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ABSTRACT Melanoma is a type of skin cancer with a high mortality rate. The different types of skin lesions

result in an inaccurate diagnosis due to their high similarity. Accurate classification of the skin lesions in

their early stages enables dermatologists to treat the patients and save their lives. This paper proposes a

model for a highly accurate classification of skin lesions. The proposed model utilized the transfer learning

and pre-trained model with GoogleNet. The model parameters are used as initial values, and then these

parameters will be modified through training. The latest well-known public challenge dataset, ISIC 2019,

is used to test the ability of the proposedmodel to classify different kinds of skin lesions. The proposedmodel

successfully classified the eight different classes of skin lesions, namely, melanoma, melanocytic nevus,

basal cell carcinoma, actinic keratosis, benign keratosis, dermatofibroma, vascular lesion, and Squamous

cell carcinoma. The achieved classification accuracy, sensitivity, specificity, and precision percentages are

94.92%, 79.8%, 97%, and 80.36%, respectively. The proposed model can detect images that do not belong

to any one of the eight classes where these images are classified as unknown images.

INDEX TERMS Melanoma classification, skin lesions, convolution neural network, GoogleNet; ISIC 2019,

bootstrap multiclass SVM, transfer learning.

I. INTRODUCTION

In 2018 [1], the WHO reported that there are more than

14 million new cancer patients and more than 9.6 million

deaths over the world because of cancer. These statistics show

that cancer is the leading cause of human death [2], [3]. Skin

Cancer initially occurs on the upper layer of the skin, the epi-

dermis, where it is noticeable and can be seen by human

eyes [4]. Skin cancer is one of the significant contributors to

the cause of death over the world [5].

Different types of skin cancers have been discovered.

Melanoma is a well-known kind of skin cancer, which usually

is the most malignant lesion compared to other skin lesions

types [6], [7]. Melanoma is one of the fastest spreading skin

cancers where recent studies show that the number of skin

cancer patients increased year by year [8], [9]. Automatic

computer-aided systems for accurate classification of skin

lesions are beneficial to saving human life. In the present era,

The associate editor coordinating the review of this manuscript and

approving it for publication was Simone Bianco .

Computer-Aided Diagnosis (CAD) systems become a

necessity for preliminary diagnosis of different diseases.

Image-based CAD systems utilize skin lesions images with-

out any other medical information to provide dermatologists

with an accurate diagnosis [10]. Furthermore, an image-based

CAD system could classify different skin lesions based on

features extracted from the colors in images of the skin [11].

Based on its accuracy, a CAD system could lead to early

diagnosis of skin cancer and then open the door for treatments

to save human life [12].

Dermoscopy is the most well-known method of skin imag-

ing, which showed an improvement in the diagnosis of

melanoma compared to that of the naked eye [13]. Never-

theless, the benchmark datasets of skin cancer are limited

and contain a few numbers of classes. Besides, the available

number of images in these classes is limited. Three different

issues make the automatic identification of melanoma from

dermoscopy images a challenging task. First, although the

skin lesions belong to different classes, the characteristics

of these lesions, such as size, texture, color, and shape,
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are very similar, which makes classification a challenging

task. Second, there is a high correlation between melanoma

and non-melanoma lesions. Third, environmental conditions,

such as hair, veins, and illumination [14].

Several attempts made to overcome these challenging

issues. Oliveira et al. [15] used low-level hand-crafted fea-

tures to differentiate between melanoma and non-melanoma

lesions. Unfortunately, this trial led to wrong results due to

the high visual similarity, significant intra-class variations,

and dermoscopic artifacts [16]. Pathanbet et al. [17] and

Shimizu et al. [18] segmented the input images to remove

the background and unnecessary contents to improve the

classification of the skin lesions. Nonetheless, poor results

were obtained when segmentation and classification proce-

dures focused on features at low levels, which results in low

discrimination rates [19].

Many techniques, such as ABCDE rule, genetic algo-

rithms, support vector machines (SVMs), and artificial neural

networks (ANNs), proposed to assess the skin lesion and clas-

sify it as either melanoma or benign [20]–[24]. All of these

procedures were efficient, cost-effective, and less painful than

conventional medical techniques.

It is undisputed that deep learning and CNNs are the pre-

ferred techniques in many computer vision applications [25].

Esteva et al. [26] utilized a pre-trained deep CNN to classify

benign nevi frommalignant melanomas, which outperformed

dermatologist discrimination rates. Hosny et al. [27] used

the transfer learning with AlexNet to classify the images

of the Ph2 dataset as defined in [28] into three classes

called Atypical Nevus, Common Nevus, and Melanoma.

