tested on the other publicly avail-

able segmentation datasets in both medical and non-medical

domains.
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