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Abstract

Background: This study investigated learning outcomes and user perceptions from interactions with a hybrid

intelligent tutoring system created by combining the AutoTutor conversational tutoring system with the Assessment

and Learning in Knowledge Spaces (ALEKS) adaptive learning system for mathematics. This hybrid intelligent tutoring

system (ITS) uses a service-oriented architecture to combine these two web-based systems. Self-explanation tutoring

dialogs were used to talk students through step-by-step worked examples to algebra problems. These worked

examples presented an isomorphic problem to the preceding algebra problem that the student could not solve in

the adaptive learning system.

Results: Due to crossover issues between conditions, experimental versus control condition assignment did not

show significant differences in learning gains. However, strong dose-dependent learning gains were observed that

could not be otherwise explained by either initial mastery or time-on-task. User perceptions of the dialog-based

tutoring were mixed, and survey results indicate that this may be due to the pacing of dialog-based tutoring using

voice, students judging the agents based on their own performance (i.e., the quality of their answers to agent

questions), and the students’ expectations about mathematics pedagogy (i.e., expecting to solving problems rather

than talking about concepts). Across all users, learning was most strongly influenced by time spent studying, which

correlated with students’ self-reported tendencies toward effort avoidance, effective study habits, and beliefs about

their ability to improve in mathematics with effort.

Conclusions: Integrating multiple adaptive tutoring systems with complementary strengths shows some potential

to improve learning. However, managing learner expectations during transitions between systems remains an open

research area. Finally, while personalized adaptation can improve learning efficiency, effort and time-on-task for

learning remains a dominant factor that must be considered by interventions.

Keywords: Intelligent tutoring systems, Natural language tutoring, Mathematics education, Worked examples,

Isomorphic examples, System integration

Overview
Scaling up intelligent tutoring systems (ITS) to main-

stream educational contexts has been a significant chal-

lenge for the research community. While ITS have shown

significant learning gains over traditional educational

technology (VanLehn 2011; Kulik and Fletcher 2016), the
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cost to develop and distribute ITS interventions has often

meant that less adaptive technologies dominate the grow-

ing educational technology landscape (e.g., web-based

homework, online videos). Because of this, a likely future

for intelligent tutoring systems is to integrate and inter-

operate with a variety of other systems, some of which

may be adaptive while others mainly present static content

(e.g., traditional learning management systems).

Scaling challenges disproportionately impact ITS

design. Handling a large range of domains is difficult for
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tutoring systems because ITS tend to be tightly linked to

specific learning activities (e.g., solving a math problem,

drawing a diagram, paraphrasing an essay). Expanding

these ITS to a new activity often requires significant

additions to ITS modules that handle assessment (e.g.,

evaluating domain-specific task performance) and com-

munication (e.g., providing feedback on the task). As

such, coverage can be an issue and overall learning

gains from ITS tend to be higher on locally developed

tests rather than standardized tests (Kulik and Fletcher

2016). Given the effort needed to extend an ITS to a

new learning task, an ITS intended for a wide range of

domains needs to focus on relatively universal interactive

tasks.

Two common learning tasks are step-by-step problem

solving and natural language conversation, which have

each been used for a number of domains (Nye et al. 2013).

However, it is non-trivial to combine these tasks due to

the difficulty of building conversations that can account

for changes in the problem-solving state. As an alterna-

tive to trying to maintain a coherent conversation about

a problem that a learner is constantly changing, one pos-

sible solution is to align at the problem level, such that

the tutorial conversations address the same skills and

knowledge that the problem-solving steps require. This

abstraction potentially allows conversational tutoring to

be overlaid on any learning activity, without needing to

develop an exhaustive 1-to-1 mapping of tutorial dialog

to address the entire problem-solving state space. Instead,

tutorial dialogs align to a single path through that space,

enabling a coherent conversation about the solution path

and its steps for a particular example. This is similar

to example-tracing tutors, which help tutor solving the

steps of a specific problem (Aleven et al. 2009), except

in this case the goal is not to solve the steps but to

explain why and how they were solved that way. Such self-

explanations are intended to highlight the generalizable

skills that should transfer to a variety of math contexts

rather than only reviewing the specific procedures for that

problem.

To implement this approach, we have developed a

method for annotating an HTML page with tutoring con-

versations that sequentially discuss the concepts associ-

ated with each part of the page. In the present study, we

used this method to add tutoring dialogs to the prob-

lem steps of worked examples of algebra problems. While

this study applies this approach to mathematics, it could

also be used for a variety of domains, such as read-

ing comprehension (e.g., dialogs could be associated with

positions in a news article), tutoring the steps to a how-to

manual, or promoting reflection about a decision-making

scenario.

The above integration strategy presents a major

methodological challenge in that standalone intelligent

tutoring systems have traditionally been “application

islands” that cannot easily interact with other ITS and

learning platforms (Roschelle and Kaput 1996). However,

the emerging ecosystem of web applications depends on

integrating web services hosted across multiple domains

and managed by different institutions. As a field, we

need to refine methodologies to integrate different learn-

ing technologies (i.e., hybrid ITS). Our approach to this

challenge was to build and apply a web service-oriented

architecture approach to combine components. Using this

framework, we integrated our conversational tutoring sys-

tem into an existing commercial adaptive learning sys-

tem. Based on reactions by different stakeholders (e.g.,

teachers, students), we identified a number of advan-

tages for this kind of multi-system integration (e.g.,

combining complementary strengths) and disadvantages

(e.g., pacing differences and student confusion over the

role of different systems) that will be discussed in this

paper.

The Shareable Knowledge Objects as Portable Intelli-

gent Tutors (SKOPE-IT) system described in this paper

pushes the boundaries of domain-agnostic tutoring by

annotating where natural language-tutoring dialogs occur

in an HTML page (e.g., a math worked example, a how-

to page, etc.). SKOPE-IT stores and delivers web-based

conversational tutoring that can be integrated as a real-

time web service and easily embedded into existing web

applications. SKOPE-IT is also designed to integrate mul-

tiple web applications using semantic messaging. In this

study, it was used to integrate the AutoTutor Conversation

Engine (ACE; Nye et al. 2014b), the ALEKS (Assessment

and Learning in Knowledge Spaces) commercial mathe-

matics learning system (Falmagne et al. 2013), and a num-

ber of domain-specific services designed to address some

distinct challenges for natural language dialogs about alge-

bra. Evaluation outcomes for the first evaluation of this

system are presented, as well as lessons learned for build-

ing future hybrid systems using conversational tutoring.

Motivation to integrate: complementary strengths
Future intelligent tutoring systems (ITS) will need to inte-

grate with other learning systems, particularly other intel-

ligent systems. AutoTutor and ALEKS were integrated

using the SKOPE-IT system due to their complementary

strengths. While AutoTutor and ALEKS are both adaptive

learning systems, they fall on very different ends of the

spectrum with respect to adaptivity: ALEKS works on the

outer-loop (problem selection), while AutoTutor adapts

at the inner-loop (problem-step level) during a problem

(VanLehn 2006).

ALEKS is a commercial online learning environment

with material in a number of domains including math-

ematics, chemistry, and business (Falmagne et al. 2013).

ALEKS is only adaptive at the outer-loop, where it
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enforces mastery learning: students are only able to prac-

tice problems after they have mastered all of the required

prerequisites (i.e., macro-adaptive mastery learning). This

prerequisite structure is modeled using knowledge space

theory, which assumes that certain sets of knowledge

components (i.e., knowledge spaces) can only be mastered

after a certain subset of other components are mastered

(Falmagne et al. 2013). In practice, for ALEKS algebra, this

can be represented using a directed acyclic graph, where

only the boundary of knowledge components is available

to be learned at any time.

