Accepted Manuscript

Skin microbiome prior to development of atopic dermatitis: early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year

Elizabeth A. Kennedy, BS, Jennifer Connolly, MSc, Jonathan O'B Hourihane, DM, Padraic G. Fallon, PhD, WH Irwin McLean, DSc FRS, Deirdre Murray, PhD, Jay-Hyun Jo, PhD, Julia A. Segre, PhD, Heidi H. Kong, MD, MHSc, Alan D. Irvine, MD DSc

PII: S0091-6749(16)30893-4

DOI: 10.1016/j.jaci.2016.07.029

Reference: YMAI 12319

To appear in: Journal of Allergy and Clinical Immunology

Received Date: 6 May 2016

Revised Date: 20 July 2016

Accepted Date: 27 July 2016

Please cite this article as: Kennedy EA, Connolly J, O'B Hourihane J, Fallon PG, McLean WI, Murray D, Jo J-H, Segre JA, Kong HH, Irvine AD, Skin microbiome prior to development of atopic dermatitis: early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year, *Journal of Allergy and Clinical Immunology* (2016), doi: 10.1016/j.jaci.2016.07.029.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Skin microbiome prior to development of atopic dermatitis:		
2	early colonization with commensal staphylococci at 2 months is		
3	associated with a lower risk of atopic dermatitis at 1 year		
4			
5	Elizabeth A. Kennedy BS ¹ , Jennifer Connolly MSc ^{2,} , Jonathan O'B Hourihane DM ² ,		
6	Padraic G. Fallon PhD ^{3, 4} , WH Irwin McLean DSc FRS ⁵ , Deirdre Murray PhD ² , Jay-		
7	Hyun Jo, PhD ¹ , Julia A. Segre, PhD ⁶ , Heidi H. Kong MD, MHSc ^{1*} , Alan D. Irvine MD		
8	DSc ^{3,4,7*}		
9			
10	1. Dermatology Branch, CCR, NCI, NIH		
11	2. Paediatrics and Child Health, University College, Cork and the Irish Centre for		
12	Fetal and Neonatal Translational (INFANT) Research, Cork University Maternity		
13	Hospital, Ireland		
14	3. Clinical Medicine, Trinity College Dublin		
15	4. National Children's Research Centre, Our Lady's Children's Hospital Crumlin,		
16	Dublin		
17	5. Dermatology and Genetic Medicine, University of Dundee		
18	6. Translational and Functional Genomics Branch, NHGRI, NIH		
19	7. Paediatric Dermatology, Our Lady's Children's Hospital Crumlin, Dublin		
20	*These authors contributed equally to this work.		
21			
~~			

- 23 Correspondence to:
- Alan D. Irvine MD
- 25 National Children's Research Centre
- 26 Our Lady's Children's Hospital Crumlin, Dublin 12
- 27 IRELAND
- 28 irvinea@tcd.ie
- 29 Phone 3531 428 2532
- 30 Fax 3531-428-2651
- 31 or:
- 32 Heidi H. Kong MD, MHSc
- 33 Dermatology Branch/CCR/NCI/NIH
- 34 10 Center Dr, Bldg 10/MSC 1908
- 35 Bethesda, MD 20892-1908
- 36 USA
- 37 konghe@mail.nih.gov
- 38 Fax 1-301-496-5370
- 39 Phone 1-301-496-2481

40 Funding Sources

41 ADI is funded by the National Children's Research Centre, Dublin, Ireland. The National

- 42 Children's Research Centre (NCRC) is the primary funding source for the on-going Cork
- 43 BASELINE birth cohort. Additional support came from the UK Food Standards Agency
- 44 (FSA). Work also supported by Intramural Research Program of the NIH National

- 45 Cancer Institute (EAK, J-HJ, HHK) and National Human Genome Research Institute
- 46 (JAS).

47 Abstract

48 Background

Disease flares of established atopic dermatitis (AD) are generally associated with a lowdiversity skin microbiota and *Staphylococcus aureus* dominance. The temporal transition
of the skin microbiome between early infancy and the dysbiosis of established AD is
unknown.

53

54 Methods

We randomly selected 50 children from the Cork BASELINE longitudinal birth cohort for microbiome sampling at three times in the first six months of life, at four skin sites relevant to AD: the antecubital and popliteal fossae, nasal tip, and cheek. We identified ten infants who developed AD and compared them with ten randomly selected control infants with no AD. We performed bacterial 16S ribosomal RNA sequencing and analysis directly from clinical samples.

61

62 **Results**

Bacterial community structures and diversity shifted over time, suggesting that age
strongly affects the skin microbiome in infants. Unlike established AD, these infantile
AD patients did not have noticeably dysbiotic communities prior to or with disease and
were not colonized by *S. aureus*. In comparing patients and controls, infants who had
affected skin at month 12 had statistically significant differences in bacterial communities
on the antecubital fossa at month 2 compared to infants who were unaffected at month
In particular, commensal staphylococci were significantly less abundant in infants

70	affected at month 12, suggesting that this genus may protect against the later		
71	development of AD.		
72			
73	Conclusions		
74	This study suggests that 12-month-old infants with AD were not colonized with		
75	Staphylococcus aureus before developing AD. Additional studies are needed to confirm		
76	if colonization with commensal staphylococci modulates skin immunity and attenuates		
77	development of AD.		
78			
79	Clinical Implications or Key Messages		
80	S. aureus colonization was absent in infants with AD. Colonization by commensal		
81	staphylococcal species may protect against development of eczema.		
82			
83			
84	Capsule Summary		
85	Staphylococcus aureus colonization does not predate development of AD in infants;		
86	colonization by commensal staphylococci may protect against later AD development.		
87	Bacterial communities shifted with age during the first year of life.		
88			
89			
90			
91			
92			

93 Key words

- 94 Staphylococcus aureus
- 95 Atopic dermatitis
- 96 Skin
- 97 microbiome
- 98 Longitudinal birth cohort
- 99 16S sequencing
- 100
- 101
- 102
- 103 Abbreviations
- 104 AD (Atopic Dermatitis)
- 105 BASELINE (Babies After Scope: Evaluating the Longitudinal Impact Using
- 106 Neurological and Nutritional Endpoints)
- 107 CUMH (Cork University Maternity Hospital)

109

110 INTRODUCTION

111 Atopic dermatitis (AD) is a common inflammatory skin condition that begins 112 early in life. AD patients with established disease experience frequent colonization and 113 increased infections with *Staphylococcus aureus* as well as potentially life-threatening 114 eczema herpeticum with herpes simplex virus. The hygiene hypothesis relates the development of atopic disorders (AD, allergic rhinitis, and asthma) to reduced microbial 115 exposure at a young age¹. Epidemiological studies examining the incidence of asthma 116 have linked exposure to farming environments to lower rates of allergic disorders²⁻⁴. 117 118 However, the potential role of microbe exposure in early childhood to the development of 119 AD and the subsequent atopic march towards the development of allergic rhinitis and 120 asthma remains to be elucidated. 121 There is significant interest in the potential effects of microbes on the development of skin immunity as well as disease ⁵⁻⁹. Recent work in mice has shown that 122 123 cutaneous exposure to commensal bacteria early in life can induce tolerance to these microbes⁶. Given these epidemiologic associations between environmental exposure and 124 125 development of atopic diseases, we investigated the skin microbiome in a birth cohort. 126 We analyzed bacterial 16S rRNA gene sequences from swabs collected from four skin 127 sites in infants in a birth cohort (Babies After Scope: Evaluating the Longitudinal Impact 128 Using Neurological and Nutritional Endpoints/BASELINE) at three different time points 129 to determine if the differences in the skin microbiome were associated with AD 130 development.

131

133 **METHODS**

134 Study subjects

135 The Cork Babies After Scope: Evaluating the Longitudinal Impact Using Neurological 136 and Nutritional Endpoints (BASELINE) birth cohort study is the pediatric follow-on from the Cork Centre for the Screening for Pregnancy Endpoints (SCOPE) study^{10, 11}. 137 The Cork BASELINE birth cohort study recruited within a white Irish population in 138 139 Cork, Ireland from August 2009 to October 2011. These women were subject to the 140 inclusion criteria of the SCOPE study: low-risk primigravidous mothers with singleton 141 pregnancies, who delivered at or near term. Maternal consent was obtained at 20 weeks gestation, and verified at delivery. Ethical approval for the Cork BASELINE birth cohort 142 143 Study was granted by the Clinical Research Ethics Committee of the Cork Teaching 144 Hospitals, ref ECM 5 (9) 01/07/2008. The BASELINE study is registered with the United States National Institutes of Health Clinical Trials Registry (http://www.clinical 145 146 trials.gov), ID: NCT01498965.

