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ABSTRACT 

 
The segmentation of skin regions in color images is a preliminary step in several applications. Many different methods 
for discriminating between skin and non-skin pixels are available in the literature. The simplest, and often applied, 
methods build what is called an “explicit skin cluster” classifier which expressly defines the boundaries of the skin 
cluster in certain color spaces. These binary methods are very popular as they are easy to implement and do not require 
a training phase. The main difficulty in achieving high skin recognition rates, and producing the smallest possible 
number of false positive pixels, is that of defining accurate cluster boundaries through simple, often heuristically 
chosen, decision rules. In this study we apply a genetic algorithm to determine the boundaries of the skin clusters in 
multiple color spaces. To quantify the performance of these skin detection methods, we use recall and precision scores. 
A good classifier should provide both high recall and high precision, but generally, as recall increases, precision 
decreases. Consequently, we adopt a weighted mean of precision and recall as the fitness function of the genetic 
algorithm. Keeping in mind that different applications may have sharply different requirements, the weighting 
coefficients can be chosen to favor either high recall or high precision, or to satisfy a reasonable tradeoff between the 
two, depending on application demands. To train the genetic algorithm (GA) and test the performance of the classifiers 
applying the GA suggested boundaries, we use the large and heterogeneous Compaq skin database. 
 
Keywords: Skin segmentation, explicit skin cluster classifier, genetic algorithm.  
 
 

1. INTRODUCTION 
 
The segmentation of skin regions in color images is a preliminary step in several applications, such as image and video 
classification and retrieval in multimedia databases, semantic filtering of web contents (through the definition of 
medium-level features), human motion detection, human computer interaction, and video-surveillance. It is also useful 
in image processing algorithms, as well as in intelligent scanners, digital cameras, photocopiers, and printers. Many 
different methods for discriminating between skin and non-skin pixels are available in the literature. These can be 
grouped in three types of skin modeling: parametric, nonparametric, and explicit skin cluster definition methods. The 
Gaussian parametric models1 assume that skin color distribution can be modeled by an elliptical Gaussian joint 
probability density function. Nonparametric methods estimate skin color distribution from the histogram of the training 
data without deriving an explicit model of skin color2. The simplest, and often applied, methods build what is called an 
“explicit skin cluster” classifier which expressly defines the boundaries of the skin cluster in certain color spaces. The 
underlying hypothesis of methods based on explicit skin clustering is that skin pixels exhibit similar color coordinates in 
an appropriately chosen color space. These binary methods are very popular as they are easy to implement and do not 
require a training phase. The main difficulty in achieving high skin recognition rates, with the smallest possible number 
of false positive pixels, is that of defining accurate cluster boundaries through simple, often heuristically chosen, 
decision rules. In this study we compare the performance of various explicit skin cluster methods applying the 
thresholds presented in the literature with that achieved when a genetic algorithm is applied to determine the boundaries 
of the skin clusters in multiple color spaces. To quantify the performance of these skin detection methods, we use recall 
and precision scores. Classification results are assigned as true positive (TP), false positive (FP) and false negative (FN). 
Recall is defined as the ratio between the number of skin pixels correctly classified and the total number of actual skin 
pixels (TP/(TP+FN)), while precision is defined as the ratio between the number of skin pixels correctly classified and 
the total number of pixels labeled as skin pixels by the skin detection method considered (TP/(TP+FP)). 
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A good classifier should provide high recall and high precision, but generally, as recall increases, precision decreases.  
Consequently, we have adopted a weighted harmonic mean of precision and recall as the fitness function of the genetic 
algorithm. Keeping in mind that different applications may have sharply different requirements, the weighting 
coefficients can be chosen to offer either high recall or high precision, or to satisfy a reasonable tradeoff between the 
two depending on application demands.  
To train the genetic algorithm and test the performance of the algorithms with the GA suggested boundaries, we have 
used the large and heterogeneous Compaq skin database3. Comparison of these results with those obtained applying the 
methods with the original boundaries, as reported in the literature, shows a significant improvement for all the 
algorithms considered. 
 
 

 
1a 

   
 1b: YCbCr 1c: RGB 1d: HSV1 

   
 1e: HSV2 1f: HSI 1g: rgb 
Figure 1. Examples of skin maps obtained applying the six methods considered. 1a: original image; 1b: YCbCr; 1c: RGB; 1d: HSV1; 
1e: HSV2; 1f: HSI; and 1g: rgb. Note that some methods (YCbCr, and HSI) seem to be more recall oriented, others (HSV1 and rgb) 
more precision oriented, while still a third group (RGB and HSV) shows a good tradeoff between precision and recall.  
 