Student interaction in ALEKS centers around selecting

a skill to master, which is done by selecting an available

skill from a “pie” which shows groups of related skills

(shown in Fig. 1). Once a skill is selected, learners com-

plete isomorphic (equivalent structure) practice problems

until they can solve that problem type consistently, using

an interface similar to Fig. 2. In this scheme, every new

category of isomorphic problems requires exactly one

more skill when compared to the skills that the learner

already knows. When a student cannot solve a problem,

they can view a step-by-step worked example by hitting

the “Explain” button (shown in Fig. 3). Also, being a com-

mercial system, ALEKS has a range of tools for a teacher

to customize course content and view reports on student

learning.

Studies on ALEKS have shown fairly consistent evidence

that the system improves mathematics skills as measured

by standardized tests and by pre-test/post-test designs

(Sabo et al. 2013; Craig et al. 2013). Exact effect sizes as

compared to different types of control conditions (e.g.,

non-adaptive online learning, traditional lectures) are still

being investigated, but so far have shown comparable out-

comes to other instructional approaches that are known

to be effective. For example, one study reported that

ALEKS in an after-school program offered gains compara-

ble to expert teachers running supplementary classes, but

with lower burden on facilitator/teacher time (Craig et al.

2013). A second study reported learning gains comparable

to the cognitive tutor (Sabo et al. 2013), which has demon-

strated statistically significant gains on large-scale ran-

domized controlled studies (Pane et al. 2014). ALEKS has

also shown evidence that it may reduce achievement gaps

between white and black students when integrated into

instruction that would otherwise not include an online

adaptive learning system (Huang et al. 2016).

On the other hand, the AutoTutor Conversation Engine

is a web service that drives conversations with one or

more conversational agents (Graesser et al. 2012; Nye

et al. 2014b). While this system can be integrated into

larger ITS that have outer-loop adaptivity, each con-

versation script focuses on inner-loop adaptivity to the

student’s natural language text input. In terms of the

Bloom (1956) taxonomy, ALEKS focuses primarily on

applying algebra skills, while AutoTutor questions can

help students understand, analyze, and evaluate algebraic

concepts. The goal of a typical AutoTutor conversation

is to ask a question and then help the learner express

one or more expectations (main ideas), while providing

leading questions (hints) and fill-in-the-blank questions

Fig. 1 ALEKS pie: adaptive availability of skills (KC’s) to master
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Fig. 2 ALEKS problem: attempting a problem, with options to submit (“Next”) or “Explain”

Fig. 3 ALEKS explanation: a worked example presented by ALEKS
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(prompts) to help scaffold the learner’s self-explanation

(Graesser et al. 2012).

AutoTutor-style tutoring has produced learning gains

when compared to control conditions such as read-

ing textbooks or no intervention (averaging about 0.8σ )

across a variety of domains, including computer liter-

acy, physics, and scientific methods (Graesser et al. 2012;

Nye et al. 2014a). Comparisons against human tutors

showed no significant differences in overall learning gains

(Vanlehn et al. 2007). A key element of AutoTutor’s effec-

tiveness is that it emulates how human tutors work with

students, which revolves around scaffolding students to

self-explain key expectations required to solve a prob-

lem (Graesser et al. 2012). With that said, the majority of

these studies have been done under controlled conditions,

rather than in real-life courses where external confounds

would impact learning gains. Additionally, like many sys-

tems deployed for research, AutoTutor does not yet have

extensive interfaces for teacher control and management.

In this project, ALEKS provided a foundation for pro-

cedural practice and adaptive practice problem selection,

while AutoTutor offered potential learning gains driven

by interactive natural language tutoring. The integrated

presentation of AutoTutor and ALEKS learning occurred

during the “Explain” page for the ALEKS item. The ALEKS

Explain page presents a worked example solution to the

specific problem that the learner could not solve correctly

(e.g., Fig. 3). While the explanation gives the steps of the

solution, it explains few of the underlying principles in

detail.

The SKOPE-IT system integrated AutoTutor dialogs by

presenting a tutoring-enhanced worked example for an

isomorphic problem, with a series of small dialogs that

each cover a key principle about that problem type. From

the user’s perspective, these small dialogs might appear

to be a single longer dialog, but they were functionally

independent by design: making each step-specific dia-

log modular allows for flexibility in disabling or reusing

dialogs (e.g., if the same procedure, such as verification,

should be applied). The HTML for the worked example

(including any images) is dynamically rendered after each

dialog finishes and the learner talks about the latest solu-

tion step. Figure 4 shows a tutored worked example, which

can be compared against the standard ALEKS explanation

in Fig. 3. Since the current dialog is related to an early step

of the problem, the remainder of the solution is hidden

(the blank area at the bottom, which will scroll down as

new content appears). The full text of the example shown

in Fig. 4 can be found in the Appendix. After complet-

ing the worked example with the embedded dialogs, the

learner sees the complete worked example from ALEKS

for the exact problem that they were unable to solve. This

design was based on three learning principles discussed in

the next section.

Theoretical underpinnings
When building SKOPE-IT, the goal was to com-

bine: (1) worked examples (Schwonke et al. 2009), (2)

self-explanation (Aleven et al. 2004), and (3) impasse-

driven learning (VanLehn et al. 2003).

First, worked examples have been shown to improve

conceptual understanding in intelligent tutoring sys-

tems (Schwonke et al. 2009) and are complementary to

self-explanation tasks (Renkl 2005). Moreover, existing

instructional materials in many existing online systems

tend to include a wealth of worked examples and solu-

tions, either presented using static multimedia (e.g., Wiki-

How) or video form (e.g., Khan Academy). Unfortunately,

non-interactive media can suffer from shallow attention

and processing: in some studies, reading a textbook fails

to outperform even do-nothing controls (Vanlehn et al.

2007). The default ALEKS Explain functionality poten-

tially suffers from some of these issues of shallow process-

ing since it does not provide any significant interaction.

Second, natural language tutoring offers a clear com-

plement to static worked examples. Renkl (2005) notes

that worked examples are most effective when learn-

ers self-explain, generalizable principles are highlighted,

structural features andmappings between representations

are salient, and the building blocks for a solution are iso-

lated into identifiable steps. Natural language tutoring

such as AutoTutor’s expectation coverage dialogs directly

prompt the learner to self-explain until certain content

coverage criteria are met (Graesser et al. 2012). Moreover,

well-designed tutoring dialogs can be used to focus the

learner’s explanations toward key concepts and principles,

important structural features of the problem, and can also

scaffold the learner to map between representations (e.g.,

formulas to explanations).

The third principle behind this work was to harness

impasse-driven learning. ITS interventions such as hints

or tutoring dialogs are more likely to promote learning

when the student feels stuck or confused (VanLehn et al.

2003). Since students only request an ALEKS explanation

when they cannot solve a problem, explanations occur at

an impasse. Impasse learning may benefit students since

impasses can trigger confusion, which tends to precede

learning (Lehman et al. 2012). As such, the tutoring should

be more effective at these times.

SKOPE-IT design
While SKOPE-IT has close ties to AutoTutor and is

embedded in ALEKS for the study presented next, the

distinct role played by SKOPE-IT was to align dialogs

to HTML worked examples using annotations and to

coordinate real-time communication between a variety of

web services (Nye et al. 2014b). In SKOPE-IT, each ser-

vice communicates with other services by passing their

semantic messages into a gateway node (e.g., a request
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Fig. 4 Integration of a tutored worked example into ALEKS

that the TutorAgent speak some “text”). Gateway nodes

determine the network structure by communicating with

each other across standardized web protocols. Currently,

the main protocols are HTML5 postMessage, which han-

dles cross-domain communication inside webclients, and

webSockets, which support bidirectional communication

between webclients and servers (i.e., the server can “push”

messages to a connected client in real-time). Since mes-

sages are handled by services based on the content that

they contain, there are no tight connections between ser-

vices. This makes it straightforward to move functionality

between different services, even those services that lie on

different servers or are moving from server-side code (e.g.,

Python, Java) to client-side code (e.g., JavaScript). The

messaging architecture for this system has been released

and continues to be developed as the SuperGLU (Gener-

alized Learning Utilities) framework (https://github.com/

GeneralizedLearningUtilities).