147

148

149 Clinical diagnosis of Atopic Dermatitis

150 All infants were assessed at birth, and at 2, 6, 12, and 24 months of age. Assessment

151 included parental questionnaires and physical exam. Screening questions specific for

152 atopic dermatitis were included in the questionnaires administered at 2, 6, and 12 months.

AD was diagnosed (at 6, 12, and 24 months) by experienced healthcare personnel using

- 154 the UK Working Party diagnostic criteria¹²⁻¹⁴. When AD was present, the SCORAD
- 155 (SCORing Atopic Dermatitis) clinical tool was used to assess severity^{15, 16}. The

156	Nottingham Eczema Severity Score (NESS) was also used to assess AD severity at 12		
157	months ¹⁷ . Demographic data and clinical details are shown in Table 1 and Table E1.		
158			
159	Filaggrin (FLG) genotyping		
160	Cord blood samples were collected at birth and stored for analysis. FLG genotyping was		
161	carried out on all study subjects with testing for the four most common Irish/European		
162	mutations as previously described ¹⁸ . None of the subjects in this study were found to		
163	have FLG mutations.		
164			
165	Sampling for microbiome analysis		
166	We randomly selected 50 infants from the birth cohort and obtained skin swabs at day 2,		
167	month 2, and month 6. Skin samples and negative controls were collected using pre-		
168	moistened swabs as previously described ¹⁹ . After all infants had been assessed at 1 year,		
169	ten infants with clinical AD at months 2, 6 and/or 12 were selected for analysis as 'AD		
170	patients'. Healthy controls were ten infants without AD at any study time points selected		
171	at random. Sample sites were selected based on the presentation of AD at different ages.		
172	Cheeks (Ch) are a site of AD predilection in infants, and the nasal tip (Nt) is typically		
173	spared. Antecubital fossae (Af) and popliteal fossae (Pf) are typical sites of AD		
174	predilection in children and adolescents.		
175			
176			
177			

178 Sample processing/sequencing

179	16S rRNA V1-V3 sequencing was performed on swab samples as previously described ¹⁹ .
180	Swabs were incubated in Yeast Cell Lysis Solution (Epicenter MasterPure kit,
181	MPY80200) and Ready-Lyse Solution (Epicenter R1802M) for 1 hour at 37°C. Two 5-
182	mm stainless steel beads (Qiagen) were added and processed in a TissueLyser (Qiagen)
183	for 2 min at 30 Hz. The solution was treated with MPC Protein Precipitation Reagent
184	(Epicenter MasturePure kit MPY80200) to remove cellular debris. Subsequent steps were
185	performed using the PureLink Genomic DNA kit (Invitrogen). Barcoded primers
186	flanking V1 (27F, 59-AGAGTTTGATCCTGGCTCAG-39) and V3 (534R, 59-
187	ATTACCGCGGCTGCTGG-39) were used for PCR. PCR products were purified using
188	the Agencourt AMPure XP Kit (A63880) and quantitated using the Quant-iT dsDNA
189	high-sensitivity assay kit (Invitrogen, Q33120); equivalent amounts of these PCR
190	products were pooled, purified with a Qiagen MinElute column (Qiagen, 28004) into 30
191	μ L TE, and sequenced at the NIH Intramural Sequencing Center on a 454 GS FLX
192	(Roche) platform. Reagents and collection procedure controls were tested and
193	demonstrated no significant background contamination.
194	

Data analysis 195

Sequences were preprocessed using mothur version 1.35.1²⁰. Briefly, 454 flowgram data 196 197 were trimmed and denoised and chimera-checking was completed using the mothur implementation of UCHIME²¹. Sequences were classified using the Ribosomal Database 198 Project naïve Bayesian classifier²². Sequences classified as Chloroplast or 199 Mitochondria were discarded. Site-specific definition of operational taxonomic units 200 201 (OTUs, or groups of sequences that share a specific level of similarity) and downstream

202	analyses was performed in mothur. Within the samples from each time point or site,		
203	pairwise distances were calculated and OTUs defined at 97% nucleotide similarity.		
204	Within-sample (Shannon diversity) and between-sample (theta index) measurement were		
205	performed based on these OTU definitions with subsampling to 1000 sequences per		
206	sample ²³ . Rarefaction curves level off by this value, suggesting adequate sequencing		
207	coverage; any samples with fewer than 1000 sequences after preprocessing were removed		
208	from analysis (Fig E1). Differentially abundant OTUs were detected using the metastats		
209	command in mothur.		
210			
211	The sequences classified to the Staphylococcus genus by the RDP naïve Bayesian		
212	classifier were then placed on a phylogenetic reference tree using "-keep-at-most 1000		
213	max-pitches 1000". Taxonomy was assigned using the guppy program in pplacer ²⁴ with a		
214	likelihood cutoff set to 0.65 as previously described ¹⁹ .		
215			
216	Statistics		
217			
218	All data analysis was performed in R; results are presented as mean ± SEM unless		
219	otherwise indicated. The 95% confidence intervals were estimated. Post-hoc tests (i.e.		
220	pairwise comparisons in AMOVA) were adjusted using a Bonferroni correction. For		
221	detection of differentially abundant OTUs, metastats results are filtered for OTUs with a		
222	mean abundance of 0.05% or greater and p-values calculated using an FDR adjustment.		
223			
224	RESULTS		

225

226 Site-specific bacterial colonization patterns

227 Since different skin microenvironments and anatomic regions harbor distinct microbial communities in adults and older children^{25, 26}, we initially compared the major bacterial 228 229 taxa present on the four sites on infants. Relative abundances of these bacterial taxa 230 showed differences between the two facial sites (Ch and Nt) and the extremity sites (Af 231 and Pf) (Fig E2). Calculation of differentially abundant species between the site types 232 confirmed that Staphylococcus spp. were relatively more abundant on extremity sites at 233 all time points, and Gemella spp. were relatively more abundant on facial sites. Other 234 taxa were only differentially represented at some time points, with facial sites in 235 Propionibacterium spp. at day 2 and Streptococcus spp. at later time points (Table E2). 236 237 We validated these findings with biodiversity calculations, examining samples from each 238 time point. We analyzed how similar the bacterial community structures were between 239 the samples using the theta similarity index, which accounts for both the presence and proportion of bacterial species²³. A theta index value of 1 indicates that the two bacterial 240 241 communities have identical structures; a value of 0 indicates maximally dissimilarity. In 242 principal coordinates analyses (PCoA) based on these theta values, samples that are more 243 similar to each other cluster more closely together. At each time point, the facial site 244 samples clustered together (AMOVA p-value > 0.05) but distinctly separate from the 245 extremity site samples (p-value < 0.006). The extremity sites clustered together at day 2 246 and month 2, but had different centroids at month 6 (p-value=<0.006) (Fig 1 and Fig E3).

247

248 Changes in bacterial colonization over time

249 Skin microbiomes differ between children and adults; however, studies with longitudinal skin sampling in infants are infrequent^{27, 28}. Alterations in the skin bacterial abundances 250 251 at the different sampling time points were apparent in our cohort (Fig E4). For each skin 252 site, the bacterial community structures showed striking shifts based on sampling 253 timepoint (Fig 2AB, Fig E5). At both extremity sites, the samples clustered separately 254 between day 2 and month 6 (AMOVA p-value = 0.024 for Af, 0.003 at Pf). For both 255 facial sites, day two and month 6 samples clustered significantly as well (p<0.003 for 256 each), and between month 2 and month 6 (p<0.003 at Ch, p=0.06 at Nt). 257 258 To examine interpersonal variation, we calculated the mean similarity between samples at 259 a single site and time point. For both facial sites, bacterial communities between subjects 260 were most similar at month 6, converging to a more common bacterial population across 261 subjects. Extremity sites did not present this same pattern; instead the most similar 262 bacterial community structures were observed at month 2 (Fig 2C). 263 264 We analyzed the bacterial diversity of all samples, using the Shannon diversity index (a 265 higher value signifies more taxonomic groups and/or a more even distribution of these 266 groups). At each time point, diversity was similar between Af, Ch, and Nt (Wilcoxon 267 Rank-Sum test p-value > 0.05; Fig 3, Table E3). Pf had a substantially altered pattern, 268 significantly different from the other sites at all time points, except Af at day 2. At the 269 facial sites, bacterial diversity increased significantly over the time studied (Wilcoxon 270 Rank-Sum test p-value < 0.001 for each site between Day 2 and Month 6; Table E3).