 
 
 



2. SKIN SEGMENTATION 

2.1 Binary skin classifiers  
The methods considered in this paper separate skin and non skin colors using a piecewise linear decision boundary. 
These explicit skin cluster methods propose a set of fixed skin thresholds in a given color space. Some color spaces 
permit searching skin color pixels in the 2D chromatic space, reducing dependence on lighting variation, others, such as 
the RGB space, address the lighting problem by introducing different rules depending on illumination conditions 
(uniform daylight, or flash). Working within different color spaces, we have implemented the six different algorithms 
analyzed in this paper. They are named for the color space adopted: YCbCr4, RGB5, HSV16, HSV27, HSI8 and rgb9. The 
details of their implementation can be found in the referenced papers and are summarized in the subsections here below. 
Examples of the skin maps obtained applying these methods to the image of Figure 1a are shown in Figures 1b-1g. 
Some of these methods, such as YCbCr (1b) and HSI (1f), are more recall oriented, some, such as HSV1 (1d) and rgb 
(1g), more precision oriented, while still others, such as RGB (1c) and HSV2 (1e), show a good tradeoff between recall 
and precision.  
 

2.1.1 YCbCr 
Chai and Ngan4 develop an algorithm that exploits the spatial distribution characteristics of human skin color. A skin 
color map is derived and used on the chrominance components of the input image to detect pixels that appear to be skin. 
The algorithm then employs a set of regularization processes to reinforce those regions of skin-color pixels that are 
more likely to belong to the facial regions. We use only their color segmentation step here. Working in the YCbCr space 
the authors find that the ranges of Cb and Cr most representative for the skin-color reference map were:  

12777 ≤≤ Cb and 173133 ≤≤ Cr . 
 

2.1.2 RGB 
Kovac et al.5 work within the RGB colour space and deal with the illumination conditions under which the image is 
captured. Therefore, they classify skin colour by heuristic rules that take into account two different conditions: uniform 
daylight and flash or lateral illumination.  
 

Uniform daylight illumination: 
20,40,95 >>> BGR  

{ } { } 15,,min,, <− BGRBGRMax  
BRGRGR >>>− ,,15  

 
Flashlight or daylight lateral illumination: 

170,210,220 >>> BGR  
GBRBGR <<≤− ,,15 . 

 

2.1.3 HSV1  
Tsekeridou and Pitas6 work within the HSV color space and select pixels having skin-like colors by setting the 
following thresholds:  
 

40≥V ;  
6.02.0 << S ;  
°<<° 250 H or °<<° 360533 H . 

 



The selected range of H restricts segmentation ton reddish colors and the saturation range selected ensures the exclusion 
of pure red and very dark red colors, both of which are caused by small variations in lighting conditions. The threshold 
on V is introduced to discard dark colors. 

2.1.4 HSV2  
Starting from a training data set composed of skin color samples, Garcia and Tiziritas7 compute the color histogram in 
hue-saturation-value (HSV) color space, and estimate the shape of this skin color subspace. They find a set of planes by 
successive adjustments depending on segmentation results, recording the equations shown below which define the six 
bounding planes found in the HSV color space case, where [ ]°°−∈ 180180H : 
 

40≥V  
)754.0( +−≤ VH  

)1101.0(10 +−−≤≤ VHS  
if 0≥H )5.0)100(08.0( VHVS +−≤  
if 0<H )355.0( +≤ HS . 
 

2.1.5 HSI 
Hsieh et al.8 use the HSI colour space system to design their colour classification algorithm because it is stable for skin 
colour under different lighting conditions. These rules apply to the intensity I, hue H and saturation S, and are detailed 
as follows: 
 

40>I   
if 11013 << S , °<<° 280 H  and °<<° 360332 H  
if 7513 << S , °<<° 331093 H  

 
The thresholds are empirically determined from the training set and the colour system transformation from RGB to HSI 
is defined as follows: 
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2.1.6 rgb  
Gomez and Morales9 use a constructive induction approach to determine the skin map. Starting with the three rgb 
components in a normalized form and a simple set of arithmetic operators, the authors produce a model for skin 
detection. The algorithm uses a Restricted Covering Algorithm (RCA) as its selective learner. The RCA searches for 
single rules in parallel. Among the different combination rules presented by the authors, we have chosen the one with 
the highest precision and success rate: 
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where rgb are the normalized coordinates obtained as: 
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2.2 Genetic Algorithm 
Genetic Algorithms (GAs) are adaptive heuristic search algorithms based on the evolutionary ideas of natural selection 
and genetics. The GAs treat optimization problems as the competition of populations of evolving individuals 
(chromosomes), each considered as a candidate solution. A 'fitness' function evaluates each solution to decide whether it 
will contribute to the next generation. Then, through operations analogous to gene transfer in biological reproduction 
(selection of parents, crossover, replacement, and mutation), the algorithm produces a new population of candidate 
solutions. 
Due to their random nature, GAs not only provide good solutions for optimization problems but also consistently 
outperform more traditional methods, improving the chances of finding a global solution. Whereas most stochastic 
search methods operate on the concept of a single solution, genetic algorithms operate on a population of solutions.  
 