This architecture lends itself to building a variety of

purpose-specific services, rather than a specific imple-

mentation of a traditional four-model ITS architecture.

Figure 5 shows the services integrated in this project.

Gateway nodes are shown as circles, where client gateways

and server-side gateways begin with C and S, respectively,

(e.g., C1 versus S1). Services are shown as rectangles,

with third-party services are shown in gray. These include

ALEKS and a commercial Speech Engine service. In this

configuration, messages were passed using a fanout pol-

icy along the gateway graph (i.e., all services could receive

any message). One exception to this scheme was that, in

some cases, the the session id was removed from purely

server-side messages, which would prevent that message

from reaching any client browser (since without the ses-

sion id, it would then be impossible to identify which user

that message was related to). This was done to eliminate

unnecessary network traffic.

Domain content: 50 algebra worked examples
Math is a new domain for AutoTutor, and it has partic-

ular challenges for a natural language-tutoring system.

Since the role of AutoTutor in this system was to facilitate

discussion on the principles and features of an existing

problem, it was unnecessary to make the learner write

complex math syntax. However, even for simple state-

ments (e.g., “x + y”), math relies on variables with little

general semantic meaning, making them more difficult

to evaluate. Also, when the animated pedagogical agents

speak there are challenges with articulating the sometimes

ambiguous syntax of formulas.

Three natural language processing enhancements were

made so that AutoTutor could handle math dialogs more

effectively. First, a corpus of algebra-related documents

was collected using webcrawlers and a new math LSA

(Latent Semantic Analysis) semantic space was generated

https://github.com/GeneralizedLearningUtilities
https://github.com/GeneralizedLearningUtilities
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Fig. 5 SKOPE-IT core service structure

(Landauer et al. 1998). This allowed better evaluation

of synonyms for math concepts. Second, to understand

equivalent words for operators, numbers, and other

common terms, equivalency sets were defined (e.g., over

a dozen terms were treated as exact matches for “add”,

including “+”, “sum”, and “plus”). Using these sets, pre-

processing was applied to both the student’s input and also

for any keywords that authors required for that dialog, so

that any term found in a set was placed in a canonical form

before comparing terms.

Third, to speak formulas, a simple parser was designed

to convert math formulas into English terms. One compli-

cation for this process was that people do not speak for-

mulas precisely, so off-the-shelf libraries produced stilted

language, e.g. the formula “z*(x + 5)” being spoken as “z

times left parenthesis x....” To avoid this, our parser did

not translate grouping characters to speech. Instead, a

plain-English version of the formula was spoken (e.g., “z

times x plus 5”), while the original exact formula spoken

was shown in the chat log so that the precise values were

clear (shown in Fig. 4). Another challenge for articulating

formulas was the difficulty in disambiguating certain sym-

bols, such as the difference between a function name and a

series of multiplied variables (e.g., “tan(x)” is “tangent of x”,

but “an(x)” is typically “a n times x”). This was handled by

checking a table of common functions and constants that

were handled before breaking groups down into simpler

variables and terms.

The content for the tutored worked examples was based

on 50 worked examples drawn from solutions to ALEKS

items that were aligned to the Common Core Alge-

bra I curriculum. These 50 items were chosen because

they focused on algebra topics with stronger ties to con-

ceptual understanding, such as representation mapping,

systems of equations, or problems that included units

of measurement. As a result, approximately half of the

tutored worked examples involved word problems. These

worked examples cover only a fairly small fraction of

ALEKS items: as of this study, their algebra I curriculum

included 693 item types. Each item type is a generator

for multiple isomorphic problems. ALEKS generates iso-

morphic problems by varying not only the numbers but

also the context (e.g., different quantity types in a word

problem).

For each worked example, 5–12 brief dialogs were

authored (407 dialogs in total). In general, each brief dia-

log attempted to target a single knowledge component,

though a small number of dialogs targeted multiple skills.

Examples of knowledge components used by the sys-

tem would be “IndepDep: Distinguish independent and

dependent variables,” “SolveSystemBySubstitution: Solve

system by substituting equivalent expression,” or “Ver-

ifySolution: Verify a given number is a solution to an

equation by substitution.” Each dialog included statements

by both a tutor agent and a student agent. Two types

of dialogs were authored: trialogs (75% of dialogs) and

vicarious tutoring (25% of dialogs). In a trialog, the tutor

agent asked a main question and both the human student

and student agent would respond with answers, then the

tutor agent would provide feedback and follow-up ques-

tions that scaffold the explanation. In vicarious tutoring,

the peer student agent modeled an explanation with the

tutor to demonstrate a concept. Vicarious dialogs were

used to explain concepts that were either contained a

nuanced skill (e.g., a common but subtle misconception

that learners might not articulate), a step that required

multiple simultaneous skills (to enable focusing the dia-

log on one of them), or a concept that might be hard to

process using natural language dialog responses. To com-

plete a worked example, the human student needed to

complete each of the brief dialogs (one for each key step).

These dialogs proceeded shortly after each other, giving
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the feeling of a longer ongoing conversation. Students

also had the option to replay certain dialogs associated

with a step by clicking on a special button embedded in

that step.

The length of the dialogs depended on the quality of

the learner’s input: perfect answers complete the dia-

log immediately, while incomplete or wrong answers

lead to a series of hints and prompts. Depending on

the quality of student input and student typing speed,

a single dialog can take between 15 s and 3 min.

The time for a novice student to carefully complete a

tutored worked example (5–12 dialogs) would typically

be between 10 and 20 min. For a highly knowledge-

able student, the same example would likely be less than

5 min. By comparison, the time to read through an untu-

tored worked example appeared to range between 0 and

10 min, ranging from students who only looked at the

right answer (e.g., nearly 0) to students that tried to re-

work their own solution to reach the correct answer

(up to 10 min).

Hypotheses
Using this integrated system, a study was conducted to

look at three main research questions:

1. H1 : That dialog-based tutoring enhancements to

ALEKS explanations will lead to greater learning

gains on ALEKS assessments (near transfer).

2. H2 : That dialog-based tutoring will lead to higher

general math competency, as measured by a

far-transfer test.

3. H3 : That students with stronger beliefs in math

concept mastery will be more likely to prefer to work

with the agents.

In the following section, the methods and measures to

look at these hypotheses are described.

Studymethodology and population
Design

The experiment was integrated into normal class activ-

ities for three sections of a college basic algebra class.

Subjects were aware that they were participating in an

experiment and would be assigned to one of two condi-

tions. The course combined short lectures with students

working problems on the ALEKS system. This course con-

tained a total of 240 ALEKS items, of which 30 items

had tutoring-enhanced explanations. A lecturer unaffili-

ated with the experimenters led all three class sections

and was not made aware of the students’ condition assign-

ments (though they could have inferred it from in-class

ALEKS use). The duration of the intervention in the class

was 12 weeks.

The SKOPE-IT system randomly assigned each student

to an experimental condition with tutoring-enhanced

items (experimental) or to a control where ALEKS pre-

sented its usual non-interactive solutions (control). Due

to two issues, dosage was inconsistent across condi-

tions. First, since ALEKS guided problem selection and

not all problems had dialogs (only 12.5%), participants

in the experimental condition were not expected to

receive entirely equal dosage. Second, due to a glitch

in authentication, the control condition was presented

with tutoring for 3 weeks out of the 12-week course,

making the control condition effectively a lower-dose

treatment.

Participants

Three sections of a Mid-South college basic algebra class

participated in this study (112 students). Basic algebra is a

course for students with very low mathematics placement

scores, in that any student with lower placement scores

than this population would be required to take remedial

mathematics at a 2-year institution instead. Out of 112

students, 9 dropped out in their first weeks of the class

before using ALEKS significantly and were excluded from

the analysis. The total number of participants in each

condition was initially 49 for experimental condition and

63 for the control. After early dropouts, the number of

participants fell to 42 experimental and 61 control.

