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Abstract

Background: Cell-penetrating peptides (CPPs) are short peptides (5–30 amino acids) that can enter almost any cell
without significant damage. On account of their high delivery efficiency, CPPs are promising candidates for gene therapy
and cancer treatment. Accordingly, techniques that correctly predict CPPs are anticipated to accelerate CPP applications in
future therapeutics. Recently, computational methods have been reportedly successful in predicting CPPs. Unfortunately,
the predictive performance of existing methods is not satisfactory and reliable so as to accurately identify CPPs.

Results: In this study, we propose a novel computational predictor called SkipCPP-Pred to further improve the predictive
performance. The novelty of the proposed predictor is that we present a sequence-based feature representation
algorithm called adaptive k-skip-n-gram that sufficiently captures the intrinsic correlation information of residues. By fusing
the proposed adaptive skip features with a random forest (RF) classifier, we successfully construct the prediction model of
SkipCPP-Pred. The various jackknife results demonstrate that the proposed SkipCPP-Pred is 3.6% higher than state-of-the-
art CPP predictors in terms of accuracy. Moreover, we construct a high-quality benchmark dataset by reducing the data
redundancy and enhancing the similarity between the positive and negative classes. Using this dataset to build prediction
models, we can successfully avoid the performance bias lying in existing methods and yield a promising predictive
model.

Conclusions: The proposed SkipCPP-Pred is a simple and fast sequence-based predictor featured with the adaptive
k-skip-n-gram model for the improved prediction of CPPs. Currently, SkipCPP-Pred is publicly available from an online
webserver (http://server.malab.cn/SkipCPP-Pred/Index.html).
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Background
Cell-penetrating peptides (CPPs) are short peptides usually
comprising 5–30 amino acid residues. Also known as pro-
tein transduction domains (PTDs), membrane translocating
sequences (MTSs), and Trojan peptides, CPPs can directly
enter cells without significantly damaging the cell mem-
brane [1–3]. This unique ability of CPPs could be exploited
to improve the cellular uptake of various bioactive mole-
cules, which is inherently poor because bioactive cargoes

tend to become trapped in the endosomes. When trans-
ported by CPPs, these cargoes are immediately freed in the
cytosol to reach their intracellular targets (immediate bio-
availability). CPPs are considered as very promising tools
for non-invasive cellular import of cargoes, and have been
successfully applied in in vitro and in vivo delivery of thera-
peutic molecules (e.g., small chemical molecules, nucleic
acids, proteins, peptides, liposomes and particles). They also
offer great potential as future therapeutics [3, 4] such as
gene therapy and cancer treatments. The medical ap-
plicability of CPPs would be further enhanced by cor-
rect classification of peptides into CPPs or non-CPPs.
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The first CPP, namely the Tat peptide, was derived from
the transcription activator of human immunodeficiency
virus type 1 in the late 1980s [5]. Since the discovery of
Tat, hundreds of CPPs have been identified. The CPP-
specific database CPPsite2.0 [6] currently contains 1850 ex-
perimentally validated CPPs, nearly double the contents of
the previous version (CPPsite) [7]. As reported in [6], most
of the known true CPPs are derived from natural proteins.
The rapid development of next-generation sequencing
techniques has revealed an increasing number of novel
proteins, many of which might contain novel CPPs. How-
ever, predicting CPPs by traditional experimental methods
is time-consuming and expensive. Thus, there is an ur-
gent demand for fast prediction by computational
methods. Most of the recent computational methods
are based on machine-learning algorithms, which can
automatically predict the cell-penetrating capability of
a peptide. Although machine-learning-based methods
have intrinsic advantages (time- and cost-saving) over
experimental methods, they are less reliable than experi-
mental methods. Therefore, they can play only a comple-
mentary role to experimental methods. Consequently,
improving the predictive ability of computational predic-
tors has been the major concern in this field.
Two factors [8], feature representation and classifier con-