The main steps of GAs can summarized as follows:  

1. Define a fitness function on which to base the criteria for the selection of those individuals of a population who 
will generate the next generation. 

2. Define evolution strategies (selection of parents, crossover, replacement, mutation, and migration) 
3. Randomly generate an initial population of solutions (chromosomes). 
4. Compute and store the fitness for each individual in the current population  
5. Generate the next population, selecting and evolving individuals from the previous population applying criteria 

based on survival of the fittest.  
6. Repeat step 4 until a satisfactory solution is obtained.  

 
We have applied a genetic algorithm to determine the boundaries of each of the six skin classifiers described here. The 
chromosomes that constitute each population are vectors of skin cluster boundary thresholds. Because a good classifier 
should have high recall and high precision, we adopted the following weighted harmonic mean of precision and recall, 
as the fitness function of the genetic algorithm: 
 

 
precisionrecall

precisionrecallfitness
⋅+⋅

⋅
=

βα
 (1) 

 
The weighting coefficients α and β can be chosen to provide either high recall or high precision, or a reasonable tradeoff 
between the two depending on application demands.  
The main GA settings used were: 

 30 chromosomes for each population 
 Selection of parents: tournament with tournament size equal to 7, selecting the parents in proportion to their 

value in fitness. 
 Crossover: inserting at random a separator in the homologous genes of the selected parents 
 Mutation: with a probability of 0.01. 

 
 

3. EXPERIMENTAL RESULTS AND DISCUSSION  
 
We have evaluated the boundaries of the skin clusters by running the GA on a training set of 2.000.000 pixels, 295.147 
of which skin, and the remaining 1.704.853 non-skin. These pixels were randomly chosen from some 2400 images taken 
from the Compaq skin database3, which contains 24.043.259 skin pixels and 168.549.425 non-skin pixels.  
For each classifier we performed three calculations: one to decide the thresholds in order to achieve high recall, setting 
α=0.2 and β=0.8 in the fitness function of equation 1, a second for high precision (α=0.8 and β=0.2) and a third for a 
reasonable tradeoff between these two measures (α=β=0.5).  



The performance of the skin classifiers with the GA boundaries was then evaluated on all 2400 images of the database, 
computing true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN). All these quantities 
refer to absolute values: TP, for example, represents the total number of skin pixels identified by the skin detector. From 
these measures, the recall and precision were evaluated for the three sets of boundary thresholds of each classifier. 
In table 1 the values of recall and precision obtained with the genetic algorithm and the three different strategies 
described, are summarized and compared with those obtained using the thresholds recorded in the literature. 
To further increase recall or precision, the coefficients of equation 1 can be exasperated. For example, setting α=0.1 and 
β=0.9 in the case of the HSI classifier, we obtained a recall of 93% and a precision of 39%. 
 
 

Method Thresholds definition strategy Recall (%) Precision (%) 
Literature Thresholds 90 29 

Recall Oriented 93 33 
Precision Oriented 62 50 YCbCr GA Thresholds 

Tradeoff 83 43 
Literature Thresholds 89 36 

Recall Oriented 88 42 
Precision Oriented 70 56 RGB GA Thresholds 

Tradeoff 73 53 
Literature Thresholds 44 53 

Recall Oriented 89 32 
Precision Oriented 49 63 HSV1 GA Thresholds 

Tradeoff 73 52 
Literature Thresholds 74 42 

Recall Oriented 89 35 
Precision Oriented 47 63 HSV2 GA Thresholds 

Tradeoff 73 48 
Literature Thresholds 92 35 

Recall Oriented 88 44 
Precision Oriented 61 62 HSI GA Thresholds 

Tradeoff 72 56 
Literature Thresholds 42 35 

Recall Oriented 89 31 
Precision Oriented 41 67 rgb GA Thresholds 

Tradeoff 60 42 
 
Table 1. Recall and precision scores for the six classifiers, with respect to the values recorded in the literature and those obtained by 
the GA applying the different thresholding strategies: recall oriented (α=0.2 and β=0.8), precision oriented (α=0.8 and β=0.2) and 
tradeoff (α=β=0.5). 
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 2a 2b 2c 
Figure 2. Results of the experiments in terms of recall versus precision. Comparison of the six methods using the thresholds given in 
the literature (blank symbols) with the same methods using GA thresholds, (black symbols), applying in Figure 2a a recall oriented 
strategy, in Figure 2b a precision oriented strategy, and in Figure 2c a tradeoff strategy. 
 