Overall attrition from the class was high: out of 112 stu-

dents, 32% of subjects did not reach the final assessment

for the class. According to the instructor, this attrition rate

is not atypical, due to the difficulties that these students

have with the material. Table 1 shows the three types of

attrition: early drops (students who dropped shortly after

their initial assessment), in-semester drops, and drops

that occurred in the last 3 weeks before the final assess-

ment. Early drops will be excluded from analysis because

the students left the class during the add-drop period,

before using either condition significantly. Initial assess-

ment scores for those who dropped out early were slightly

significantly different from the full sample between condi-

tions (χ2
= 3.88, p = .04887). However, among students

who participated in the class, attrition rates for the exper-

imental and control conditions were not significantly dif-

ferent (χ2
= 0.4132, p = .5203). Since only 76 learners

persisted until the post-assessment, these were used to

evaluate learning gains.

Table 1 Attrition by assigned condition

Condition Early drops In-semester Finals

Exp. 7 5 11

Control 2 11 7

Total 9 16 18
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Materials

Data collection occurred through four mechanisms:

ALEKS data records, the SKOPE-IT system logs, surveys

on student beliefs and attitudes, and a far-transfer test on

basic mathematics skills (the Basic Skills Diagnostic Test).

First, the ALEKS course data included course mastery lev-

els from adaptive assessments delivered by ALEKS (the

commercial version online during the time of Fall 2014), a

record of the time each student spent working in the sys-

tem, and a log of student interactions with the system (e.g.,

right and wrong answers on each problem). These assess-

ments impacted course grades, so students were presum-

ably motivated to perform well. ALEKS assessments were

considered the primary measure of learning gains since

these are known to correlate highly with standardized

tests such as the Tennessee Comprehensive Assessment

program (TCAP) on similar subject matter (r = .842, p <

0.01, N = 216; Sullins et al. 2013).

Second, the SKOPE-IT system collected dialog inter-

action data of the student with the AutoTutor system.

This included the number of inputs (student answers to

AutoTutor questions), number of dialogs interacted with,

number of dialogs presented (triggered, regardless of if

students answered them), and LSA scores for the quality

of student answers to AutoTutor.

Third, two surveys (a pre-survey and post-survey)

collected student beliefs about mathematics and reac-

tions to the tutoring agents. The pre-survey included

four simple arithmetic problems (measured by speed of

completion), the mathematical beliefs items from the

Mathematical Problem-Solving Behaviors Scale (MPSB;

Schommer-Aikins et al. 2005), and the Dweck scale

for incremental and entity beliefs about intelligence

(Blackwell et al. 2007). Dweck’s scale has indicated that

incremental beliefs about intelligence (e.g., “I believe I can

always substantially improve on my intelligence.”) tend to

be associated with better learning outcomes, while entity

beliefs about intelligence being fixed tend to be associated

with worse outcomes (Blackwell et al. 2007). The MPSB

items were collected to identify beliefs about mathemat-

ics that might influence their performance in ALEKS or

interactions with the agent dialogs. The MPSB constructs

are Effortful Math (EM), that math skills grow with effort,

similar to Dweck’s incremental intelligence but specific

to math; Useful Math (UM), that math will be valuable

to them; Math Confidence (MC), their belief in being

able to solve hard problems; Understand Math Concepts

(UMC), that concepts rather than just finding the answer

is important; Word Problems (WP), that word problems

are important; and Non Prescriptive Math (NPM), that

math problems are not just solved by memorizing fixed

steps. Since some overlap existed between these scales,

factor analysis was applied to identify factors from the

pre-survey data.

In the post-survey, participants were presented with

selected items regarding attitudes toward agents adapted

from the Attitudes Toward Tutoring Agents Scale

(ATTAS; Adcock and Eck 2005), items from the Unified

Theory of Acceptance and Use of Technology (UTAUT)

adapted to focus on learning while interacting with

the agents (Venkatesh et al. 2003), and sections of the

motivated strategies for learning questionnaire (MSLQ;

Pintrich et al. 1993). Factor analysis was also anticipated

for the post-survey, but low response rates made this

infeasible. Six constructs from the MSLQ inventory were

measured, to gather information about learners’ motiva-

tions during learning: Anxiety during testing; Time/Study

Environment management and organizational habits;

Effort, their self-reported time spent during the course;

Peer Learning, their tendency to work with peers; Help

Seeking, their tendency to ask others for help; and

Metacognitive Self-Regulation, their habits for identifying

gaps in knowledge and changing study habits to address

them.

The UTUAT items were applied to measure Learn-

ing Expectancy (that the agents would help them learn),

Effort Expectancy (that the agents were easy to work

with), and Attitudes toward technology (that they like

the agents in general). The ATTAS items were used to

measure attitudes toward individual agents (i.e., help-

fulness of the tutor versus the student), motivation to

work with the agents, and technical issues (natural lan-

guage smooth, feedback helpful, knew how much the user

knew). The Appendix lists the items from each survey

construct, along with their mean and standard deviation

of responses.

Finally, a Basic Skills Diagnostic Test (BSDT) was com-

pleted by each class section in early September and

again in mid-November (Epstein 2014). This test has

been shown to be predictive for later success in col-

lege mathematics, so it was selected as a far-transfer test

to identify potential generalized improvements to math

skills. For example, AutoTutor dialogs focusing on verify-

ing/rechecking answers might transfer to a variety of pro-

cedural problems. The BSDT is a 24-item free-response

test on basic mathematics understanding. It covers skills

from pre-algebra through college algebra. Of the 24 items,

only nine items that aligned somewhat closely with the

ALEKS items from our study. Six of the nine were frac-

tion and decimal word problems. The remaining three

aligned questions involved building and solving linear

equations.

Procedure

The experiment was conducted in three phases. First, for

each class section, an in-person session was conducted

that briefly explained the study, goals, and conditions.

In particular, it was communicated that some might
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see tutoring dialogs frequently while others might see

them rarely or not at all. Neither the participants nor

the instructor were told which condition any particu-

lar student was part of. Following this initial orientation,

students present in class were given the opportunity to

complete the BSDT. The pre-survey was provided to each

student was a link for a point of extra credit, with up to

two reminder emails sent during the first 2 weeks of class

if it was not completed. During this period, as part of their

normal classroom activities, ALEKS accounts were cre-

ated and some students began to use the ALEKS system.

Other students dropped or transferred out of the course

(i.e., the early drops).

After this first phase was complete, the SKOPE-IT sys-

tem was enabled. Enabling this for the class sections

meant that if a student in the experimental condition hit

“Explain” on an ALEKS problem that contained a tutored

explanation, they would receive dialog-based tutoring.

This phase of the experiment continued until the end of

the semester, with data collection occurring in ALEKS

and the SKOPE-IT system. For the first 2 weeks, study

personnel observed classroom use of ALEKS to identify

any bugs or issues that might need to be solved. Approxi-

mately 2 weeks into this period, for approximately 3 weeks

in the first half of the study, the bug in authentication

allowed a subset of control condition users to encounter

dialogs.

For the third phase (the last weeks of the regular

semester classes), a second in-person session was con-

ducted with each class section to administer the BSDT

a second time. Students present were also given time to

complete the post-survey. Students who did not attend

those class sections, which was a substantial number, were

reminded of the survey by email up to twice (following

the same approach as the pre-survey). Attendance dur-

ing these later class sections was substantially lower, due

to the attrition that occurs during that course (as noted

earlier). Data collection in ALEKS and SKOPE-IT contin-

ued through the remainder of the semester (approximately

2 weeks) following the final BSDT and the post-survey

period.