struction, are closely associated with the predictive per-
formance of machine learning methods [9], and are largely
responsible for the differences in existing de novo methods.
For example, Sanders et al. [10] specified 61 representative
physicochemical features of CPPs and built a prediction
model using the support vector machine (SVM) classifier
on a benchmark dataset including 111 known CPPs and 34
known non-CPPs. Their method achieved an overall accur-
acy of 75.86%. Exploiting the high efficiency of the SVM
classifier, Gautam et al. [11] proposed a SVM-based pre-
dictor called CellPPD. They built multiple prediction
models by considering various features such as amino acid
and dipeptide compositions, binary pattern profiles, and
physicochemical properties. In CellPPD, they also con-
structed a new larger benchmark dataset (784 true CPPs
and an equal number of non-CPPs) that alleviates a major
limitation of previous methods, namely, the small size of
the training dataset (<111). To improve the robustness of
prediction models, Holton et al. [12] proposed CPPpred,
which trains the prediction model using an N-to-1 neural
network. The training reduces the redundancy of the data-
set by removing the 80% sequence similarity, which notably
improves the prediction accuracy. More recently, Chen et
al. [13] constructed a random forest (RF) prediction model
that incorporates the well-known PseAAC (Pseudo Amino
Acid Composition) with physicochemical properties
developed by Chou [14]. They reported that a well-
established feature selection algorithm improves the
predictive performance.

As mentioned above, it is argued that the high predictive
performance of existing computational methods seems
doubtful [15–21]. First, the benchmark datasets used in
the literature are too small to yield statistical results. For
example, each of the four datasets constructed by Sanders
et al. [10] contains fewer than 111 true CPPs. Besides be-
ing statistically insufficient, existing benchmark datasets
are highly redundant, which biases the prediction results.
For instance, the sequences in the current largest dataset
proposed by Gautam et al. [11] share high sequence simi-
larity. However, the high performance of their method on
their proposed dataset (>90% accuracy) is probably not
generalizable to other datasets. Therefore, a representative
benchmark dataset is essential for robust CPP prediction
by computational methods.
In this study, we propose a high-quality dataset for

predicting CPPs. The high-quality of the dataset lies in
three aspects. First, the dataset shares relatively low
sequence similarity, with no more than 80%, avoid the
bias in the performance. Second, the new CPP dataset is
sufficiently large to build prediction models. Third, the
dataset considers the importance of negative samples on
predictive performance [22]. The collected negative sam-
ples (non-CPPs) are strictly based on the distribution of
true CPPs in the dataset. To the best of our knowledge,
the proposed dataset is the most stringent benchmark
dataset in the literature. Using this dataset, we then train
a novel CPP prediction method called SkipCPP-Pred,
where we present an adaptive k-skip feature representa-
tion algorithm that sufficiently captures the correlation
information of residues and successfully build the predic-
tion model based on the RF classifier. As demonstrated by
jackknife results on the proposed new dataset, the accuracy
(ACC) of SkipCPP-Pred is 3.6% higher than that of state-
of-the-art methods. The proposed SkipCPP-Pred is freely
available from an online server (http://server.malab.cn/
SkipCPP-Pred/Index.html), and is anticipated to become
an efficient tool for researchers working with CPPs.

Methods
Framework of the proposed method
Figure 1 illustrates the framework of the proposed CPP
prediction method SkipCPP-Pred. Below, we briefly de-
scribe the prediction process of a given peptide sequence or
amino acid sequence in SkipCPP-Pred. In the first step, the
sequence is submitted to the feature representation scheme,
in which the proposed adaptive k-skip-2-g feature algo-
rithm formulates the sequence into a fixed-length encoding
(a 400-dimensional (400-D) feature vector). In the second
step, the resulting feature vector is fed into a model trained
by the underlying RF classifier, which predicts the cell-
penetrating capability of the query peptide sequence. The
proposed feature representation methods and the under-
lying classifier are detailed in the following sections.
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Feature representation
The k-skip-n-gram model, pioneered by Guthrie et al. [23],
integrates the distance information into the traditional n-
gram model [24]. To clarify the concept of the k-skip-n-gram
model, we first introduce the traditional n-gram model.
For convenience, we denote a given amino acid sequence