Combined with the increasingly similar bacterial community structures on the face, this

272	suggests that over time the microbial population converges and stabilizes at facial sites.
273	Samples from the antecubital fossa also significantly increased in diversity between the
274	time points (p=0.033).
275	
276	Colonization of antecubital fossa with commensal staphylococci at month 2 is
277	associated with decreased incidence of AD at 1 year
278	To identify any bacterial differences associated with AD in this cohort, we compared
279	infants who developed AD at any time within the first year of life versus controls for each
280	site and sampling time. At all time points, the bacterial community structures of infants
281	who developed AD at any time within the first year of life did not cluster separately from
282	control infants, and no significant differences in Shannon diversity were identified
283	between the groups. Since the patients had clinical disease presenting at different time
284	points (Table E1), we also compared samples based on whether the subjects presented
285	with disease at each time point. Overall, there was almost no distinction between affected
286	and unaffected samples in within- or between-sample diversity, either before or at the
287	time point when the patients were affected (Tables E3, E4).

288

271

289 Interestingly, the month 2 Af samples demonstrated statistically significant clustering,

grouped by those infants that went on to be affected at month 12 in this study (AMOVA

p-value = 0.003). OTU-based analysis suggested that a single OTU was differentially

- abundant between the groups; this OTU was classified as *Staphylococcus* (Fig 4A). When
- 293 considering all sequences classified to the *Staphylococcus* genus, the relative abundances

294	were significantly different between the two groups, with subjects that went on to be
295	affected colonized by significantly less staphylococci (mean 0.065, 95% CI: 0.035-0.094)
296	as compared to those that went on to be unaffected (mean 0.495, 95% CI 0.458-0.531).
297	(p < 0.003 for Wilcox rank-sum test) (Fig 4B).
298	R '
299	Given the specific association between S. aureus and AD flares, we classified the
300	Staphylococcus sequences to the species level; in these samples, the most prevalent
301	species were S. epidermidis and S. cohnii (Fig 4C). In contrast to older patients with
302	AD^{29} , essentially no <i>S. aureus</i> sequences were present in the samples in our cohort, even
303	at the sites and times that patients were affected (Fig E6-7). There were no statistically
304	significant differences within individual Staphylococcus spp. levels in the month 2 Af
305	samples between the later-affected and later-unaffected samples.
306	
307	Birth Method and Feeding Method Have Little Effect on Skin Microbiota
308	Differences have previously been reported between the skin microbiota of infants born by
309	C-section versus vaginal birth ²⁸ . We investigated whether birth method was associated
310	with differences in skin microbiota in our cohort. There was no clustering of samples at
311	any site or time point based on birth method, except Af samples at day 2 (Fig E8AB). No
312	statistically significant differences in skin colonization based on birth method were
313	observed at the earliest timepoint in this cohort, the second day of life. Shannon diversity
314	was similar between the two birth methods as well (Fig E8C). Feeding method has been
315	associated with differences in the intestinal microbiome composition of infants ^{30, 31} .

- However, feeding method breast, formula, or combination and gender did not affect
 skin bacterial colonization patterns in this cohort (Tables E3, 4)
- 318

319 Discussion

320 While infections with S. aureus and herpes simplex virus can complicate the course of established AD, the role of microbes in the etiology, genesis and pathogenesis 321 322 of AD remains unclear. Recent murine studies have shown that cutaneous microbes can influence the development of skin immunity and disease^{5, 6, 9}. Determining if cutaneous 323 324 microbes play a role in the initiation of AD could provide an opportunity to reduce the 325 development of atopic disorders. To investigate the skin microbiome in infants prior to 326 the development of AD, we used 16S rRNA gene sequencing of skin samples from a 327 birth cohort and determined that shifts occur in the skin microbiome over the first six 328 months of life, with site-specific bacteria communities changing in composition and 329 diversity over time. We also identified a difference in staphylococcal colonization at a 330 site of AD predilection that predates the presentation of disease, with patients who went 331 on to be affected at a later date colonized by fewer *Staphylococcus* spp. Birth method and 332 feeding method did not appear to affect skin bacterial communities at the sites and time 333 points studied in this cohort, but other studies are needed to confirm these findings. 334 Prior studies of human skin have shown that skin microbial communities are sitespecific^{32, 33}. While there is heterogeneity of bacterial communities across the skin 335 336 surface, specific skin sites in different individuals often share common patterns of 337 bacterial composition. This biogeography of the skin microbiome has been observed in older children and adults ^{26, 34}. In previous infant skin microbiome studies, site-specific 338

339	differences were not evident in the first 3 months of life because infants were studied at a
340	single timepoint immediately after delivery or were sampled at a single timepoint and
341	analyzed in age cohorts of 1-3, 4-6, and 6-12 months ^{27, 28} . The present study differed by
342	sampling the same cohort of infants over a six-month interval (day 2, month 2, and month
343	6) and observed site-specific differences as early as the second day of life, a timepoint not
344	previously investigated. The bacterial diversity of one skin site, the popliteal fossa,
345	shifted at time points differentially from the three other sites studied. Since this specific
346	skin site has not been examined in a cohort this young, the results may be related to a
347	unique aspect of infant skin physiology and/or exposure, or specific to this cohort.
348	Interestingly, the body site differences in bacterial communities also reflect observed site
349	differences in immune cell density and composition from human skin ³⁵⁻³⁸ . Investigating
350	site-specific differences in host-microbial interactions may enhance our understanding of
351	the predilection of certain skin regions for dermatologic diseases.
352	In addition to the biogeography of the skin microbiome, skin bacterial
353	communities can shift significantly during different periods of the life cycle, such as
354	puberty ²⁶ . The physiology of infant skin changes over the first year of life with alterations
355	in stratum corneum hydration, skin pH, and sebum production ³⁹ . In this study, the shifts
356	in skin bacterial communities in the first months of life were the inverse of skin
357	microbiome alterations that have been observed later in childhood. The increasing
358	Shannon diversity observed in the first year of life in this infant cohort supports previous
359	work that showed increased evenness, or similar numbers in each taxa, in bacterial
360	communities from three skin sites in a cross-sectional study ²⁷ . During puberty,
361	significant shifts in skin bacterial communities likely reflect the changes in skin

362	physiology and systemic hormones ²⁶ . The changes in the skin microbiome observed in
363	these infants potentially reflect the influences of waning maternal hormones as well as
364	the continued development of infant skin. For example, lipophilic Propionibacterium are
365	relatively abundant on the facial sites at neonatal day 2, but decrease substantially at later
366	time points. This corresponds to the high sebaceous activity triggered by maternal
367	hormones in the first days of life, which wane significantly in the weeks after birth 40 .
368	These findings lead to additional questions, including whether neonatal skin disorders,
369	e.g. cephalic pustulosis (aka neonatal acne), attributed to maternal hormones potentially
370	may also be affected by alterations in skin bacteria.
371	A previous study in mice reported that developing antigen-specific tolerance to
372	commensals depends on early colonization, suggesting that there is a 'critical window'
373	for inducing regulatory T cells that prevent a later inflammatory response to these
374	bacteria ⁶ . Scharschmidt et al. showed that application of a commensal species of
375	Staphylococcus on neonatal skin induced these immunomodulatory effects. The relatively
376	low abundance of pathogenic staphylococcal species on the antecubital fossa of two-
377	month-old infants who later had AD at twelve months of age is intriguing in the context
378	of this prior work in mice. Whether cutaneous exposure to commensal staphylococci
379	during early infancy may have a similar effect remains unknown and further investigation
380	is needed to understand if this may influence the development of AD. The absence of S.
381	aureus at AD lesions in this cohort was somewhat surprising, given that this species is
382	associated with AD $^{29, 41-43}$. A culture-based analysis of infant skin demonstrated S.
383	aureus colonization in approximately 21% of AD lesions among infants in their first year
384	of life ⁴⁴ . The differences may be related to inherent differences in the study populations

and/or the severity of sampled skin lesions between the study groups.