From the instructor’s perspective, the system worked

identically to the standard ALEKS system, so it was not

disruptive to the standard classroom pedagogy. Com-

pletion of the surveys and BSDT test were rewarded

with a minimal completion credit (e.g., one point) but,

despite this, participation was inconsistent. Minor early

semester technical issues were encountered due to out-

dated browser versions on classroom machines, but these

were resolved by updating the machines.

Results
The data collected from this study were analyzed to evalu-

ate the impact of the SKOPE-IT system on learning gains

in ALEKS, on Basic Skills Diagnostic Test outcomes, and

on the relationship between students’ survey responses on

their learning and behavior in the system. These results

are summarized below.

Learning gains: ALEKS assessment

Results from ALEKS assessment scores are presented in

Table 2, where means are displayed and standard devi-

ations are in parentheses. Learning gains presented are

simple learning gains (i.e., post-pre) for students who

completed their ALEKS final assessment. Due to random

chance during assignment and early attrition, the exper-

imental condition contained fewer subjects at both the

start (NE,0) and end (NE,f ) of the study. The experimental

subjects slightly outperformed the control (+3.3 points

learning gain), but this difference was not statistically sig-

nificant (Cohen’s d = .2, p = .45). Attrition rates for

both conditions were high (and are generally high for that

course), but were not significantly different, as explained

earlier in the “Participants” section.

The dosage of AutoTutor interactions was a confound

for comparing conditions. Since students took different

paths through the ALEKS adaptive system, they encoun-

tered different numbers of tutoring dialogs (M = 24 and

SD = 27 among students with at least one dialog). Since

each example had an average of 8 dialogs, students who

received dialogs saw only about 3 worked examples out of

50. Also, due to crossover issues, the “experimental” sub-

jects only averaged four more dialogs than the “control”

subjects.

To look at dose-dependent effects, a linear regres-

sion was used to model the learning gain as a func-

tion of the logarithm of the time spent in ALEKS and

logarithm of the number of AutoTutor dialogs inter-

acted with (Table 3). Logarithmic transforms were applied

because diminishing learning efficiency was observed

for a subset of students who overdosed on the com-

bined system (7 students spent 80+ h in ALEKS, σ = 1.5

above the mean). The regression improved the model fit

(R2
= .54) when compared to a model with only time

spent studying (R2
= .49). Dialog dosage was significant

even after accounting for time-on-task (including time

on dialogs). Including a term for dialogs that the learner

encountered but ignored (e.g., returned to problem solv-

ing instead) did not improve the model fit (t = −.32,

p = .75) and did not appear to be associated with greater

learning.

Far transfer: BSDT learning gains

Participation in the Basic Skills Diagnostic Test sessions

were limited, with only 46 students completing both the

pre-test and post-test administrations. Of those students

who retook the test later in the semester, significant learn-

ing gains were observed, t(45) = 2.27, p < .05, d = 1.17.
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Table 2 Assessment outcomes by assigned condition

Condition Initial score (N0 = 103) Final score (Nf = 76) Learning gain (Nf = 76) Effect size (Nf = 76)

Experimental (NE,0 = 42, NE,f = 28) 20.5 (5.5) 52.6 (18.9) 31.7 (19.4) d = 2.3

Control (NC0 = 61, NC,f = 48) 23.2 (7.3) 51.8 (17.1) 28.4 (15.5) d = 2.1

So then, some evidence was found that ALEKS practice

improved results on the BSDT. Comparing conditions,

the control condition showed a higher BSDT gain,

t(26) = 4.47, p < .01, d = 1.44. Due to the low num-

ber of responses, with only 19 left in the experimental

condition, caution must be taken in interpreting that

result. Likewise, despite the large effect size, students’

overall improvement was limited: mean scores increased

from 4.8–6.6 (out of a possible 24 items). This was pri-

marily due to the fact that only a subset of BSDT items

aligned to the course materials sequenced in ALEKS. As

noted, only 9 out of 24 items aligned to the study course

content.

Limiting the analysis to only the 9 aligned items, the raw

gain remained small at 0.91 (from 1.57 to 2.49) but was

more significant (t(45 = 4.26, p < .001, d = 1.45). Gain

on the aligned items did not show significant differences

between conditions (t(42) = 1.32, p = .19). Gain on the

aligned items did correlate positively with gain on ALEKS

scores (r(7) = .46, p < .001) and with time spent study-

ing in ALEKS (r(7 = .36, p < .05). However, learning

gains on the BSDT test were not significantly impacted

by the number of dialogs interacted with when analyzed

with similar methods as for the ALEKS learning gains (i.e.,

no dose-dependent effects). This held true for both the

full BSDT test and the aligned items. As such, analysis of

BSDT results found no evidence that the dialogs caused

improvements that transferred to general mathematics

strategies (e.g., verifying answers).

Attitudes toward learning, mathematics, and agents

Seventy-seven students completed the pre-survey instru-

ments and the data were analyzed with principal com-

ponent analysis using a direct oblimin rotation to obtain

factors. Factor scores were computed using regression.

Using the screen test, it was clear that 6 factors were

good solution, accounting for 65.3% of the variance. KMO

value was .761, while Bartlett’s test was significant with

Table 3 Learning by time and tutoring dialogs (R2= .54, R2cv = .54)

Factor (N = 76) Coefficient (raw) P value

Log10(no. of hours in
ALEKS)

43.0 <.001 (t = 6.6)

Log10(no. of AutoTutor
dialogs interacted with)

8.0 .009 (t = 2.7)

Intercept −41.1 <.001 (t = −4.2)

p < .0005, indicating the data is suitable for factor analysis.

Components extracted were named as follows: incremen-

tal theory of intelligence (ITI, with 31.7% variance), dislike

of word problems (DLW,with 9.2%), arithmetic speed (AS,

with 8.2%), entity theory of intelligence (ETI , with 6.6%),

effort avoidance (EA, with 5.0%), and time persistence

(TP, with 4.7%). All component factor score correlations

were low, however. In this data, ITI was correlated nega-

tively with ETI (r(75) = −.254, p = .026), negatively with

EA (r(75) = −.253, p = .026), and positively with TP

(r(75) = .258, p = .024).

Further, we examine the relationships of these factors

in students with important dependent measures we col-

lected. In some cases, attrition resulted in reduced df s

for the comparison, which is noted. For the first ALEKS

assessment, only a correlation with AS was significant

(r(63) = .254, p = .026). For the ALEKS last assessment,

most interesting in these results were the correlations

with EA, which was composed of 4 negatively weighted

MPSB items for items such as “Working can improve

one’s ability in mathematics” and similar items that cor-

respond to a domain (math) specific form of incremen-

tal theory of intelligence (like the ITI factor, but for

math). For ALEKS last assessment, ALEKS gain, and

total time in the system were negatively correlated with

EA (r(63) = −.309, p = .012; r(63) = −.303, p = .014;

r(63) = −.262, p = .021, respectively). Similarly, we saw

negative correlation between ETI and total time in the

system (r(63) = −.238, p = .037). Finally, we also saw

a correlation between ALEKS learning efficiency and the

EA component (r(63) = .263, p = .034).

Participation of students was lower for the post-survey,

despite the same completion credit as for the first survey

(N = 43). This small sample prohibited factor analysis, so

we used the pre-planned question categories to describe

the relationships to dependent measures. First, for the

peer learning component of the MSLQ, we saw nega-

tive correlations with the last ALEKS assessment and

ALEKS gain, (r(41) = −.308, p = .044; r(41) = −.334,

p = .029). Next, we saw a substantial relationship between

the MSLQ component for time/study environmental

management, with positive correlation with the last

ALEKS assessment, ALEKS gain, and total time in the

system (r(41) = .453, p = .002; r(41) = .516, p < .0005;

r(41) = .580, p < .0005). These correlations seem to indi-

cate the importance of intentional study and are similar to

the negative correlations for EA noted previously.
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For the technology attitude items, all three factors

related to agents (overall attitude, learning expectancy,

and effort expectancy) were highly correlated (r(41) =

.853 to r(41) = .972; p < .01 for all). As such, overall

impressions of the tutoring system were strongly con-

nected. We saw negative correlations with total time in

the system, which reached significance for overall attitude

about the system and learning expectancy from the system

(r(41) = −.331, p = .030; r(41) = −.330, p = .031).