S as A1A2A3…AL-1AL, where L represents the length of the
sequence; and the indices denote the positions of the
amino acids in the sequence (for example, A1 and A2 are
the first and second amino acids in S, respectively). Ai (1 ≤
i ≤ L) belongs to a set of 20 different amino acids, alphabet-
ically ordered as Ω = {A,C,D, E, F,G,H, I,K, L,M,N, P,Q,
R, S,V,W,Y}. An element of Ω is denoted as Ωi′ , where
1 ≤ i′ ≤ 20; for example, Ω1 and Ω2 denote the first
and seconds elements of Ω, respectively.
The traditional n-gram model provides the compos-

ition of n contiguous residues (AiAi + 1…Ai + n-1) in
the sequence S. To transform the variable sequence
length into fixed length feature vectors, the traditional
n-gram features are computed as follows:

FVGrams ¼ N Ωm1Ωm2…Ωmnð Þ
N TGramsð Þ

� ����1≤m1≤20;

1≤m2≤20;…;1≤Ωmn≤20g;
ð1Þ

where Tgrams = {AiAi + 1…Ai + n − 1| 1 ≤ i ≤ L − n + 1} repre-
sents the set of segments with n spatially consecutive
amino acids in S, and N(TGrams) denotes the total num-
ber of all elements in the set Tgrams. Ωm1Ωm2…Ωmn are
the 20n possible residue combinations with length n. N
Ωm1Ωm2…Ωmnð Þ denotes the total number of the terms

Ωm1Ωm2…Ωmn appearing in Tgrams. Accordingly, FVGrams

measures the occurrence frequencies of Ωm1Ωm2…Ωmn in
S. The dimension of FVGrams is 20

n.
Clearly, the traditional n-gram model is sparse when

the sequence S is short. To address this problem, the k-
skip-n-gram model integrates the distance information
into the n-gram model. The distance between any two
residues Ai and Aj in a given sequence S is given by the
interval length between the residues, calculated as

DT Ai;Aj
� � ¼ j−i−1: ð2Þ

For example, if A1 and A2 are contiguous, they are sepa-
rated by an interval of zero length (i.e., no interval), and
DT(A1,A2) = 0, A1 and A3 are separated by one residue
(A2), so the interval length DT(A1,A3) = 1. Similarly,
DT(A1,A4) = 2 indicates that A1 and A4 are separated by
two residues (A2 and A3).
The k-skip-n-gram model provides the composition of

n residues with distances ≤k in S. In other words, in
addition to the n contiguous residues considered in the
traditional n-gram model, this model considers the n
residues with distances 1 to k in S. Similar to the n-gram
features, the k-skip-n-gram features are calculated as

FVSkipGram ¼ N ′ Ωm1Ωm2…Ωmnð Þ
N TSkipGram
� �

( �����
1≤m1≤20; 1≤m2≤20;…; 1≤Ωmn≤20g;

ð3Þ
where N(TSkipGram) denotes the total number of all
elements in the set TSkipGram, and N ′ Ωm1Ωm2…Ωmnð Þ

Fig. 1 Framework of the proposed cell-penetrating peptide method SkipCPP-Pred
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denotes the total number of the terms Ωm1Ωm2…Ωmn

appearing in the set TSkipGram, which is formulated as

TSkipGram ¼ ⋃ka¼1Skip DT ¼ að Þ� � ð4Þ

where Skip(DT = a) = {AiAi + a + 1…Ai + a + n − 1| 1 ≤ i ≤ L −
a , 1 ≤ a ≤ k}.
Because the dimensions of the feature space exponentially

expand with n, leading to the overfitting problem, we limit
our analysis to n<3 (<203-D). Moreover, when n = 1, the k-
skip-n-gram model reduces to the traditional n-gram model.
Thus, we analyze only the case for n = 2. The feature extrac-
tion procedure of the k-skip-2-g model is depicted in Fig. 2.
By definition of the k-skip-n-gram model, the parameter