Hosny et al. [29], [30] used image augmentation and trans-

fer learning with different pre-trained deep neural networks

(DNN) to get a significant improvement in the classifi-

cation rates with the well-known datasets of skin lesions,

Derma quest [31], Derma IS [32], and MED-NODE [33].

Gessert et al. [34] tried to ensemble a multi-resolution effi-

cientNets with loss balancing. They achieve an accuracy rate

of ∼ 63.4%, as listed in the ISIC 2019 leaderboard.

Most available standard datasets for skin lesions [31]–[33]

are small datasets and contain small numbers of∼ 200 images

and consist of only two types of skin lesions (two classes).

In contrast, the Ph2 dataset [28] consists of three lesions

type. The International Skin Imaging Collaboration (ISIC)

released four challenging datasets namely ISBI 2016 [35],

ISIC 2017 [36], ISIC 2018 [37], and ISIC 2019 [38]. The

first challenge, ISBI 2016, was the first challenge, which

consisted of two classes with images ∼1200. In the second

challenge, ISIC 2017, the number of images and classes

increased to ∼2000 images while the number of classes

increased to three. ISIC 2018 contains ∼10000 images and

divided into seven classes of skin lesions. These classes are

nevus (NV), Basal Cell Carcinoma (BCC), Actinic Keratosis

Intra Epithelial Carcinoma (AKIEC), Benign Keratosis

(BKL), Dermatofibroma (DF), and Vascular lesion (VASC).

The most recent challenging dataset, ISIC 2019, contains

25,331 images divided into eight classes–the seven classes

as defined in ISIC 2018 with an additional new class called

Squamous Cell Carcinoma (SCC).

The contributions in this work can be summarized through

the following points:

1. We modified the architecture of the GoogleNet by

adding more filters to each layer, to enhance features

and reduce noise.

2. We replaced the last three layers in GoogleNet in two

different ways:

a. The last three layers have been dropped out and

replaced with a new fully-connected, SoftMax, and

classification output layers. By using the SoftMax,

the proposed model can work through binary and

multi-class. The probabilities output of SoftMax

ranges from 0 to 1. In binary classification, these

probabilities summed to be one. In multi-class clas-

sification, the possibility for every class will be an

indicator for each class, but the target class will be

the high probability.

b. The second way was done by dropping out the

last two layers only and keeping the original fully

connected layer of GoogleNet as features extrac-

tors. Then, a bootstrap multi-class support vector

machine is used to classify images. This change

aims to detect unknown images (outliers).

3. In the proposed model, no pre-processing such as noise

reduction, segmentation, or enhancement is used. The

weights of All layers are fine-tuned; also, the proposed

model does not overfit even with some classes contain-

ing a small number of images.

4. To the best knowledge of the authors, there is no pub-

lished work for the classification of the ISIC 2019 chal-

lenge. In this paper, we classified this challenging

dataset with high-performance measures in two differ-

ent ways.

5. ThemodifiedGoogleNet achieved higher classification

rates than other deeper architectures.

The rest of this work is organized as follows: The utilized

methods are described in section 2; the datasets, the per-

formed experiments, and the discussion are described and

discussed in section 3, and finally, the conclusion is presented

in section 4.

II. METHODS

Traditional neural networks, in general, consist of three lay-

ers: input, output, and one single hidden layer. Training meth-

ods for these networks encountered a problem, such as the

values of the gradient may equal zero or close to zero when

weights update. This problem is called the vanishing gradi-

ent [39], [40]. Deep convolutional architecture is utilized to

overcome the difficulties resulting from traditional methods

of learning [41], [42].

A. GOOGLE-NET

Hosny et al. [29], [30] performed several experiments

using different architectures such as Alex-net, Resnet, VGG,
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FIGURE 1. Inception model in GoogleNet [43].

and GoogleNet. They showed that the VGG could not

work using the same hardware resources and required

high-configuration hardware and large memory. GoogleNet

outperformed the other architectures.

Increasing the network size or its depth is the simplest way

to improve deep neural network performance where the depth

refers to the number (levels) of network layers. Successful

training of deeper models required a large number of labeled

data. There are two drawbacks in this way. First, this process

involves the evaluation of a large number of parameters. Such

parameters may lead to architecture overfitting, especially

when a limited labeled dataset is used for training. The second

drawback is concerned with the computational cost, where

this cost increased when using a network with many hidden

layers.