However, as shown in Fig. 6, this drop in attitudes toward

the system was not uniform and was driven by the quar-

tile of post-survey respondents who used the system

significantly longer than the average. We also saw that

learning expectancy correlated positively with the aver-

age LSA match score for students who received SKOs

(r(21) = .413, p = .050), indicating that students who

did well on the dialogs felt that they learned more from

them. Finally, we observed a trend between incremental

theories of intelligence (ITI) and all three technological

acceptance measures with all ps< .11, with an average

r of .29.

Discussion and conclusions
Due to insufficient differences in dosage, the experimental

and control conditions showed no significant differences

in learning gains. With that said, the dosage of tutoring

dialogs was significantly associated with learning gains

(p < .01). Moreover, no other explanatory factor was

found that captured this difference. Student prior knowl-

edge did not correlate with dialog interaction (r = −.03,

p = .39). Also, dialogs were only associated with learning

when the learner interacted with them, making it unlikely

that higher-achieving students simply encountered more

dialogs. Students were also unaware of which topics had

Fig. 6 User attitude toward system by quartile of time spent in ALEKS

dialogs, so there was little likelihood that higher-achieving

learners self-selected opportunities to use the dialogs.

Finally, regression analyses found that AutoTutor dialogs

predicted learning even after accounting for total time

studying in the combined system. As such, a prepon-

derance of evidence weighs toward the hypothesis that

AutoTutor dialogs improved learning gains as compared

to ALEKS alone (H1), but the crossover effects of dialogs

in the Control condition undermined the randomized

assignment that would have provided causal evidence to

this effect.

Results of the Basic Skills Diagnostic Test showed that

BSDT items aligned to the ALEKS experimental con-

tent improved, but that these gains were only impacted

by time spent in ALEKS and did not appear to be

affected by the dialogs completed. The purpose of this

far-transfer test was to determine if certain generaliz-

able skills and strategies from the dialogs (e.g., identifying

variables, verifying answers) would improve performance

on related general mathematics tasks. At least with the

level of dosage provided in this study (approximately

1 h of dialogs), students’ approach to mathematics on

the BSDT did not lead to systematically higher math

performance. As such, the second hypothesis (H2) was not

confirmed.

One issue on which this study sheds light was some

individual differences from the surveys that reflected dif-

ferent outcomes in ALEKS. A second key issue is which

parts of the SKOPE-IT explanation promote learning in

this context. Compared to the standard ALEKS system,

SKOPE-IT added three new elements: (A) Isomorphic

worked examples presented at an impasse point, (B) ani-

mated agents, and (C) tutored self-explanations. Of these

three factors, based on prior research with AutoTutor,

we suspect that the tutored self-explanations primar-

ily controlled any learning gains (Graesser et al. 2012).

Insights about each component will be discussed briefly

below.

Individual differences in performance

Survey results indicated that certain students benefited

more from the ALEKS system overall, but there were no

clear indications that certain types of students benefited

more from the dialogs. While participants’ initial knowl-

edge only correlated with their arithmetic speed, their

learning gains and final assessment scores were associ-

ated with math-specific views about the value of effort

(math effort avoidance; EA) and self-reported study habits

(MSLQ time and study environment). The EA (reverse

coded) may indicate a math-specific form of incremen-

tal theory of intelligence that helped certain students be

more persistent. These beliefs predicted greater amounts

of time spent studying in ALEKS and increasing learning

due to time-on-task. However, those beliefs did not mean
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those students learned at a faster rate, since avoiding effort

was associated with higher learning efficiency, possibly

due to students avoiding or quitting harder or more time-

consuming problems.

The negative correlation between preferences toward

peer learning and learning gains was unexpected and

open to interpretation. The course format for the study

included little peer-group work since it primarily used

lectures and ALEKS practice. One possible hypothesis is

that certain students genuinely learn more effectively in

small-group contexts and were able to accurately report

that. However, there seems to be little theory that would

support this hypothesis. Alternatively, personality traits

such as extroversion might not only lead to a prefer-

ence to peer studying but also more socialization (leading

to less studying overall), though this was not demon-

strated in their time spent studying in ALEKS (which was

not correlated with self-reported peer learning patterns).

More likely, since the MSLQ was administered toward

the end of the course, students who were struggling

might have reported more need for peer support, which

could explain the negative correlation with their final

assessments.

Isomorphic worked examples

The contribution isomorphic worked examples after an

impasse appeared to have mixed results. Based on stu-

dent exit-survey comments and classroom observations,

learners often complained that “The system didn’t explain

the problem that I was working on.” While the students

were instructed that the tutoring dialogs worked through

a problem that had exactly the same steps (only dif-

ferent numbers and variable names), they struggled to

connect the tutored explanation to their original impasse.

This may indicate that parts of this student popula-

tion was focused on procedural fluency (e.g., diagnos-

ing calculation errors) rather than conceptual fluency

(e.g., understanding the principle that was needed). While

this may not impact learning directly, it could have

impacted students’ engagement when working with the

agents.

This interpretation might be supported by further data

since positive perceptions of agents showed a trend with

ITI beliefs (which, if maintaining the same correlation

level, would have been significant with a higher turnout

for the post-survey). If this correlation reached signifi-

cance, it would support the hypothesis that learners would

prefer agent dialogs if they were interested in concep-

tual mastery (H3). However, our results do not entirely

support this hypothesis. Even if this effect reached sig-

nificance, the overall magnitude would be lower than

anticipated (approximately r = .3) which indicates that a

variety of other factors impact perceptions of the tutoring

dialogs and agents.

Instead, mixed receptions to the system are also likely

due to implementation details that may have reduced its

effectiveness. One problem with the study implementa-

tion might have been due to hiding future steps of the

worked example when performing the tutoring. In this

study, SKOPE-IT pages were sequenced one step at a

time to help scaffold learners thinking through the prob-

lem (intended to reduce cognitive load). However, mul-

tiple survey responses indicated that they preferred to

see the whole worked example first, as was done in nor-

mal ALEKS explanations. Students might have been better

able to self-explain after reviewing processes shown in

the example so that dialogs are used to reflect on the

steps after seeing the full example (Schworm and Renkl

2007). This would be particularly relevant for problems

with interdependencies between steps or skills. While it

had originally been thought that addressing one step at a

time represented the most scaffolded form of presenting

a worked example, it might instead be that presenting the

full-worked example as a mental model up-front is a pre-

requisite for effective dialog scaffolding and that a linear

step-by-step progression represents a harder, more faded

task (Atkinson et al. 2003).

From the standpoint of designing future systems, rather

than giving a fully tutored example, this population of stu-

dents may prefer a system where they could select one

or two steps to complete tutoring dialogs after so that

they could focus on solidifying the specific concepts they

were struggling with at that moment (i.e., targeting their

own top impasses). This approachmight have also allowed

expanding the coverage of ALEKS topics: as noted, only

30 out of 240 course topics were covered (and some were

ones students never reached). In general, for aligning a

smaller adaptive system to a larger one, a broader and lim-

ited interventionmay bemore predictable for dosage (e.g.,

one or two dialogs per example type, as opposed to 5–12

for full coverage of an example).

A second potential improvement would be enabling

fast inquiry for student questions. Asking questions of

the agents about steps was also requested by students in

the post-survey open-response answers. This functional-

ity was not implemented in this version of the system but

could be added to future versions. One effective method-

ology for such questions might be the point-and-query

interface studied by Graesser et al. (1992), which allows

clicking on elements to see a list of questions and check

answers quickly.