k measures the distance between any two residues. The
maximum value of k should be the minimum sequence
length in the dataset. However, almost all CPP sequences
are short (5–30 residues), implying that k should not ex-
ceed 5. In other words, the skip features consider only the
local distance information with the interval length no
more than 5 in all sequences in the dataset, which would
not properly reflect the varying distances in the dataset.
Therefore, we proposed a modified strategy in which k is
the length of each sequence during the skip feature extrac-
tion. In this way, the proposed feature representation

algorithm becomes parameter free. Additionally, the fea-
ture algorithm adapts to the different lengths of se-
quences in the dataset, and includes more distance
information in the features. The k-skip-n-gram fea-
tures extracted by this new strategy are referred to as
adaptive k-skip-n-gram features.

Underlying classifier-Random Forest
The RF classifier, introduced by Breiman et al. [25],
has proven to be a powerful classification algorithm
in multiple Bioinformatics fields [26–28]. It constitutes an
ensemble of decision trees (base classifiers) combined with
a powerful ensemble strategy called modified bagging [25].
In this sense, the RF classifier behaves somewhat like an
ensemble classifier [29, 30]. Unlike the traditional bagging
algorithm, which uses all features to train each classifier, RF
randomly selects a subset of features by a random feature
selection technique, and grows a tree from those features
(trains a base classifier). The required number of features
for each base classifier is determined by computing the
generalization error, classifier strength and dependence.
The modified bagging algorithm enhances the diversity of
the base classifiers, improving the efficiency of the trad-
itional bagging algorithm. In our proposed method, the RF
classifier is employed as the underlying classifier and is

Fig. 2 Schematic of the extraction scheme for k-skip-2-g features
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implemented in a data mining tool called WEKA (Waikato
Environment for Knowledge Analysis) [31], an ensemble
package of several machine learning algorithms. All experi-
ments in this paper were carried out in WEKA 3.7.

Dataset construction
According to machine learning theory, a well-established
dataset is essential for building a robust and reliable pre-
diction model. In this study, we carefully constructed an
updated high-quality stringent dataset. The construction
process of our dataset is described below.

Positive dataset construction
A CPP prediction dataset includes positive members (ex-
perimentally validated CPPs) and negative members
(non-CPPs). The initial positive dataset was constructed
from 1855 experimentally validated CPPs downloaded
from the CPPsite2.0 database. Among these are 1564
natural and 291 non-natural CPPs. Natural CPPs are
natural amino acid sequences, whereas in non-natural
CPPs, some of the amino acids are replaced by artificial
characters. As these non-natural CPPs cannot be formu-
lated into fixed length feature vectors, they are excluded
from the positive dataset. Redundancy in the dataset is
known to bias the predictive performance of a model.
Therefore, to improve the quality of the positive dataset,
we removed the redundancies using the CD-HIT pro-
gram [32], which has been widely applied in several
fields [33–39]. Here, we set the similarity threshold in
CD-HIT to 0.8, indicating that after reducing the se-
quence similarity, any two sequences in the positive

differed by more than 80%. The elimination process
retained 462 CPPs in the positive dataset.

Negative dataset construction
To construct the negative dataset, we randomly gener-
ated 2452 amino acid sequences with lengths between
5 and 50 as our initial negative pool. Such random
generation of negative samples has been adopted in
previous studies [10, 11]. For a high-quality and repre-
sentative dataset, the number and distribution of the
negative dataset must balance those of the positive
dataset. To improve the similarity between the two
datasets, the length distribution of the selected non-CPPs
must match that of the positive dataset (see Fig. 3). To
balance the data, we collected 462 non-CPPs into the
negative dataset.
Ultimately, we successfully constructed a high-quality

dataset containing 462 CPPs (positive samples) and 462
non-CPPs (negative samples). For convenience, our
dataset is designated as CPP924. To our knowledge,
CPP924 has the lowest data redundancy and the highest
between-class similarity among the reported datasets.
By virtue of the latter quality, our dataset is highly rep-
resentative of real CPPs.