386 Differences in birth method have been studied in relation to the incidence of atopy and to the neonatal skin microbiome^{28, 45}. An earlier study showed skin microbiome 387 388 differences based on birth method in neonates sampled a few minutes after delivery. The 389 small sample size and rare number of Caesarean deliveries in the current study potentially 390 contribute to the lack of statistically significant differences between the skin microbiota 391 of infants born vaginally or by Caesarean at the earliest time point in this study, day 2 of 392 life. While this study analyzed different sites over a longer time frame than the previous 393 work, a larger study would be needed to address this question. Birth method may 394 determine skin colonization very early in life; however, environmental exposures and 395 skin physiology may predominate in shaping bacterial communities after this initial 396 delivery. The skin barrier and *FLG* mutations are additional aspects of skin physiology 397 that have been studied in relation to atopy. While approximately 10% of subjects in 398 BASELINE publications and the Irish population have FLG mutations, the current cohort 399 had fewer FLG mutations than expected due to sampling effects. Since a large proportion of patients with atopic dermatitis do not carry FLG-null alleles, the results in the current 400 401 cohort avoid the potential effects of FLG mutations and remain relevant to AD. With interest in the potential immunological effects of neonatal exposures to skin microbes^{6, 46}, 402 403 characterizing the early skin microbiome in neonates with and without FLG mutations 404 and the timeframe for possible development of immunotolerance would be of significant 405 clinical importance.

406

407

There are increasing efforts to understand the potential relationship between the skin microbial landscape and the development of skin immunity and human disease.

408	Early studies of the skin microbiome will identify possible associations between specific		
409	microbes and human health and disease but need extensive further research will be		
410	required to unravel the pathophysiology and key mechanisms involved. Longitudinal		
411	sampling of the same individuals as internal controls, and the initiation of sampling soon		
412	after birth were features of this study that improve the ability to identify distinct		
413	microbial patterns that could provide insight into the skin microbial milieu prior to the		
414	development of skin disease. As a result, we were able to define the site-specificity and		
415	the longitudinal shifts of the skin microbiome in the first six months of life, as well as the		
416	difference in relative abundances of commensal staphylococci prior to the development		
417	of AD. Additional investigations are needed to test whether site-specific differences in		
418	skin microbes influence the development of atopic dermatitis.		
419			
420			
421			

422 Acknowledgements

- 423 We thank Sean Conlan and Weng-Ian Ng for their underlying efforts; NISC Comparative
- 424 Sequencing Program for sequencing; and Mark C. Udey for discussions. This work
- 425 utilized the computational resources of the NIH HPC Biowulf cluster
- 426 (http://hpc.nih.gov).
- 427

Table 1. Demographic data for study subjects

		Healthy controls	AD patients
Female:Male		6:4	5:5
C-sectio	n:Vaginal	1:9	3:7
BF:I	F F:C *	2:3:5	1:2:7
Rural	:Urban	5:5	4:6
Pet:	No pet	5:5	3:7
Emoll	ient use	2:8	6:4
(Month 2) – Y:N			
Bathing frequency			
(Month 2) –		5:5	6:4
\leq weekly : > weekly			
Antibiotic use		1:9	1:9
(Month 2) – Y:N			
Antibiotic use (6		5:5	3:7
months) – Y:N			
TEWL	Day 2	9.668 ± 0.776	9.749 ± 0.618

Month 2	10.402 ± 1.619	11.124 ± 2.135
Month 6	11.412 ± 2.149	10.08 ± 1.342

***BF – breast-fed exclusively; FF – formula-fed exclusively; C – combination feeding**

434 Figure legends

435	Fig 1: Site-specificity of bacterial community composition
436	All samples at day two clustered by principal coordinates analysis based on theta
437	similarity coefficients. At day two, Af and Pf clustered together (AMOVA p-value=1), as
438	did Ch and Nt ($p=1$), but each clustered distinctly from the other site pair ($p < 0.006$). P-
439	values adjusted with Bonferonni correction (n=6)
440	
441	Fig 2: Skin microbial communities on infants undergo site-specific shifts in
442	composition with age.
443	(a) Antecubital fossa samples clustered by principal coordinates analysis based on
444	theta similarity coefficients. Using AMOVA, samples clustered distinctly between
445	day 2 and month 6 (p=0.024), but not significantly between month 2 and month 6
446	(p=0.12) or between day 2 and month 2 $(p=0.21)$ *
447	(b) Cheek samples clustered by principal coordinates analysis based on theta
448	similarity coefficients. Using AMOVA, samples clustered significantly between
449	day 2 and month 6 (p < 0.003), between month 2 and month 6 (p < 0.003), but not
450	between day 2 and month 2 (p=0.102)*
451	(c) Mean theta similarity coefficients of comparisons within samples of each time
452	point. Higher theta values signify greater similarity (Wilcoxon Rank-Sum *:
453	p<0.05, **: p<0.01, *** p<0.001).
454	Post-hoc p-values adjusted with Bonferonni correction (n=3)
455	

457	Fig 3: Changes in bacterial biodiversity with age
458	Mean Shannon diversity at each time point; Shannon diversity is calculated based on
459	richness and evenness of taxa within the community. (Wilcoxon Rank-Sum *: p<0.05,
460	**: p<0.01, *** p<0.001).
461	
462	Fig 4: Antecubital fossa microbial community differences predate AD presentation.
463	(a) Month 2 antecubital fossa samples by principal coordinates analysis of theta
464	similarity coefficient. Samples clustered by those that went on to be affected at
465	month 12 and those that were unaffected at month 12 (AMOVA p-value = 0.003).
466	(b) Relative abundance of major taxa; subjects that went on to be affected at month
467	12 had significantly lower proportions of Staphylococcus than those that went on
468	to be unaffected (Wilcoxon Rank-Sum p-value = 0.008)
469	(c) Relative abundance of staphylococcal species. S. aureus was essentially absent in
470	these communities.
471	
472	
473	
474	
475	
476	
477	
478	
479	

480 **REFERENCES**

- 4811.Strachan DP. Hay fever, hygiene, and household size. Bmj 1989; 299:1259-60.
- 482 2. Braun-Fahrlander C, Gassner M, Grize L, Neu U, Sennhauser FH, Varonier HS,
- 483 et al. Prevalence of hay fever and allergic sensitization in farmer's children
- 484 and their peers living in the same rural community. SCARPOL team. Swiss
- 485 Study on Childhood Allergy and Respiratory Symptoms with Respect to Air
- 486 Pollution. Clin Exp Allergy 1999; 29:28-34.
- 4873.Riedler J, Braun-Fahrlander C, Eder W, Schreuer M, Waser M, Maisch S, et al.
- 488 Exposure to farming in early life and development of asthma and allergy: a
 489 cross-sectional survey. Lancet 2001; 358:1129-33.
- 490 4. Riedler J, Eder W, Oberfeld G, Schreuer M. Austrian children living on a farm
 491 have less hay fever, asthma and allergic sensitization. Clin Exp Allergy 2000;
 492 30:194-200.
- 493 5. Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, et al.
 494 Compartmentalized control of skin immunity by resident commensals.
- 495 Science 2012; 337:1115-9.
- Scharschmidt TC, Vasquez KS, Truong HA, Gearty SV, Pauli ML, Nosbaum A, et
 al. A Wave of Regulatory T Cells into Neonatal Skin Mediates Tolerance to
 Commensal Microbes. Immunity 2015; 43:1011-21.
- 4997.Jiang X, Clark RA, Liu L, Wagers AJ, Fuhlbrigge RC, Kupper TS. Skin infection
- 500 generates non-migratory memory CD8+ T(RM) cells providing global skin
- 501 immunity. Nature 2012; 483:227-31.

	502	8.	Sanford JA, Gallo RL. Functions of the skin microbiota in health and disea
--	-----	----	--

503 Semin Immunol 2013; 25:370-7.

- 504 9. Kobayashi T, Glatz M, Horiuchi K, Kawasaki H, Akiyama H, Kaplan DH, et al.
- 505 Dysbiosis and Staphylococcus aureus Colonization Drives Inflammation in

506 Atopic Dermatitis. Immunity 2015; 42:756-66.

- 507 10. AB. MSN. Welcome to the BASELINE study. 2008. Available at: http://www.
 508 baselinestudy.net/. Accessed June 2016].
- 509 11. SCOPE Consortium and MedSciNet AB. 2004. Available at: http://www.

510 scopestudy.net/. Accessed June 2016.].