Animated agents

Reactions to the animated agents were mixed to neg-

ative. While some students found the agents engaging,

other students complained about the relative speed of

working with the agents versus reviewing the standard

ALEKS worked examples. Negative sentiments were more
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common among users who spent longest (top quartile)

in the ALEKS system mastering topics. Looking at the

open-response answers of users who used the ALEKS

extensively and rated the agents lowest, 50% of these

responses focused on either time spent working with the

agents or a preference for text. A subset of responses also

noted that the animated agents were slower than a text-

only interface, which was available as an alternate dialog

mode.

Overall, reactions to the agents were almost unidimen-

sional: students who liked the agents (overall attitude) felt

that they learned from the dialogs (learning expectancy)

and that the agents were easy to interact with (effort

expectancy). Given the very high correlations between

these factors, as well as the fact that students who gave

better answers (higher LSA scores) expressed a higher

learning expectancy from the agents, students may also

be estimating their learning and their opinions of the

agents based on how well they could answer the agents’

questions. This may indicate that students like or dislike

the agents based on the amount of effort they needed to

apply to complete dialogs. This issue would be related to

the tendency for many students to dislike learning tasks

that they find cognitively demanding (Willingham 2009).

Unfortunately, many productive learning tasks are not

easy or well liked. While the AutoTutor dialogs were not

more challenging than solving the ALEKS math prob-

lems, learners needed to reflect on the problem to answer

correctly, rather than only manipulate terms to try to

reach an answer. As such, some students may have found

the dialogs more challenging or less intuitive, particu-

larly since many US students are seldom taught to talk

about math.

Prior findings with AutoTutor indicated little additional

learning gains from using animated agents as opposed to

voice only or from even text-only interactions (Craig et al.

2004; Nye et al. 2014a). General reviews of pedagogical

agents have likewise found either small effects on learning

(Schroeder et al. 2013) or no effects on learning (Heidig

and Clarebout 2011) due to animated agents, which indi-

cates that pedagogical agents may only be useful in certain

contexts. Some design advantages for agents appear to be

allowing users to control pacing, using agents to deliver

explanations (as opposed to only feedback), and using

voice delivery rather than text (Heidig and Clarebout

2011). In this study, the agents worked with students to

self-explain, used voice delivery by default, and provided

a faster text-only option for limited control over pacing.

Unfortunately, voice delivery appears to conflict with pac-

ing: voice was viewed as slow by most users (though one

felt it was too fast), so text with no agent may poten-

tially be preferred by many users. Given this background,

the faster text-only mode may be the preferred default

for integrating with a system such as ALEKS, due to the

noticeable difference in pacing (e.g., very quick reviews of

worked examples versus thorough dialogs about concepts)

and negative responses to surface-level details such as the

animations or voices of the agents. This also raises the

issue that the interactions with an agent should match its

surrounding environment and expectations: faster agents

for faster-paced environments or explicit self-pacing may

be important.

Tutored self-explanations

The conversational tutoring itself (as opposed to the

agents) was less controversial, and a number of students

requested additional features (e.g., answering the learner’s

questions). However, evident in the post-survey open

responses, a subset of learners did not understand how

talking about math concepts would help them improve

at math. The general theme of these comments was that

the tutoring did not show them “how to get the correct

answer.” This line of thought implies that getting the right

answer to the current problem is equivalent to learning

(e.g., number of problems solved might be their inter-

nal metric for mastery). This belief is likely reinforced

in some areas of the math curriculum, where drill-and-

practice approaches can be an efficient way to master

simple calculations (e.g., multiplication tables) and by the

grading practices of teachers who may rarely assign con-

ceptual exercises, but rather assign computational prob-

lem sets, which students must answer correctly to receive

high grades.

Despite the perceptions of some students, prior research

on this topic has found that self-explanation prompts

do produce deeper understanding, such as identifying

when a problem cannot be solved. Aleven and Koedinger

(2002) also found that while students spent more time

per example, overall learning efficiency was the same

(i.e., students gained more per example). Follow-up work

on this topic found that switching from menu-based

explanation choices to natural language choices can also

improve explanation skills (Aleven et al. 2004). Unfor-

tunately, many students do not intuitively understand

that self-explanation can improve the efficiency of their

learning (i.e., save them time in the long run). Stu-

dents may need domain-specific metacognitive train-

ing to understand the value of self-explanation and

tutoring dialogs.

Conclusions and future directions
In terms of the major research questions approached by

this study, the first hypothesis (tutoring dialogs improve

learning gains) had moderate but not conclusive sup-

port, the second hypothesis (dialogs will transfer to gen-

eral mathematics competency) was not supported by this

study, and the third hypothesis (student beliefs aboutmath

concepts and learning influence perceptions of agents and
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tutoring) had insufficient support but showed a trend

that might be confirmed if more data were collected.

Additionally, a number of directions for future work were

uncovered. First, student reactions to the system were

mixed to negative. One primary problem was that while

the student was at an impasse, they could not easily relate

the isomorphic problem to their impasse. This implies

that students may benefit from starting with tutored

worked examples integrated as a supplementary activity,

before they are integrated into a problem-solving impasse,

to help students become familiar with a dialog-based

pedagogical approach. Alternatively, it may indicate that

tutoring for worked examples is most effective when the

whole worked example is presented first and then student

supported to self-select one or more dialogs that match

their current impasse.

Second, some students’ inability to generalize their

improved knowledge from ALEKS practice back to the

BSDT skills indicated the need to explicitly train stu-

dents on the role and importance of self-explanation,

identifying problem types, and other domain-specific

cognitive and metacognitive strategies. Prior work such

as Chi and VanLehn (2010) has showed that tutoring

domain-specific problem-solving strategies can produce

significant learning gains, particularly for low-performing

learners. However, particularly among low-performing

students, it may be necessary to clearly and explicitly

link these strategies to their performance. Some poten-

tial methods to approach this could be graded activities

on using the strategies (rather than only interleaving them

into examples) or demonstrating how they benefit pro-

cedural fluency (e.g., presenting problem types where

recognizing and using such strategies are particularly

important).

While this research has raised many questions, it has

also provided key insights for designing and studying

adaptive learning systems. Findings from the MSLQ

showed the importance of self-regulating study habits,

which were significantly associated with overall learning

gains. Likewise, effort avoidance for math was associated

with worse overall learning but greater efficiency, indi-

cating that such a scale might be adapted to help predict

when students are likely to disengage from an adaptive

system based on diminishing returns. Related to this,

models of mastery gains in ALEKS showed an overall

decrease in gains as a function of time. In principle, this

was not necessarily expected: adaptive learning systems

such as ALEKS are designed to try to break down skills

so that all prerequisites are already known, so later topics

are not necessarily harder. However, assuming that indi-

viduals switch away from harder topics that they do not

master, it is reasonable to assume that learners in a self-

directed system such as ALEKS will eventually complete

most of the “low-hanging fruit” and be left with a fringe

of challenging topics that slow down progress. Together

with surveys that help determine effort avoidance, such

system-wide learning curves might help determine when

students may need a human intervention to avoid dis-

engagement. Such work would provide a larger frame-

work for considering wheel spinning (Beck and Gong

2013), but considering the system level rather than an

individual topic.

New findings about dialog systems and agents were also

uncovered, though as even relatively recent meta-analyses

such as Heidig and Clarebout (2011) note, research on

pedagogical agents has only a limited number of first prin-

ciples. Our study findings indicate tradeoffs even between

some of the well-established principles such as interac-

tivity, control over pacing, and voice (Chi 2009; Heidig

and Clarebout 2011). In particular, voice and interactiv-

ity have an inherent minimum pacing that is slower than

skimming text or skipping through to useful parts of a

video. We also found that, for this type of population at

least, survey ratings about pedagogical agents tended to

be highly univariate (i.e., one global “liking” factor appears

to drive most of the variance). This indicates that alter-

nate approaches such as open-response questions, A/B

comparisons, storyboards, or interviews might be pre-

ferred over detailed survey inventories. In particular, topic

analysis of open-response questions might be valuable:

while the Likert survey answers were quite univariate, the

open-response questions showed clear actionable themes

that could likely be aligned to a frameworks such as the

Pedagogical Agents–Conditions of Use Model (PACU)

and Pedagogical Agents–Levels of Design (PALD; Heidig

and Clarebout 2011).