Performance evaluation
The quality of the predictor was evaluated by evaluation
metrics and a validation method.
Here, we employed four metrics commonly used in

binary predictor evaluations [40]; sensitivity (SE), specifi-
city (SP), accuracy (ACC), and Mathew’s correlation

Fig. 3 Distribution of true CPPs in the positive set. The x-axis denotes the length interval of the CPPs. For example, the interval (0, 5) denotes that
the CPP is 1–4 amino acids long (greater than 0 and less than 5), whereas [5, 10] indicates a CPP length from 5 to 9 (greater than or equal to 5
and less than 10). The y-axis denotes the number of sequences (CPPs)
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coefficient (MCC) [41]. These metrics are respectively
formulated as

SE ¼ TP
TP þ FN

�100%

SP ¼ TN
TN þ FP

�100%

ACC ¼ TP þ TN
TP þ TN þ FN þ FP

�100%

MCC ¼ TP�TN−FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ TP þ FPð Þ TN þ FPð Þ TN þ FNð Þp �100%;

where TP, TN, FP and FN represent the numbers of
true positives, true negatives, false positives and false
negatives, respectively. The first two metrics, SE and SP,
measure the ability of the predictor to predict the cor-
rect class [42]. Specifically, the SE and SP compute the
accuracy of predicting samples in the positive and nega-
tive classes, respectively. The other two metrics, ACC
and MCC, comprehensively measure the predictive per-
formance of a predictor. Computed on balanced data,
higher ACC and MCC scores both imply a higher qual-
ity predictor. Computed on unbalanced data, the MCC
more accurately reflects the predictive quality of a pre-
dictor than ACC.
The effectiveness of a prediction model must be tested

by a validation method. The three statistical validation
methods are k-fold cross validation, the jackknife test
[28], and an independent test. Among these methods,
the jackknife test is considered to best determine
whether the method yields a unique result for a given
benchmark dataset [43–54]. The jackknife test isolates
each protein one by one and trains the predictor by the
remaining proteins in the learning dataset. The jackknife
test has been widely employed in performance valida-
tions of diverse predictors. Thus, it is adopted as the
underlying validation of the proposed method.

Guideline of webserver
An available webserver is important for researchers to
access the proposed method to make predictions. Here,
we have built a user-friendly webserver that implements
the proposed method SkipCPP-Pred. The webserver is
now freely accessible to the public. In this section, we
give researchers a step-by-step guideline on how to use

the webserver to get the predicted results they desire.
The guideline is described as follows,

Step 1. Go to the website (http://server.malab.cn/
SkipCPP-Pred/Index.html) to see the homepage of the
webserver. Click on the button About and you will see
a brief introduction about how the proposed method
SkipCPP-Pred is set up.
Step 2. Enter the query protein sequences into the
input box. The input sequences should be in the
FASTA format. Examples of FASTA-formatted protein
sequences can be seen by clicking on the button
FASTA format above the input box. In particular, the
webserver can receive an un-limited number of query
sequences for every single run.
Step 3. By clicking on the button Predict, you will get
the predicted results on the screen of your computer.
Take an actual cell-penetrating peptide, with an identifier
of “cpp_P7–4”, as an example. After you enter the query
sequence into the input box and click on the button
Predict, you will see the predicted result showed on the
screen: “Cell-penetrating” with the prediction confidence
of 98.8%.
Step 4. Click on the button Clear to delete the query
sequences you enter to the input box.
Step 5. Click on the button Datasets to download the
benchmark datasets used in this paper and the feature
sets we proposed based on the datasets.