- 511 12. Williams HC, Burney PG, Hay RJ, Archer CB, Shipley MJ, Hunter JJ, et al. The
- 512 U.K. Working Party's Diagnostic Criteria for Atopic Dermatitis. I. Derivation
- of a minimum set of discriminators for atopic dermatitis. Br J Dermatol 1994;
- 514 131:383-96.
- 515 13. Williams HC, Burney PG, Pembroke AC, Hay RJ. The U.K. Working Party's
- 516 Diagnostic Criteria for Atopic Dermatitis. III. Independent hospital validation.

517 Br J Dermatol 1994; 131:406-16.

- 518 14. Williams HC, Burney PG, Strachan D, Hay RJ. The U.K. Working Party's
- 519 Diagnostic Criteria for Atopic Dermatitis. II. Observer variation of clinical
- 520 diagnosis and signs of atopic dermatitis. Br J Dermatol 1994; 131:397-405.
- 521 15. Severity scoring of atopic dermatitis: the SCORAD index. Consensus Report of
- 522 the European Task Force on Atopic Dermatitis. Dermatology 1993; 186:23-
- 523 31.

524	16.	Kunz B, Oranje AP, Labreze L, Stalder JF, Ring J, Taieb A. Clinical validation
525		and guidelines for the SCORAD index: consensus report of the European Task
526		Force on Atopic Dermatitis. Dermatology 1997; 195:10-9.
527	17.	Emerson RM, Charman CR, Williams HC. The Nottingham Eczema Severity
528		Score: preliminary refinement of the Rajka and Langeland grading. Br J
529		Dermatol 2000; 142:288-97.
530	18.	Sandilands A, Terron-Kwiatkowski A, Hull PR, O'Regan GM, Clayton TH,
531		Watson RM, et al. Comprehensive analysis of the gene encoding filaggrin
532		uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic
533		eczema. Nat Genet 2007; 39:650-4.
534	19.	Oh J, Freeman AF, Program NCS, Park M, Sokolic R, Candotti F, et al. The
535		altered landscape of the human skin microbiome in patients with primary
536		immunodeficiencies. Genome Res 2013; 23:2103-14.
537	20.	Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al.
538		Introducing mothur: open-source, platform-independent, community-
539		supported software for describing and comparing microbial communities.
540		Appl Environ Microbiol 2009; 75:7537-41.
541	21.	Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves
542		sensitivity and speed of chimera detection. Bioinformatics 2011; 27:2194-
543		200.
544	22.	Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid
545		assignment of rRNA sequences into the new bacterial taxonomy. Appl
546		Environ Microbiol 2007; 73:5261-7.

547	23.	Yue JC, Clayton MK. A Similarity Measure Based on Species Proportions.
548		Communications in Statistics - Theory and Methods 2005; 34:2123-31.
549	24.	Matsen FA, Kodner RB, Armbrust EV. pplacer: linear time maximum-
550		likelihood and Bayesian phylogenetic placement of sequences onto a fixed
551		reference tree. BMC Bioinformatics 2010; 11:538.
552	25.	Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al.
553		Topographical and temporal diversity of the human skin microbiome.
554		Science 2009; 324:1190-2.
555	26.	Oh J, Conlan S, Polley EC, Segre JA, Kong HH. Shifts in human skin and nares
556		microbiota of healthy children and adults. Genome Med 2012; 4:77.
557	27.	Capone KA, Dowd SE, Stamatas GN, Nikolovski J. Diversity of the human skin
558		microbiome early in life. J Invest Dermatol 2011; 131:2026-32.
559	28.	Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer
560		N, et al. Delivery mode shapes the acquisition and structure of the initial
561		microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S
562		A 2010; 107:11971-5.
563	29.	Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, et al. Temporal
564		shifts in the skin microbiome associated with disease flares and treatment in
565		children with atopic dermatitis. Genome Res 2012; 22:850-9.
566	30.	Madan JC, Hoen AG, Lundgren SN, Farzan SF, Cottingham KL, Morrison HG, et
567		al. Association of Cesarean Delivery and Formula Supplementation With the
568		Intestinal Microbiome of 6-Week-Old Infants. JAMA Pediatr 2016:1-8.

569	31.	Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C,
570		et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation
571		and reduced Th1 responses in infants delivered by caesarean section. Gut
572		2014; 63:559-66.
573	32.	Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial
574		community variation in human body habitats across space and time. Science
575		2009; 326:1694-7.
576	33.	Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al.
577		Topographical and temporal diversity of the human skin microbiome.
578		Science 2009; 324:1190-2.
579	34.	Oh J, Byrd AL, Deming C, Conlan S, Program NCS, Kong HH, et al.
580		Biogeography and individuality shape function in the human skin
581		metagenome. Nature 2014; 514:59-64.
582	35.	Omine Y, Hinata N, Yamamoto M, Kasahara M, Matsunaga S, Murakami G, et
583		al. Regional differences in the density of Langerhans cells, CD8-positive T
584		lymphocytes and CD68-positive macrophages: a preliminary study using
585		elderly donated cadavers. Anat Cell Biol 2015; 48:177-87.
586	36.	Weber A, Knop J, Maurer M. Pattern analysis of human cutaneous mast cell
587		populations by total body surface mapping. Br J Dermatol 2003; 148:224-8.
588	37.	Grimbaldeston MA, Simpson A, Finlay-Jones JJ, Hart PH. The effect of
589		ultraviolet radiation exposure on the prevalence of mast cells in human skin.
590		Br J Dermatol 2003; 148:300-6.

591	38.	Thomas JA, Biggerstaff M, Sloane JP, Easton DF. Immunological and
592		histochemical analysis of regional variations of epidermal Langerhans cells in
593		normal human skin. Histochem J 1984; 16:507-19.
594	39.	Fluhr JW, Darlenski R, Taieb A, Hachem JP, Baudouin C, Msika P, et al.
595		Functional skin adaptation in infancy - almost complete but not fully
596		competent. Exp Dermatol 2010; 19:483-92.
597	40.	Agache P, Blanc D, Barrand C, Laurent R. Sebum levels during the first year of
598		life. Br J Dermatol 1980; 103:643-9.
599	41.	Leyden JJ, Marples RR, Kligman AM. Staphylococcus aureus in the lesions of
600		atopic dermatitis. Br J Dermatol 1974; 90:525-30.
601	42.	Leung DY, Guttman-Yassky E. Deciphering the complexities of atopic
602		dermatitis: shifting paradigms in treatment approaches. J Allergy Clin
603		Immunol 2014; 134:769-79.
604	43.	Bieber T. Atopic dermatitis. N Engl J Med 2008; 358:1483-94.
605	44.	Skov L, Halkjaer LB, Agner T, Frimodt-Moller N, Jarlov JO, Bisgaard H.
606		Neonatal colonization with Staphylococcus aureus is not associated with
607		development of atopic dermatitis. Br J Dermatol 2009; 160:1286-91.
608	45.	Bager P, Wohlfahrt J, Westergaard T. Caesarean delivery and risk of atopy
609		and allergic disease: meta-analyses. Clin Exp Allergy 2008; 38:634-42.
610	46.	Nagao K, Segre JA. "Bringing Up Baby" to Tolerate Germs. Immunity 2015;
611		43:842-4.
612		