GoogleNet [43] is a deep convolution network. It is also

known as inception architecture. The main idea behind incep-

tion architecture is how to estimate and distribute the dense

components in the optimum sparse structure of a convolu-

tional network. Based on that, the deepest network activations

are either unnecessary (zero value) or redundant due to the

correlations between them. The most powerful deep-network

architecture would have a sparse connection between the acti-

vations, which means that it is not necessarily a connection

between all 512 output channels and all 512 input channels.

These connections theoretically eliminated using different

techniques, which led to a decrease in weight/connection

sparse. The 2014 ImageNet Large-Scale Visual Recognition

Challenge (ILSVRC14) [44] proposed to be classified by

GoogleNet.

GoogleNet built an innovation module called inception,

which approximates a sparse CNN by a conventional dense

construction, as displayed in Fig. 1. As mentioned above,

a small number of neurons is sufficient. The number of

convolution filters and the width of a specific kernel size are

also kept low. In GoogleNet, various sizes of convolutions

are used to extract data and features with different scales

(5 × 5, 3 × 3, 1 × 1). Another essential element of this mod-

ule is a (1 × 1) bottleneck convolutional layer, as displayed

in the figure. This process helps to reduce the computation

requirement significantly, as explained below in Fig. 1.

Let us consider the GoogleNet’s first inception module

as an example with 192 channels as input. It has 128 and

32 filters for each group with size 3 × 3 and 5 × 5, respec-

tively. Thus, for the 5 × 5 filter, the computation order

is 25 × 32 × 192. It is expandable when going deeper by

increasing the width of both the network and the filter.

A 1 × 1 convolution is used with only 16 filters to minimize

the dimensions of the input channel. The computations will

reduce from 25 × 32 × 192 to 16 × 192 + 25 × 32 × 16.

All of these changes enable a large width and depth to the

network.

The fully-connected layers are replacedwith a simple pool-

ing global average layer. This change in GoogleNet reduces

the total number of parameters significantly.

B. TRANSFER LEARNING

Transfer learning is a machine learning technique, which

means a model is used with another task related to what

it has trained for the first time. Domain adaptation and

transfer learning refer to the condition in which the training

of one set is used to improve generalization in another setting

[45], [46]. Due to the enormous or massive resources required

for deep learning and the extensive number of images,
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transfer learning is a well-known approach in deep networks.

In addition to the limited numbers of available skin lesions

datasets, these datasets are not suitable to train a deep network

from the beginning, due to their small number of images.

Transfer learning was the best solution to overcome this

problem.

Transfer learning is achieved in three steps. First, selecting

the pre-trained model; the GoogleNet is trained using Ima-

geNet. In the second step, several layers forming the end of

the GoogleNet are replaced. In the third step, we reuse and

adapt the model layers for new tasks by using fine-tuned

layers.

The GoogleNet architecture was adapted to classify skin

images by replacing several layers in two ways. First,

the last three layers are replaced with a new fully-connected,

SoftMax, and classification output layer. The size of the

output fully connected layer is N × 2048, where N refers

to the class number, which equals 8. Fig. 2 explains the

difference between the original model of GoogleNet and the

proposed model. Second, only the last two layers have been

removed instead of removing all three layers. We use the

original fully connected layers with GoogleNet architecture

to extract the features, and then these features are classified

using a multi-class SVM. The multi-class SVM evaluates the

similarity score of an image to different classes by computing

the similarity score for all classes when multi-class SVM is

used to predict a new image. The utilization of the multi-class

SVM is shown in Fig. 2.

Fine-tuning the weights of the model is the last step.

Only the last layers (transferred layers) significantly lead

to lower results compared with fine-tuning all model layers

(0.37 versus 0.17, respectively) [47]. Consequently, fine-

tuning the entire network, helps in improving the classifi-

cation performance significantly. In this paper, weights for

all layers in the proposed model are randomly initialized,

where these weights are automatically adjusted. Researchers

attempted to remove more than three layers. The quality of

the classification measures was less than the last three layers.

III. EXPERIMENTAL RESULTS AND DISCUSSION

An IBM computer equipped with a Core i7 processor and

16 GB DDRAM with a GeForce MX150 NVIDIA graph-

ics card was used to perform the experiments. An x64-bit

MATLAB 2018 was used to execute the program. The max-

imum training epochs number was set to 40, while the

mini-batch size was 6; the initial learning rate was 0.00001,

and the momentum was 0.9.