Results
Feature comparison and contribution analysis
This study proposes adaptive k-skip-2-g features as modi-
fications of the traditional 2-g features. To investigate the
impact of the adaptive k-skip-2-g features, we compared
their performances with those of the traditional 2-g fea-
tures. Classifier bias was avoided by employing two high-
efficiency classifiers (RF and LibSVM). Table 1 presents
the jackknife results of both feature sets on the CPP924
dataset. For both classifiers, the adaptive k-gram-2-g fea-
tures perform significantly better than the traditional 2-g
features. In the RF results (row 3 of Table 1), the ACC of
the adaptive k-gram-2-g features is 90.6%, 3.2% higher
than that of the traditional 2-g features (87.4%). In the
LibSVM results (row 4 of Table 1), the accuracy improve-
ment of the adaptive k-gram-2-g features is 3.4%. This
demonstrates that the discriminative information, by
which true CPPs are distinguished from non-CPPs, is

Table 1 Jackknife results of the adaptive k-skip-2-g features and traditional 2-g features evaluated on the CPP924 dataset

Classifiers Adaptive k-skip-2-g features Traditional 2-g features

SE (%) SP (%) ACC (%) MCC SE (%) SP (%) ACC (%) MCC

RF 88.5 92.6 90.6 0.812 89.0 85.9 87.4 0.751

LibSVM 88.1 92.6 90.4 0.810 83.3 90.7 87.0 0.745
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higher in the proposed adaptive k-skip-2-g features than
in the traditional 2-g features. We infer that the extra
discriminative power is conferred solely by the distance
information of the amino acids in the sequence, because
the two feature sets differ only by the additional distance
information in the feature representation.
We also analyzed the importance of the proposed k-

skip-2-g features by calculating the information gain
score [55]. This measure, denoted as IG(x, c), represents
the information gain of feature x relative to the class
attribute c. The higher the information gain score, the
greater the discriminative power of the feature. Table 2
lists the 20 most important features among the 400 k-
skip-2-g features; the ranking list of all 400 features can
be found in Additional file 1: Table S1. As shown in
Table 2, the highest information gain score (0.252) is
gained by “RR”, indicating that the amino acid “R” is ex-
tremely useful for classifying true CPPs and non-CPPs.
The same result has been reported in previous studies
[56]. The classification powers of the 20 amino acids in
the top-scoring features are illustrated in Fig. 4. We
observe that eight of the 20 features contain the amino
acid “M”, versus six features containing “R”. This demon-
strates that “M” is at least as important as “R” for classifi-
cation purposes. This discriminative power analysis of

specific features in the feature set is anticipated to assist
researchers working with CPPs.

Classifier parameter optimization
Classifier parameter optimization is a potentially useful
means of improving the predictive performance of ma-
chine learning methods [57–60]. Therefore, we also con-
ducted an optimization experiment for the underlying RF
classifier in the proposed method. The major parameter of
the RF classifier is the tree number t, which can be any in-
teger higher than 1. Here, we investigated the impact of
varying t from 10 to 500 in 10-step increments, and exe-
cuting the RF classifier on the CPP924 dataset. The jack-
knife results for the various t values are illustrated in
Fig. 5. The RF exhibits its best performance at t = 150.
Therefore, we set t = 150 in our prediction model. The
prediction results of the RF classifier for different values of
t are detailed in Additional file 1: Table S2.

Performance of the underlying classifier
Table 3 lists the performance of the underlying RF classi-
fier on the benchmark dataset CPP924, determined in
the jackknife validation test. For comparison, the per-
formance of five popular classifiers (LibSVM, Naïve
Bayes, J48, SMO, and Logistic Regression) was evaluated
on the same dataset. All of these classifiers were
executed in WEKA 3.7. As shown in Table 3, the RF
classifier achieved the best performance among the
classifiers (with an ACC and MCC of 90.6% and 0.812,
respectively). Note that RF performed similarly to
LibSVM, but significantly outperformed the other
classifiers (by 1.9%–9.2% and 0.039–0.184 in the ACC
and MCC scores, respectively). These results consoli-
date RF and SVM as the best-performing (most effi-
cient) classification algorithms in CPP determination.
In conclusion, a well-trained RF classifier accurately
discriminates true CPPs from non-CPPs.