Day Two

Table E1: Metadata for each subject

			Presence of	of eczema				Pet Exposure		2 month			
Subject ID	Subject type	Month 2 (affected site)	Month 6 (affected site)	Month 12 (affected site)	Month 24 (severity)	Mode of delivery	Method of feeding	during pregnancy and 1st two months of life	2 month Urban/Rural	frequency of washing	2 month - emoillent use	2 month - antibiotic use	6 month - antibiotic use
AD1	AD patient	-	+ (Ch, Pc)	+ (skinfold at front of both ankles)	SCORAD 19 NESS mild	elective c section	Formula Fed only	No	Rural	weekly	No	No	No
AD2	AD patient	-	-	+ (back: under both shoulders)	-	normal vaginal delivery	Breast Fed (received occasional formula)	Yes (cat)	Rural	2-3 times/week	No	No	No
AD3	AD patient	-	-	+ (front of left knee)	NESS mild	normal vaginal delivery	Breast Fed (received occasional formula)	No	Urban	weekly	No	No	No
AD4	AD patient	-	+ (Ch, Pc)	+ (cheeks, forearms, Rt thigh)	NESS moderate	normal vaginal delivery	Formula Fed only	No	Rural	weekly	Yes	No	Yes (2 times)
AD5	AD patient	-	+ (Pc)	-	-	normal vaginal delivery	Breast fed for 10 days only	Yes (fish)	Urban	2-3 times/week	Yes	No	No
AD6	AD patient	-	+ (Ch)	-	-	elective c section	Breast fed for 41 days only	No	Urban	weekly	Yes	No	No
AD7*	AD patient	+ (?)	-	-	-	normal vaginal delivery	Combination feeding	No	Rural	weekly	Yes	No	Yes (1 time)
AD8	AD patient	-	+ (Ac, Pc)	-	-	elective c section	Breast fed for 13 days only	No	Urban	2-3 times/week	No	No	No
AD9*	AD patient	+ (?)	+ (Ch, Ac)	-	SCORAD 36 NESS moderate	normal vaginal delivery	Breast fed for 42 days	Yes (dog)	Urban	daily	Yes	No	No
AD10*	AD patient	+ (?)	+ (Ch)	-	NESS mild	normal vaginal delivery	Breast Fed Only	No	Urban	weekly	Yes	Yes (1 time)	Yes (same as 2 months)
C1	control				-	normal vaginal delivery	Breast Fed Only	Yes (dog)	Rural (farm)	every 10days	No	No	Yes (1 time)

C2	control		-	normal vaginal delivery	Formula Fed only	Yes (fish)	Urban	daily	No	Yes (IV)	Yes (same as 2 months)
C3	control		-	vacum delivery	Combination feeding	No	Urban	2-3 times/week	Yes	No	No
C4	control		-	normal vaginal delivery	Combination feeding	No	Rural	2-3 times/week	No	No	Yes (1 time)
C5	control		-	normal vaginal delivery	Combination feeding	No	Rural	weekly	No	No	Yes (1 time)
C6	control		-	normal vaginal delivery	Combination feeding	No	Rural	2-3 times/week	No	No	No
C7	control		no data	emergency c section	Formula Fed only	Yes (dog)	Rural	weekly	Yes	No	Yes (1 time)
C8	control		-	normal vaginal delivery	Breast Fed (received occasional formula)	Yes (dog)	Urban	3-5 times/week	No	No	No
C9	control		-	normal vaginal delivery	Formula Fed only	Yes (dog, cat, fish)	Urban	weekly	No	No	No
C10	control		-	vacum delivery	Breast Fed Only	No	Urban	weekly	No	No	No

Table E2: Metastats by site type

									p-value			
		V	/ariance -		Mean -	Variance -	SE -		(FDR-			
Time point	ΟΤυ	Mean - Face F	ace	SE - Face	Extremity	Extremity	Extremity	p-value	corrected)	OTU size	OTU classification	Higher in
Day 2	Otu0002	0.079975	0.009553	0.015454	0.2406	0.070343	0.041935	0.000999	0.00724275	65073	Staphylococcus(100)	Extremity
Day 2	Otu0003	0.247075	0.067132	0.040967	0.018725	0.003489	0.009339	0.000999	0.00724275	48068	Gemella(100)	Face
Day 2	Otu0006	0.0019	1.70E-05	0.000653	0.065875	0.026238	0.025611	0.000999	0.00724275	21437	Streptococcus(100)	Extremity
Day 2	Otu0009	0.040075	0.003209	0.008956	0.0063	0.000311	0.002786	0.000999	0.00724275	9229	Rothia(100)	Face
Day 2	Otu0005	0.097675	0.049571	0.035203	0.004125	0.000123	0.001751	0.002997	0.01655486	29524	Streptococcus(100)	Face
Day 2	Otu0013	0.00375	6.40E-05	0.001265	0.02245	0.001789	0.006689	0.003996	0.01655486	5615	Corynebacterium(100)	Extremity
Day 2	Otu0023	0.00055	2.00E-06	0.00024	0.009675	0.000807	0.004491	0.003996	0.01655486	1911	Enterococcus(100)	Extremity
Day 2	Otu0001	0.2323	0.054002	0.036743	0.109125	0.019272	0.02195	0.00999	0.03621375	69564	Propionibacterium(100)	Face
Day 2	Otu0029	0.000825	5.00E-06	0.000368	0.007675	0.000346	0.002941	0.013986	0.045066	1609	Corynebacterium(100)	Extremity
Month 2	Otu0001	0.056395	0.006899	0.013474	0.4912	0.11718	0.054125	0.000999	0.0033966	114867	Staphylococcus(100)	Extremity
Month 2	Otu0002	0.276474	0.036481	0.030984	0.05235	0.009377	0.015311	0.000999	0.0033966	49332	Streptococcus(100)	Face
Month 2	Otu0006	0.052895	0.002803	0.008589	0.00955	0.000283	0.002658	0.000999	0.0033966	9053	Gemella(100)	Face
Month 2	Otu0008	0.057289	0.006236	0.01281	0.002875	4.60E-05	0.001071	0.000999	0.0033966	7726	Veillonella(100)	Face
Month 2	Otu0010	0.033737	0.00107	0.005307	0.009825	0.000363	0.003011	0.000999	0.0033966	7201	Veillonella(100)	Face
Month 2	Otu0015	0.027974	0.002144	0.007511	0.002725	6.00E-05	0.001221	0.000999	0.0033966	5623	Prevotella(100)	Face
Month 2	Otu0018	0.035184	0.005951	0.012514	0.00085	3.00E-06	0.000283	0.000999	0.0033966	4486	Porphyromonas(100)	Face
Month 2	Otu0025	0.000632	1.00E-06	0.000157	0.011575	0.000931	0.004824	0.000999	0.0033966	1858	Paracoccus(56)	Extremity
Month 2	Otu0029	0.000632	1.00E-06	0.000143	0.0092	0.000824	0.004539	0.000999	0.0033966	1315	Kocuria(64)	Extremity
Month 2	Otu0030	0.011789	0.000339	0.002988	0.00075	4.00E-06	0.00032	0.000999	0.0033966	1307	Actinomyces(100)	Face
Month 2	Otu0007	0.058237	0.019089	0.022413	0.00175	3.30E-05	0.00091	0.001998	0.003996	7949	Prevotella(99)	Face
Month 2	Otu0009	0.032737	0.004386	0.010743	0.002525	6.50E-05	0.001274	0.001998	0.003996	7221	Simonsiella(100)	Face
Month 2	Otu0016	0.027816	0.000981	0.005081	0.006275	0.000384	0.0031	0.001998	0.003996	4977	Rothia(100)	Face
Month 2	Otu0022	5.30E-05	0	5.30E-05	0.011975	0.002619	0.008092	0.001998	0.003996	2110	Bacteroides(100)	Extremity
Month 2	Otu0027	0.011158	0.000613	0.004016	6.00E-04	3.00E-06	0.00027	0.001998	0.003996	1635	Prevotella(100)	Face
Month 2	Otu0031	0.000895	3.00E-06	0.000289	0.00765	0.000156	0.001974	0.001998	0.003996	1303	Chryseobacterium(100)	Extremity
Month 2	Otu0032	0.000605	5.00E-06	0.000359	0.006375	0.000199	0.00223	0.001998	0.003996	1088	Rhizobium(84)	Extremity
Month 2	Otu0005	0.071789	0.030372	0.028271	0.00285	8.00E-05	0.001415	0.004995	0.00893842	10639	Corynebacterium(100)	Face
Month 2	Otu0021	0.000342	1.00E-06	0.000193	0.01825	0.003418	0.009244	0.004995	0.00893842	2248	Porphyromonas(100)	Extremity
Month 2	Otu0003	0.010026	0.000632	0.004079	0.076875	0.032224	0.028383	0.005994	0.00970457	17518	Anaerococcus(100)	Extremity
Month 2	Otu0012	0.000447	4.00E-06	0.000322	0.021275	0.008443	0.014529	0.005994	0.00970457	6278	Bacteroides(100)	Extremity
Month 2	Otu0033	0.0015	9.00E-06	0.00049	0.005025	7.80E-05	0.001398	0.00999	0.01543909	1083	Corynebacterium(100)	Extremity
Month 2	Otu0023	0.015368	0.002454	0.008036	0.001575	2.20E-05	0.000744	0.017982	0.02658209	1958	Corynebacterium(100)	Face
Month 2	Otu0019	0.018395	0.000617	0.00403	0.006525	0.000374	0.003058	0.018981	0.02688975	3571	Actinomyces(100)	Face
Month 2	Otu0020	0	0	0	0.00745	0.001592	0.006309	0.01998	0.0271728	2581	Clostridium_sensu_stricto(100)	Extremity
Month 2	Otu0013	0.000816	5.00E-06	0.000365	0.01925	0.009254	0.01521	0.022977	0.03004685	5928	Propionibacterium(100)	Extremity