A. DATASET

The well-known dataset from the ISIC 2019 challenge

was used to test and evaluate the proposed model. The

ISIC 2019 dataset contains images of HAM10000 and the

BCN_20000. HAM10000 contains ∼10000 images with a

size of 600×450. This dataset was the older challenge of ISIC

2018.While the BCN_20000 contains∼19424 images of size

1024 × 1024. The test set includes an additional unknown

class that was not presented in the training dataset. The

limitations of ISIC 2019 discussed in this paper with different

experiments to gain the best performance. GoogleNet was

used for automatic identification of skin lesions with transfer

learning (knowledge). Experimental results have been made

in two ways, as discussed in the following subsection.

The performance of the proposed model was evaluated

using five quantitative measures, accuracy, sensitivity, speci-

ficity, and precision [48]. These measures are computed from

Fig. 3 as follows:

Accuracy=
tp + tn

tp + fp + fn + tn
(1)

Sensitivity(TPR or Recal)=
tp

tp + fn
(2)

Specificity(TNR)=
tn

fp + tn
(3)

Precision(PPV)=
tp

tp + fp
(4)

F1Score= 2 ×
Precision×sensitivity

Precision+Sensitivity
(5)

where tp, fp, fn, and tn refers to true positive, false positive,

false negative, and true negative, respectively. The acronyms,

TPR, TNR, and PPV, refer to true positive rate, true negative

rate, and a positive predictive value. The true negative should

be large, while false-positive rates should be small, resulting

in most points falling in the left part of the receiver operating

characteristic (ROC) curve [48].

B. CLASSIFYING KNOWN CLASSES USING MODIFIED

GoogleNet BY REPLACING THE LAST THREE LAYERS

The dataset is divided into three parts. The first part was

80% of the dataset for training, the second part was 10% for

validation, and the third was 10% for testing. ISIC 2019 con-

sists of 8 classes namely: Melanoma (MEL), Melanocytic

Nevus (NV), Basal Cell Carcinoma (BCC), Actinic Keratosis

(AKIEC), Benign Keratosis (BKL), Dermatofibroma (DF),

Vascular Lesion (VASC), and Squamous Cell Carcinoma

(SCC). ISIC 2019 consists of 25,331 images where these

images are distributed with a different number of images:

MEL images is 4,522; NV is 12,875; BCC is 3,323; AKIEC is

867; BKL is 2,624; DF is 239; VASC is 253; and SCC is 628.

Fig. 4 shows sample images for the different types of skin

cancer. This dataset is one of the most challenging tasks to

classify various images into eight classes with an imbalanced

number of images in each class.

CUDA has been used to implement the model over GPU.

The authors removed some layers and replaced them with

new layers to fulfill the main purpose of this paper to classify

eight skin lesions in the challenge of ISIC 2019. In the

proposed model, the last three layers are replaced with three

new layers to be suitable for the required task here; to clas-

sify eight classes instead of classifying 1000 classes in the

GoogleNet. Weights of all layers were initialized randomly;

during the training process, the weights of these layers auto-

matically updated, as discussed in the following sections.
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FIGURE 2. (a) original GoogleNet, (b) modified GoogleNet by dropping out last three layers, and (c) modified GoogleNet by replacing last two layers
with multiclass SVM.
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FIGURE 3. Confusion matrix used to compute performance measures.

The total number of images is 25,331. The authors trained

and validated the pre-trained GoogleNet model after applying

the transfer learning using 80% equals 20,265 images, and

10 % equals 2,531 images of the ISIC 2019 dataset, respec-

tively, while the rest of the dataset 10% equals 2,531 images

used for testing. The confusion matrix of the testing in this

experiment is shown in Fig. 5. The performance measures of

this experiment were:

Accuracy = 93.31%

Sensitivity = 53.3%

Specificity = 95.37%

Precision = 62.5%

F1 Score = 57.53%

Sensitivity and precision are very low; in a medical CAD

system, it is unacceptable because it is related to human

life. The reason behind the lower measure for sensitivity and

precision is the imbalance between classes in the dataset.

There is a huge gap in the number of images in each class.

The NV class contains 12,875 images while AKIEC con-

tains 867 images, DF contains 239 images, VASC contains

253 images, and the SCC class contains 628 images. The big

gap in the number of images results in a biased classification

to the class that contains the largest number of images.