Finally, the positive correlation between answering the

tutor correctly and liking to use the tutors indicates a

potentially difficult balance between encouraging engage-

ment with ITS versus providing optimal challenge levels

(Willingham 2009). Game design principles for modu-

lating challenge levels may be required (e.g., mixtures

of easy and hard progressions). This becomes increas-

ingly complicated as we integrate multiple intelligent

systems, which use different interaction and pacing strate-

gies. Guidelines for providing continuity, engagement, and

managing learner expectations will all be key future areas

to study as we begin further work on meta-adaptive sys-

tems that switch between different intelligent learning

environments (Nye 2016).

Appendix
Summary of survey responses and full ALEKS worked

example

Note: Certain items may be modified slightly from their

original form, in order to help participants understand

what was being referred to (e.g., the system versus the

animated tutors).
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Table 4 Pre-survey item means and standard deviations

Construct Item text Mean St. dev.

Dweck entity I don’t think I personally can do much to increase my intelligence. 1.76 1.13

Theory of intel. My intelligence is something about me that I personally can’t change very much. 2.15 1.33

To be honest, I don’t think I can really change how intelligent I am. 2.15 1.45

I can learn new things, but I don’t have the ability to change my basic intelligence. 2.15 1.33

Dweck incremental With enough time and effort I think I could significantly improve my intelligence level. 5.12 1.21

Theory of intel. I believe I can always substantially improve on my intelligence. 5.1 1.23

Regardless of my current intelligence level, I think I have the capacity to change it quite a bit. 5.1 0.99

I believe I have the ability to change my basic intelligence level considerable over time. 5 1.1

MPSB math I feel I can do math problems that take a long time to complete. 4.01 1.36

confidence Math problems that take a long time don’t bother me. 2.88 1.48

I’m not very good at solving math problems that take a while to figure out. 3.63 1.42

MPSB Effortful Ability in math increases when one studies hard. 4.87 1.21

Math By trying harder, one can become smarter in math. 5.06 1.14

I can get smarter in math if I try hard. 4.95 1.16

Working can improve one’s ability in mathematics. 4.74 1.33

I can get smarter in math by trying harder. 5.08 1.1

Hard work can increase one’s ability to do math. 5.03 1.14

I find I can do hard math problems if I just hang in there. 4.26 1.41

MPSB Non- Any word problem can be solved if you know the right steps to follow. 5.03 1.23

Prescriptive Any word problem can be solved by using the correct step-by-step procedure. 4.91 1.3

MPSB persistence If I can’t do a math problem in a few minutes, I can’t do it at all. 2.59 1.32

If I can’t solve a math problem quickly, I quit trying. 2.54 1.37

MPSB understand It’s not important to understand why a mathematical procedure works as long as it gives a correct answer. 2.24 1.51

MPSB concepts Getting the right answer in math is more important than understanding why the answer works. 2.58 1.49

It doesn’t really matter if you understand a math problem if you can get the right answer. 2.22 1.28

MPSB Useful Math Studying mathematics is a waste of time. 2.28 1.44

Mathematics has no relevance to my life. 2.44 1.48

Mathematics will not be important to me in my life’s work. 2.6 1.58

Knowing mathematics will help me earn a living. 4.55 1.36

Mathematics is a worthwhile and necessary subject. 4.54 1.36

I study mathematics because I know how useful it is. 3.91 1.4

MPSB Word Word problems are not a very important part of mathematics. 2.56 1.37

Problems Math classes should not emphasize word problems. 3.29 1.49

(N = 77; scale: 1-strongly disagree to 6-strongly agree)
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Table 5 Post-survey item means and standard deviations

Construct Item text Mean St. dev.

MSLQ Anxiety When I take a test I think about how poorly I am doing compared with other 4.23 1.75
students.

When I take a test I think about items on other parts of the test I can’t answer. 4.16 1.45

When I take tests I think of the consequences of failing. 4.86 1.44

I have an uneasy, upset feeling when I take an exam. 4.02 1.39

I feel my heart beating fast when I take an exam. 4 1.56

MSLQ Effort Even when course materials are dull and uninteresting, I manage to keep working 4.47 1.09
until I finish.

MSLQ Help Seeking Even if I have trouble learning the material in math class, I try to do the work on 4.72 1.17
my own, without help from anyone.

I ask an instructor to clarify concepts I don’t understand well. 3.88 1.33

When I can’t understand the material in a math class, I ask another student in 3.47 1.45
class for help.

MSLQ Metacognitive During class time I often miss important points because I’m thinking of other things. 3.51 1.28

Self-Regulation When reading for math class, I make up questions to help focus my reading. 3.37 1.45

When I become confused about something I’m reading for math class, I go back 4.67 1.34
and try to figure it out.

If course readings are difficult to understand, I change the way I read the material. 3.91 1.03

Before I study new course material thoroughly, I often skim it to see how it is 4.26 1.18
organized.

I ask myself questions to make sure I understand the material I have been studying 4.09 1.34
in math class.

I try to change the way I study in order to fit the course requirements and the 3.84 0.99
instructor’s teaching style.

I often find that I have been reading for math class but don’t know what it was all 4.09 1.2
about.

I try to think through a topic and decide what I am supposed to learn from it rather 4.07 1.35
than just reading it over when studying for a math class.

When studying for this course I try to determine which concepts I don’t understand well. 4.63 1.12

When I study for math class, I set goals for myself in order to direct my activities in each 4.02 1.19
study session.

If I get confused taking notes in class, I make sure I sort it out afterwards. 3.95 1.54

When studying for math class I try to determine which concepts I don’t understand well. 4.74 1.01

MSLQ Peer Learning When studying for math class, I often try to explain the material to a classmate or friend. 3.02 1.64

I try to work with other students from math class to complete the course assignments. 3.05 1.35

MSLQ Time/Study I usually study in a place where I can concentrate on my course work. 4.79 1.19

Environmental I make good use of my study time for math class. 4.12 1.26

Management I find it hard to stick to a study schedule. 3.98 1.39

I have a regular place set aside for studying. 4.35 1.38

I make sure that I keep up with the weekly readings and assignments for math class. 4.33 1.03

When taking a math class, I attend class regularly. 5.09 1.03

I often find that I don’t spend very much time on math classwork because of other activities. 3.81 1.33

I rarely find time to review my notes or readings before an exam. 2.98 1.36

ATTAS attitude Working with the tutoring system was fun. 2.23 1.39

I liked working with the tutoring system. 2.23 1.43

I think using the tutoring system is a good idea. 2.63 1.6

The tutoring system could make learning more interesting. 2.67 1.47



Nye et al. International Journal of STEM Education  (2018) 5:12 Page 18 of 20

Table 5 Post-survey item means and standard deviations (Continued)

UTUAT effort The tutoring system makes sense and I could understand it. 2.56 1.42

expectancy I found the tutoring system easy to use. 2.7 1.56

UTUAT learning I found the tutoring system useful for my learning. 2.42 1.42

expectancy Using the tutoring system could help me learn more quickly. 2.33 1.44

Using the tutoring system could increase how much studying I could get done. 2.53 1.5

I think the tutoring system could help me learn difficult math concepts. 2.74 1.54

The tutoring system helped me more than I expected. 2.28 1.34

(N = 43; scale: 1-strongly disagree to 6-strongly agree)

Fig. 7 Full-worked example for tutored example shown in Fig. 4
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Note: This is one of the longest worked examples tutored,

so it can be considered the maximum size for a worked

example in SKOPE-IT.
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