Month 6	Otu0001	0.007625	8.00E-05	0.00141	0.336825	0.134304	0.057945	0.000999	0.00164835	73260 Staphylococcus(100)	Extremity
Month 6	Otu0002	0.254225	0.023266	0.024118	0.071225	0.006845	0.013082	0.000999	0.00164835	59238 Streptococcus(100)	Face
Month 6	Otu0004	0.09245	0.010219	0.015983	0.007225	0.000166	0.002038	0.000999	0.00164835	16867 Prevotella(97)	Face
Month 6	Otu0006	0.070025	0.002215	0.007441	0.0072	0.000113	0.001683	0.000999	0.00164835	12845 Veillonella(100)	Face
Month 6	Otu0007	0.058475	0.001472	0.006066	0.01065	0.000199	0.00223	0.000999	0.00164835	10903 Gemella(100)	Face
Month 6	Otu0009	0.0489	0.001125	0.005304	0.0108	0.000311	0.002791	0.000999	0.00164835	9899 Rothia(100)	Face
Month 6	Otu0010	0.047225	0.002046	0.007152	0.008575	0.000563	0.003752	0.000999	0.00164835	9638 Prevotella(100)	Face
Month 6	Otu0011	0.042525	0.001943	0.00697	0.01175	0.000403	0.003175	0.000999	0.00164835	9591 Actinomyces(100)	Face
Month 6	Otu0013	0.000775	5.00E-06	0.000369	0.0422	0.012416	0.017618	0.000999	0.00164835	7696 Paracoccus(90)	Extremity
Month 6	Otu0015	0.038325	0.001231	0.005546	0.003475	1.70E-05	0.000656	0.000999	0.00164835	6530 Porphyromonas(99)	Face
Month 6	Otu0019	0.02775	0.004834	0.010993	0.001675	5.60E-05	0.001183	0.000999	0.00164835	4811 Simonsiella(100)	Face
Month 6	Otu0020	0.00185	1.00E-05	0.000508	0.02005	0.002534	0.007959	0.000999	0.00164835	4354 Chryseobacterium(100)	Extremity
Month 6	Otu0022	0.024525	0.002298	0.007579	0.00145	1.70E-05	0.000656	0.000999	0.00164835	3309 Soonwooa(100)	Face
Month 6	Otu0023	0.01385	0.000922	0.004802	0.00125	1.40E-05	0.00059	0.000999	0.00164835	2661 Corynebacterium(100)	Face
Month 6	Otu0024	0.00015	0	6.70E-05	0.011875	0.000854	0.00462	0.000999	0.00164835	2608 Bacteroides(100)	Extremity
Month 6	Otu0025	0.000925	2.00E-06	0.000194	0.011475	0.000514	0.003585	0.000999	0.00164835	2301 Kocuria(67)	Extremity
Month 6	Otu0026	0.010325	7.10E-05	0.001328	0.00155	5.00E-06	0.000358	0.000999	0.00164835	2064 Streptococcus(100)	Face
Month 6	Otu0028	4.00E-04	1.00E-06	0.000118	0.009225	0.000599	0.003868	0.000999	0.00164835	1939 Rhizobium(66)	Extremity
Month 6	Otu0030	0.008025	0.000114	0.001692	0.000975	3.00E-06	0.000254	0.000999	0.00164835	1670 Prevotella(100)	Face
Month 6	Otu0032	2.50E-05	0	2.50E-05	0.00565	0.000189	0.002172	0.000999	0.00164835	1215 Bacteroides(100)	Extremity
Month 6	Otu0014	0.000475	1.00E-06	0.000164	0.02845	0.013563	0.018414	0.001998	0.002997	6760 Anaerococcus(100)	Extremity
Month 6	Otu0027	0.00025	1.00E-06	0.000155	0.011075	0.00142	0.005958	0.001998	0.002997	2021 Blautia(100)	Extremity
Month 6	Otu0034	0.00035	1.00E-06	0.000154	0.005825	0.000367	0.003029	0.002997	0.00430004	1213 Brevundimonas(55)	Extremity
Month 6	Otu0003	0.081225	0.002872	0.008474	0.0362	0.008324	0.014426	0.006993	0.00923076	20922 Veillonella(100)	Face
Month 6	Otu0029	0.000125	0	7.30E-05	0.00895	0.001267	0.005628	0.006993	0.00923076	1726 Exiguobacterium(100)	Extremity
Month 6	Otu0018	8.00E-04	3.00E-06	0.000282	0.02695	0.012451	0.017643	0.007992	0.009768	5116 Xanthomonas(96)	Extremity
Month 6	Otu0031	0.000475	2.00E-06	0.000209	0.00605	0.000474	0.003443	0.007992	0.009768	1437 Corynebacterium(100)	Extremity
Month 6	Otu0008	1.00E-04	0	6.00E-05	0.03165	0.020618	0.022704	0.031968	0.03767657	10102 Corynebacterium(100)	Extremity

1

Table E3: Shannon comparisons based on timepoint, gender, birth method Highlighted values: p-values <0.05*

p-value

0.78412628

0.08969498

0.03276825

0.00048256

0.00365448

0.10838318

0.02081299

0.00016785

0.13272667

0.00485992

8.20E-05

p-value

0.2942524

0.24548721

0.23051262

0.02957535

0.01531219

0.72850609

0.01207924

0.96611786

0.67422295

0.00025177

0.7337265

0.00039482 0.2942524 0.3488102 2.67E-05 3.81E-06 0.47490501

8.20E-05

0.3682766

Highlighted values: p-values <0.
Shannon - time
Comparison
Af-Day 2::Af-Month 2
Af-Month 2::Af-Month 6
Af-Day 2::Af-Month 6
Pf-Day 2::Pf-Month 2
Pf-Month 2::Pf-Month 6
Pf-Day 2::Pf-Month 6
Ch-Day 2::Ch-Month 2
Ch-Month 2::Ch-Month 6
Ch-Day 2::Ch-Month 6
Nt-Day 2::Nt-Month 2
Nt-Month 2::Nt-Month 6
Nt-Day 2::Nt-Month 6

Shannon - site Comparison

•
Day 2-Af::Day 2-Pf
Day 2-Af::Day 2-Ch
Day 2-Af::Day 2-Nt
Day 2-Pf::Day 2-Nt
Day 2-Pf::Day 2-Ch
Day 2-Ch::Day 2-Nt
Month 2-Af::Month 2-Pf
Month 2-Af::Month 2-Ch
Month 2-Af::Month 2-Nt
Month 2-Pf::Month 2-Nt
Month 2-Pf::Month 2-Ch
Month 2-Ch::Month 2-Nt
Month 6-Af::Month 6-Pf
Month 6-Af::Month 6-Ch
Month 6-Af::Month 6-Nt
Month 6-Pf::Month 6-Nt
Month 6-Pf::Month 6-Ch
Month 6-Ch::Month 6-Nt

***no p-value correction

Shannon - gender Comparison p-value Af Day 2 female::Af Day 2 male 0.71030007 Pf Day 2 female::Pf Day 2 male 0.60267921 Ch Day 2 female::Ch Day 2 male 0.20136937 Nt Day 2 female::Nt Day 2 male 0.20136937 Af Month 2 female::Af Month 2 male 0.88198381 Pf Month 2 female::Pf Month 2 male 0.41189569 Ch Month 2 female::Ch Month 2 male 0.23698524 Nt Month 2 female::Nt Month 2 male 0.06744463 Af Month 6 female::Af Month 6 male Pf Month 6 female::Pf Month 6 male 0.04645154 Ch Month 6 female::Ch Month 6 male 0.3702191 Nt Month 6 female::Nt Month 6 male 0.3702191