Therefore, the authors suggested image augmentation for

solving this problem. The second experiment was carried

out using ISIC 2019 dataset, where authors augmented the

smallest classes, AKIEC, DF, VASC, and SCC. Different

augmentation techniques were utilized where vertical and

horizontal-shift, vertical and horizontal-flip, and rotation

were applied. The number of images in AKIEC, DF, VASC,

and SCC become 1660, 1673, 1518, and 1884, respectively.

The second experiment was carried out using the augmented

classes, AKIEC, DF, VASC, and SCC. The total number of

images in this experiment is 30,079. The confusion matrix for

this experiment is shown in Fig. 6 when dividing the dataset

for 80% equals 24,067 images, 10% equals 3,006 images, and

10% equals 3,006 images for training, validating, and testing,

respectively. The performance measures were:

Accuracy = 94.2%

Sensitivity = 74.5%

Specificity = 96.5%

Precision = 73.62%

F1 Score = 74.02%

We observed a significant improvement in the sensitivity

and precision compared with the first experiment. The imbal-

ance gap in the number of images in each class was reduced.

Despite the image augmentation in the small classes, there is

still a considerable difference that makes classifiers biased to

the class containing the most significant number of images.

So, additional image augmentation steps were performed

where the number of images in all classes increased to be

equal to the number of images in the largest class, NV, which

contains 12,875 images. This process leads to the best result,

where the classification performance approached 100%.

The second way is to make the number of images in each

class equal to each other. The third experiment was carried

out using the ISIC 2019 dataset, where the authors reduced

FIGURE 4. ISIC 2019 different skin lesions examples.
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FIGURE 5. Confusion matrix (8 × 8) for the first experiment.

FIGURE 6. Confusion matrix (8 × 8) for the second experiment.

the number of images in all classes to be equal to the number

of images in the smallest class, DF. The authors eliminated

images randomly to reduce the number of images to 239

images.

The total number of images in this experiment is 1,912.

The proposed model of modified GoogleNet trained, vali-

dated, and tested using 80% equals 1,530 images, 10% equals

191 images, and 10% equals 191 images, respectively. The

confusion matrix of this experiment shown in Fig. 7, where

the obtained results are:

Accuracy = 94.92%

Sensitivity = 79.8%

Specificity = 97%

Precision = 80.36%

F1 Score = 80.07%

FIGURE 7. Confusion matrix (8 × 8) for the third experiment.

We observed that the values of all measures, especially the

sensitivity and precision, increased compared with the first

experiments. Table 1 gives an overview of the obtained results

for the performed experiments. Fig. 8 shows the obtained

ROC curve, while Fig. 9 displays the plotted results. Based on

Table 1, it is clear that the lowest performance occurred when

using the original dataset in the first experiment. In the second

experiment, the obtained results improved. The third experi-

ment shows the best values of performance measures. In this

experiment, the number of images was reduced by random

elimination to match the number of images in the smallest

class. The sensitivity increased by 26% from 53.3% to 79.8%.

FIGURE 8. Roc for proposed models.
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FIGURE 9. Visualization of the performance metrics for the proposed model.

TABLE 1. Proposed model accuracy.

Similarly, the precision increased by 17% from 62.5% to

80.36; the specificity increased from 95.37% to 97%. Finally,

the accuracy moved from 93.31% to 94.92%.

C. OUT-OF-DISTRIBUTION IMAGES DETECTION USING

GoogleNet AND BOOTSTRAP MULTI-CLASS SVM

The hardest challenges in ISIC 2019 are the imbalanced

number of images in each class and the detection of unknown

images (outliers). A bootstrap multi-class SVM aggregation

has been used to handle the problem of imbalanced classes,

which helps to reduce overfitting. A single bootstrap sam-

pling on the images datastore has been performed which

balanced out classes. It worked by replacement sampling with

the weight according to the imbalanced class. The second

problem during the training phase is that there are no samples

of images identified as strange images or outliers. So, a robust

model that can detect any outliers without negatively affect-

ing the overall accuracy is required. The second proposed

model is based on GoogleNet and transfers learning. In this

model, we apply transfer learning by removing only the last

two layers, SoftMax and classification output, named (prob)

and (output), respectively. We kept the fully-connected layer

to extract the image features.

The bootstrap multi-class SVM was used to classify these

features. The trained bootstrap multi-class SVM saved from

the training process to classify new images (test set). The

saved classifier was used to classify the ISIC 2019 test

set and compute the similarity score for each image with

different classes. In the test set, we added different outlier

images (unknown) by adding external images. The outlier

images are collected from [49] and some healthy skin images.