Comparison with state-of-the-art predictors
To evaluate the effectiveness of the proposed computa-
tional predictor SkipCPP-Pred, we compared its per-
formance with that of CellPPD, the best-performing
predictor in the literature [11]. In this comparison, the
CellPPD predictor alone was selected because this pre-
dictor is known to outperform other existing predictors
[11]. Therefore, comparisons with other computational
predictors are redundant here. As the proposed SkipCPP-
Pred is a sequence-based predictor, it was tested against
two sequenced-based predictive models of CellPPD: (1) di-
peptide composition model and (2) binary profile-based
model. For convenience of discussion, the two predict-
ive models of CellPPD are denoted as CellPPD-DC
and CellPPD-BP, respectively. For a fair comparison,

Table 2 The 20 most important features among the 400
proposed adaptive k-skip-2-g features

Rank IG(x, c)a Features

1 0.252 RR

2 0.12 KR

3 0.119 KK

4 0.115 LR

5 0.113 MM

6 0.107 RK

7 0.107 DM

8 0.105 YM

9 0.105 ME

10 0.104 EM

11 0.103 LL

12 0.093 HM

13 0.093 DQ

14 0.092 RL

15 0.091 MH

16 0.091 DW

17 0.089 CE

18 0.088 CN

19 0.087 CM

20 0.087 GR

IG(x, c)a is the information gain of feature x relative to the class attribute c.
The higher the IG(x, c), the more discriminative the feature
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both methods (models) were tested under their opti-
mal parameters.
The prediction results of the proposed SkipCPP-Pred

and CellPPD, executed on the proposed high-quality data-
set and evaluated by the jackknife test, are presented in
Table 4. The overall accuracies (ACC) of SkipCPP-Pred,
CellPPD-DC, and CellPPD-BP are 90.6%, 87.0%, and
83.7%, respectively. Note that SkipCPP-Pred remarkably
outperforms the CellPPD predictor, which is 3.6% and
6.9% more accurate than CellPPD-DC and CellPPD-BP,
respectively. This indicates that our predictor is superior
to the CellPPD predictor for classification of CPPs. More-
over, it is worth noting that although CellPPD is reported
to achieve >90% accuracy in the prediction of CPPs, its
performance significantly declined to around 83% - 87%

on our CPP924 dataset. This may verify our assumption
that our dataset is more stringent than the dataset pro-
posed in the CellPPD study.
To intuitively compare the proposed method with the

CellPPD predictor, we further conducted a graphic analysis
by using the Receiver Operating Characteristic (ROC)
curves [61]. In the ROC analysis, area under the receiver
operating characteristic curve (AUC) is the major metric to
evaluate the predictive performance of a predictor. The
greater is the AUC value, the better is the predictor. Figure 6
plots the ROC curves of the compared methods on the
CPP924 dataset. As seen from Fig. 6 that the area under
the curve of our method (green curve in Fig. 6) is signifi-
cantly greater than that under the other curves (purple
curve for CellPPD-DC and red curve for CellPPD-BP). To

Fig. 4 Amino acid compositions of the 20 most important features among 400 adaptive k-skip-2-g features. For example, R = 6 indicates that six out
of the 20 top-scoring features contain the amino acid R; conversely, A = 0 indicates that none of the top-scoring features contain the amino acid A

Fig. 5 Performance of the RF classifier with different tree numbers. The x- and y-axes represent the tree number t (varied from 10 to 500 in steps
of 10) and the predictive performance, respectively. The blue and orange plots present the comprehensive metrics ACC and MCC, respectively
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be specific, the AUC value of the proposed SkipCPP-
Pred is 0.969, which is 0.03 and 0.065 higher than the
CellPPD-DC and CellPPD-BP method, respectively.
This further demonstrates that the proposed predictor
is better than the state-of-the-art predictors.