 
The results of these experiments are also visualized in Figure 2, in terms of recall versus precision. The results for the 
six methods applied using thresholds given in the literature (blank symbols) are compared with those using GA 
thresholds, (black symbols): applying in Figure 2a a recall oriented strategy, in Figure 2b a precision oriented strategy, 
and in Figure 2c a tradeoff strategy. 
 
From the analysis of Table 1 and Figure 2, we can argue that: 
 
• the performance of the methods studied indicates that different methods may be either more precision- or more 

recall-oriented. The qualification of “best method” is therefore application-dependent. 
 
• the performance of the six methods considered, always improves with the GA boundaries, and significantly so for 

those (such as rgb and HSV1) with lower values in the literature: 
 

- In the case of recall oriented strategy (Figure 2a),all the methods show a strong increase in recall values, 
except for the HSI classifier, which already achieves a very high value of recall with the boundaries given 
in the literature, as well as the RGB classifier, which maintains the same recall value with the GA 
boundaries but shows a significant increase in the precision score. 
The GA boundaries tend to shift all the classifiers into the same region of the recall-precision plane (upper 
left hand corner), except for HSI and RGB methods. 

 
- In the case of precision oriented strategy (Figure 2b), all the methods increase in precision, moving 

towards the bottom right hand corner of the precision-recall plane. Those with high recall show a 
significant drop in that score, but still within an acceptable range, while those originally with low recall 
increase in both precision and recall.  

 
- In the case of the tradeoff strategy (Figure 2c), all the methods reach a good tradeoff between recall and 

precision, moving towards the upper right hand corner of the precision-recall plane. The worst classifier in 
this sense seems to be the rgb, registering the lowest value of recall with the lowest precision, but showing 
nevertheless substantial improvement with respect to values recorded in the literature. 

 
• the HSI, as proposed by the literature and shown in Table 1, remains the best method in terms of recall. 
 
As a final remark, we note that a good balance of the weighting coefficients of the fitness function permits the fine 
tuning of the methods with respect to recall or precision, to meet application demands.  



REFERENCES 
 
1. M.-H Yang and N. Ahuja, “Gaussian Mixture Model for Human Skin Colour and its Applications in Image and 

Video Databases”, SPIE/EI&T Storage and Retrieval for Image and Video Databases (San Jose, January 1999), pp. 
458-466. 

2. M. Jones, J. Rehg, “Statistical Color Models with Application to Skin Detection”, IEEE Conference on Computer 
Vision and Pattern Recognition, CVPR '99 (1999), pp. 274-280. 

3. Compaq Cambridge Research Lab image-database. M. Jones and J. Rehg, “Statistical Colour Models with 
Application to Skin Colour Detection”. Compaq Cambridge Research Lab Technical Report CRL 98/11 (1998). 

4. D. Chai and K. N. Ngan, Face segmentation using skin colour map in videophone applications, IEEE Transactions 
on Circuits and Systems for Video Technology 9 (4) (1999) 551-564.  

5. J. Kovac, P. Peer and F. Solina, 2D versus 3D colour space face detection, 4th EURASIP Conference on 
Video/Image Processing and Multimedia Communications, Croatia, 2003, pp. 449-454. 

6. S. Tsekeridou and I. Pitas, “Facial feature extraction in frontal views using biometric analogies", Proc. of the IX 
European Signal Processing Conference, vol. I, 315-318 (1998). 

7. C.Garcia and G. Tziritas, Face detection using quantized skin colour regions merging and wavelet packet analysis, 
IEEE Transaction on Multimedia 1 (1999) 264-277.  

8. I-S. Hsieh, K-C. Fan, and C. Lin, A statistic approach to the detection of human faces in colour nature scene, 
Pattern Recognition 35 (2002) 1583-1596.  

9. G. Gomez and E. F. Morales, “Automatic feature construction and a simple rule induction algorithm for skin 
detection, Proc. Of the ICML workshop on Machine Learning in Computer Vision, A. Sowmya, T. Zrimec (eds), 
31-38 (2002). 

 