There are two different ways used to enable the proposed

model to detect strange images. First, the proposed model is

trained with the nine classes, the eight known classes plus

to the new class named unknown images (UNK). Different

augmentation approaches, such as rotation, translation, and

flipping, have been applied. The total number of images in

this experiment is 60,162. The dataset has been divided into

80% equals 48,130 images, 10% equals 6,015 images, and

10% equals 6,015 images for training, validation, and testing,

respectively. The confusion matrix of this experiment shown

in Fig. 10, where the obtained results are:

Accuracy = 92.99%

Sensitivity = 70.44%

Specificity = 96%

Precision = 62.78%

F1 Score = 66.39%

The second way to detect the outlier images: Instead of

train the proposed model on external images (unknown),

a conditional rule has been applied. If the similarity score

is less than value, then this image is defined as an unfamil-

iar image. Any image with a similarity score of less than

0.5 for the eight defined classes will designate as unknown.

We choose this value because the proposed model can’t

identify this image with certainty to one of the eight classes

that were identified during training. The next algorithm

VOLUME 8, 2020 114829



M. A. Kassem et al.: Skin Lesions Classification Into Eight Classes for ISIC 2019

FIGURE 10. Confusion matrix (9 × 9) for the unknown class.

explains the overall process of detecting unknown images.

Fig. 11 illustrates the process of training and testing for the

proposed model to detect outliers.

Algorithm 1 Detection of Desired Class or Unknown Image

Input: detection of the unknown image from an external

source

Output: Detect the desired label or unknown image

1 Load trained classifier

2 For I = 1; I <= total test set Do

3 Extract features using fully connected layer in

pre-trained model GoogleNet

4 For T = 1; T <= total number of classes Do

5 Compute similarity score SS(I, T )

6 Save SS(I, T ) go to step 4; compute SS to

next class

7 END

8 Get highest SS(I, T )

8 IF highest SS(I, T ) >= 0.5

9 Output the class name ‘‘Label.’’

10 ELSE

11 Output ‘‘unknown image.’’

12 END-IF go to step 2; load next image

13 END

The total number of images in this experiment is 25,331.

The proposed model trained and validated using 80% equals

20,265 images, and 10% equals 2,531 images of the ISIC

2019 dataset, respectively, while the rest of the dataset 10%

equals 2,531 images used for testing. The obtained results of

this experiment using the modified GoogleNet with bootstrap

SVM to detect outliers are:

Accuracy ≈ 81%

Sensitivity ≈ 74%

Specificity ≈ 84%

Precision ≈ 77%

F1 Score = 75.47%

FIGURE 11. Training and testing to detect outliers, (a) training process,
and (b) testing process.

The values of the performance measures are less than those

of the previous experiments for many reasons. The first one

because the test performed using the ISIC 2019 test set.
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The second one is the unknown images and the threshold

that applied to the similarity score, which may ignore the

imagewith uncertainty related to one of the previously trained

classes. The third one is the use of traditional machine learn-

ing methods such as multi-class SVM, which give a lower

performance measure [30].

A comparative study is performed with ISIC 2019 leader-

board. The highest performance measure was achieved by

Gessert et al. [34], which tried to ensemble a multi-resolution

efficientNets with loss balancing. Gessert and his coauthors

achieved an accuracy rate of∼63%, as listed in the ISIC 2019

leaderboard. Table 2 summarizes the comparative study,

while Fig. 12 shows the obtained ROC.

TABLE 2. Comparative study.

FIGURE 12. Roc for the proposed model.

IV. CONCLUSION

Amethod for ISIC 2019 challenge dataset has been developed

here by using transfer learning and pre-trained deep neural

network GoogleNet. The proposed method can classify eight

different types of lesions accurately, even with the imbalance

of images between classes. The performance measures of the

proposed methods were accuracy, sensitivity, specificity, and

precision, while the values of these measures were 94.92%,

79.8%, 97%, and 80.36%, respectively. The performance of

the proposedmethod increased when the number of images in

all classes decreased to overcome the problem of imbalance

in images between classes. We noticed that when the weights

of all architecture layers were fine-tuned, the performance

measures become higher than fine-tuning only the replaced

layers. Another model proposed to detect unknown images

using GoogleNet and multi-class SVM. In the same way of

using GoogleNet here, the authors tried to use VGG19, but it

can’t be trained or tested using the same device. It requires a

specific hardware specification that all researchers in various

countries cannot meet.
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