Shannon - birth method Comparison p-value 0.96346749 Af Day 2 Vaginal:: Af Day 2 C-section Pf Day 2 Vaginal::Pf Day 2 C-section 0.01568627 Ch Day 2 Vaginal::Ch Day 2 C-section 0.14819401 0.61671827 Nt Day 2 Vaginal::Nt Day 2 C-section Af Month 2 Vaginal:: Af Month 2 C-section 0.81981424 Pf Month 2 Vaginal::Pf Month 2 C-section 0.38472652 Ch Month 2 Vaginal::Ch Month 2 C-section 0.19215686 Nt Month 2 Vaginal::Nt Month 2 C-section 0.81981424 0.81981424 Af Month 6 Vaginal:: Af Month 6 C-section Pf Month 6 Vaginal::Pf Month 6 C-section 0.03880289 Ch Month 6 Vaginal::Ch Month 6 C-section 0.24850361 Nt Month 6 Vaginal::Nt Month 6 C-section 0.81981424

Comparison Af Day 2 Patient:: Af Day 2 Control Pf Day 2 Patient::Pf Day 2 Control Ch Day 2 Patient::Ch Day 2 Control Nt Day 2 Patient::Nt Day 2 Control Af Month 2 Patient:: Af Month 2 Control Pf Month 2 Patient::Pf Month 2 Control Ch Month 2 Patient::Ch Month 2 Control Nt Month 2 Patient::Nt Month 2 Control Af Month 6 Patient:: Af Month 6 Control Pf Month 6 Patient::Pf Month 6 Control Ch Month 6 Patient::Ch Month 6 Control Nt Month 6 Patient::Nt Month 6 Control

Shannon - patient vs. control

Shannon - affected vs. unaffected			
Comparison		p-'	
Af Day 2		0	
Pf Day 2		0	
Ch Day 2		0	
Nt Day 2		0	
Af Month 2		0	
Pf Month 2		0	
Ch Month 2		0	
Nt Month 2		0	
Af Month 6		0	
Pf Month 6	Month 2	0	
Ch Month 6	Affected::Month	0	
Nt Month 6	2 Unaffected	0	
Af Day 2			
Pf Day 2		0	
Ch Day 2		0	
Nt Day 2			
	Shannon - af Comparison Af Day 2 Pf Day 2 Ch Day 2 Nt Day 2 Af Month 2 Pf Month 2 Ch Month 2 Af Month 6 Pf Month 6 Ch Month 6 Af Day 2 Pf Day 2 Ch Day 2 Nt Day 2	Shannon - affected vs. unaffectComparisonAf Day 2Pf Day 2Ch Day 2Nt Day 2Af Month 2Pf Month 2Ch Month 2Af Month 4Mt Month 5Pf Month 6Pf Month 6Af Month 6Af Month 6Af Day 2Af Day 2	

Pf Day 2		0.30526316
Ch Day 2		0.25789474
Nt Day 2		0.30526316
Af Month 2		0.11754386
Pf Month 2		0.76491228
Ch Month 2		0.42647059
Nt Month 2		0.92105263
Af Month 6		0 25789474
Pf Month 6	Month 2	0.41578947
Ch Month 6	Affected: Month	0.84210526
Nt Month 6	2 Unaffected	0.25789474
Af Day 2	2 Onanecteu	0.23783474
Rf Day 2		0.2745220
Ch Day 2		0.35333212
Nt Day 2		0.73730134
Af Month 2		0.4377507
Al World 2		1
Ch Month 2		0.08111455
Chilvionun 2		0.12594208
Nt Wonth 2		0.13480392
Ar Wonth 6	Marsha C	0.3113///1
Privionth 6	IVIONEN 6	0.87729618
Ch Month 6	Affected::/vionth	0.81679567
Nt Month 6	6 Unaffected	0.4377967
Af Day 2		0.24850361
Pf Day 2		0.38472652
Ch Day 2		0.43/151/
Nt Day 2		0.616/182/
Af Month 2		0.49411765
Pf Month 2		0.55356037
Ch Month 2		0.65441176
Nt Month 2		0.81981424
Af Month 6		0.49411765
Pf Month 6	Month 12	0.81981424
Ch Month 6	Affected::Month	0.89164087
Nt Month 6	12 Unaffected	0.49411765
Af Day 2		0.00980392
Pf Day 2		0.92413632
Ch Day 2		0.24603175
Nt Day 2		0.50280112
Af Month 2		0.92413632
Pf Month 2		0.56629318
Ch Month 2		0.82692308
Nt Month 2		0.92413632
Af Month 6		0.09453782
Pf Month 6	Month 24	0.92413632
Ch Month 6	Affected::Month	0.33590103
Nt Month 6	24 Unaffected	1

p-value

0.47894737

Table E4: AMOVA comparisons for skin sites and timepoint PTED MANUSCRIPT

		AMOVA p-values (theta)						
			Month 2	Month 6	Month 12	Month 24		
			Aff::Month 2 Aff::Month Aff::Mo		Aff::Month 12	Aff::Month 24		
		Patient::Control	Unaff	6 Unaff	Unaff	Unaff	Male::Female	Vaginal::C-section
	Day 2	0.93	0.313	0.471	0.575	0.979	0.458	0.002*
	Month 2	0.41	0.102	0.974	0.002*	0.418	0.379	0.909
Af	Month 6	0.172	0.039*	0.204	0.281	0.05	0.968	0.168
	Day 2	0.997	0.647	0.251	0.969	0.868	0.252	0.094
	Month 2	0.671	0.424	0.266	0.466	0.093	0.726	0.358
Pf	Month 6	0.361	0.526	0.441	0.377	0.8	0.044*	0.159
	Day 2	0.711	0.811	0.301	0.888	0.432	0.687	0.36
	Month 2	0.544	0.99	0.554	0.533	0.797	0.127	0.283
Nt	Month 6	0.581	0.553	0.648	0.556	0.291	0.511	0.905
	Day 2	0.671	0.369	0.219	0.759	0.263	0.871	0.299
	Month 2	0.689	0.914	0.517	0.602	0.266	0.284	0.78
Ch	Month 6	0.88	0.285	0.834	0.446	0.086	0.548	0.311

***no p-value correction

estimate of the second se

Fig E1

Rarefaction curves for sampling at each site to a cutoff of 1000 sequences; OTUs calculated at a cutoff of 97% nucleotide similarity. Each point represents mean ± SEM for all subjects at the site and sampling time indicated.

Fig E2

Relative abundance of major taxa; each bar represents a subject sampled at a single site and time point.

Fig E3

All samples month two and month six clustered by principal coordinates analysis based on theta similarity coefficients. At month two, Af and Pf had similar centroids (AMOVA p-value=0.18), as did Ch and Nt (p=0.276), and each still clustered distinctly from the other site pair (p < 0.006). At month six, Af and Pf had distinct centroids (AMOVA p=<0.006), but Ch and Nt clustered together (p=1); and the two site pairs clustered distinctly (p < 0.006).

Post-hoc p-values adjusted with Bonferonni correction (n=6)

Fig E4

Mean of relative abundance of major taxa; each bar represents the mean ± SEM of all subjects at a single site and time point.

Fig E5

- (a) Popliteal fossa samples clustered by principal coordinates analysis based on theta similarity coefficients. Using AMOVA, samples clustered significantly between day two and month six (p = 0.003), between day two and month six (p = 0.042), but not between month two and month 6 (p=1).
- (b) Nasal tip samples clustered by principal coordinates analysis based on theta similarity coefficients. Using AMOVA, samples clustered distinctly between day two and month two (p=<0.003), between day two and month six(p=<0.003), and between month two and month six (p=0.06).</p>

Post-hoc p-values adjusted with Bonferonni correction (n=3)

Fig E6

Relative abundance of Staphylococcal species; each bar represents a subject sampled at a single site and time point.

Fig E7

Mean of relative abundance of Staphylococcal species; each bar represents the mean ± SEM of all subjects at a single site and time point.

Fig E8

- (a) Day 2 antecubital fossa samples clustered by principal coordinates analysis based on theta similarity coefficients. Samples clustered by birth method (AMOVA p-value = 0.005)
- (b) Day 2 cheek samples by principal coordinates analysis of theta similarity coefficient. Samples did not cluster by birth method (AMOVA p-value = 0.337).
- (c) Shannon diversity was generally similar between the birth methods, with only the popliteal fossa significantly different at day two (Wilcox rank-sum test p-value = 0.016)

Other Proteobacteria (other) Alphaproteobacteria Betaproteobacteria Gammaproteobacteria Bacteroidetes Actinobacteria (other) Corynebacteriaceae Propionibacteriaceae Firmicutes (other) Clostridia Streptococcaceae Staphylococcaceae

Month Two

) MANUSCRIPT

Month Six

Mean proportion