Discussion
To identify known and potential novel CPPs, we devel-
oped a predictor, namely SkipCPP-Pred, by using a
sequence-based feature representation approach (adap-
tive k-skip-n-gram model).
To verify the effectiveness of the adaptive k-skip-n-

gram model, we compared it with traditional n-gram
model and found that the adaptive k-skip-n-gram model
shows better performance than the traditional n-gram
model. This is because that as compared with the trad-
ition n-gram model, additional distanced correlation in-
formation embedded in the adaptive k-skip-n-gram
model contributes to the performance improvement for
CPP prediction.
Moreover, due to the use of only sequential informa-

tion for modeling, SkipCPP-Pred is capable to predict
CPPs fast. We tested SkipCPP-Pred on the stringent
CPP924 dataset with the jackknife test. The results indi-
cated that SkipCPP-Pred has the strong capacity of
classifying true CPPs from non-CPPs. And, we devel-
oped an online webserver that implements the proposed
SkipCPP-Pred for researchers to predict CPPs conveni-
ently. It is anticipated to be a useful tool to accelerate
the research of CPP prediction. Importantly, the pro-
posed feature representation method used in SkipCPP-
Pred has the great potential to guide the sequence-based

prediction of other special proteins (i.e. DNA-binding
proteins).

Conclusions
In this study, we proposed a novel computational method
called SkipCPP-Pred, for accurate, fast and stable predic-
tion of potential novel CPPs. Recognizing the importance
of the dataset in model building, we also proposed a novel
high-quality dataset for SkipCPP-Pred. The quality of this
dataset is guaranteed by reducing the sequence redun-
dancy, which alleviates the bias in the performance, and
enhancing the similarity between the two classes (positive
and negative CPPs). To our knowledge, we present the
most stringent of the datasets reported in the literature.
Thus, our high-quality dataset might become the bench-
mark dataset in the development of computational CPP
prediction methods. As another contribution, we proposed
the adaptive k-skip-n-gram model to CPP prediction. By
the feature comparative analysis, the k-skip-n-gram feature
model demonstrated greater discriminative power in CPP
classification than the traditional n-gram model. Moreover,
we compared the overall performance of the proposed
SkipCPP-Pred and the state-of-the-art predictors in the
literature. The jackknife results showed that the ACC and
MCC performance measures on the CPP924 dataset were
higher in SkipCPP-Pred than in the state-of-the-art
predictors, demonstrating the superiority of SkipCPP-
Pred. Accordingly, it is expected that the proposed
predictor could become a useful tool in research of
CPP prediction. At least, it could complement the
existing predictors to improve the accuracy of CPP
prediction by neural-like computing models [62–67],
evolutionary computation [68, 69], and other similar
models [70–73] in near future.

Table 3 Jackknife results of the underlying random forest classifier
and four alternative classifiers on the benchmark dataset CPP924

Classifier SE (%) SP (%) ACC (%) MCC

NB 82.7 94.8 88.7 0.781

SMO 87.9 89.4 88.6 0.773

J48 87.2 84.6 85.9 0.719

LR 82.0 80.7 81.4 0.628

LibSVM 88.1 92.6 90.4 0.810

RF 88.5 92.6 90.6 0.812

NB and LR denote Naïve Bayes and Logistic Regression, respectively

Table 4 Jackknife results of the proposed SkipCPP-Pred and the
state-of-the-art predictor CellPPD on the CPP924 dataset

Methods SE (%) SP (%) ACC (%) MCC

CellPPD-DC 83.3 90.7 87.0 0.745

CellPPD-BP 78.1 89.2 83.7 0.680

SkipCPP-Pred 88.5 92.6 90.6 0.812

Note that CellPPD-DC represents the dipeptide composition model of the
CellPPD predictor, while CellPPD-BP represents the binary profile-based model
of the CellPPD predictor

Fig. 6 Graphical illustration to show the predictive performance of the
proposed SkipCPP-Pred and the state-of-the-art predictors by using the
ROC curves
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Additional file 1: Table S1. Feature ranking of the proposed adaptive k-
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feature means the feature is more discriminative. Table S2. Performance of
the Random Forest classifier with different tree numbers on the benchmark
dataset CPP924 with the jackknife validation test. Note that the tree number
is changed from 10 to 500 with the incremental step of 10. (DOCX 61 kb)
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