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Skull optical clearing window for in vivo imaging of the
mouse cortex at synaptic resolution

Yan-Jie Zhao1,2, Ting-Ting Yu1,2, Chao Zhang1,2, Zhao Li1,2, Qing-Ming Luo1,2, Tong-Hui Xu1,2 and

Dan Zhu1,2

Imaging cells and microvasculature in the living brain is crucial to understanding an array of neurobiological phenomena. Here,

we introduce a skull optical clearing window for imaging cortical structures at synaptic resolution. Combined with two-photon

microscopy, this technique allowed us to repeatedly image neurons, microglia and microvasculature of mice. We applied it to

study the plasticity of dendritic spines in critical periods and to visualize dendrites and microglia after laser ablation. Given its

easy handling and safety, this method holds great promise for application in neuroscience research.
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INTRODUCTION

Since the development of transgenic technology1, two-photon micro-

scopy has made it possible to image neurons, glia and microvascu-

lature in live mice over time intervals from seconds to years2–8. This

technique has become a powerful tool to understand an array of

neurobiological phenomena, including the plasticity of individual

synapses and neuronal network activity4,9.

However, the strong scattering caused by the skull over the cortex

hinders the observation of fluorescently labeled neuronal structures

and microvasculature10,11. To overcome this obstacle, various cranial

window methods were developed, including the open-skull glass

window12,13, the thinned-skull cranial window14,15 and their

variants16–28. The open-skull glass window is formed by removing a

section of the skull and replacing it with a glass coverslip and may

induce an inflammatory response within 3 weeks after surgery12,29.

The thinned-skull cranial window is realized by thinning the skull

down (to o25 μm). This is a minimally invasive method, but it

requires repeatedly thinning the skull due to bone regrowth, which

makes it relatively difficult to use14. To meet different needs, variants

based on craniotomy or skull-thinning surgery have been developed.

However, they cannot circumvent the problems inherent to current

cranial windows: the associated inflammatory response, the complex-

ities in surgical procedures and high skill requirements for laboratory

personnel. Thus, it is urgent to develop a safe and easy-handling

cranial window technique for cortical neuroimaging.

The tissue optical clearing technique can reduce the scattering of

tissue30,31 and has great potential for solving this problem. By

combining it with various optical microscopy techniques, three-

dimensional visualization of ex vivo brain, spinal cord, etc. with high

resolution has been possible, which has helped to achieve major

breakthroughs in neuroscience research32–38. In addition, some

attempts were made to reduce the scattering of the skull

ex vivo36,37,39–41. However, the optical clearing of the skull in vivo

has not been sufficiently studied. In recent years, researchers have also

performed some in vivo experiments to reduce the scattering of the

skull, such as applying reagents on the skull to achieve in vivo imaging

of the cortex42–44. However, it remains impossible to image the

cortical structures at synaptic resolution due to the limited optical

clearing efficacy of these methods.

Thus, our basic idea is to develop an easy-handling and safe skull

optical clearing window (SOCW) for in vivo imaging of the cortical

structures at synaptic resolution. Combined with two-photon micro-

scopy, this SOCW technique enables us to repeatedly image the

dendritic protrusions, microglia processes and blood capillaries in the

superficial layers of the cortex. In addition, we investigated the safety

of the SOCW technique, concluding that the method is safe. Then, we

applied this approach to monitor the plasticity of dendritic protrusions

in critical periods and to visualize the changes in dendrites and

microglia upon laser injury.

MATERIALS AND METHODS

Animals

All animal procedures were approved by the Experimental Animal

Management Ordinance of Hubei Province, China and carried out

in accordance with the guidelines for humane care of animals.

The following mouse strains were used: Thy1-YFP-H; Cx3cr1EGFP/+;
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Sst-IRES-Cre::Ai14; and wild-type C57BL/6. Transgenic mice were

purchased from the Jackson Laboratory (Bar Harbor, ME, USA) and

housed and bred in Wuhan National Laboratory for Optoelectronics

with a normal cycle (12 h light/dark). Wild-type C57BL/6 mice were

supplied by the Wuhan University Center for Animal Experiment

(Wuhan, China). Transgenic mice expressing yellow fluorescent

protein under the control of the Thy1 promoter (Thy1-YFP-H) were

used for imaging dendritic spines, whereas those expressing enhanced

green fluorescent protein in microglia (Cx3cr1EGFP/+) were used for

imaging microglia. Transgenic mice expressing red fluorescent protein

(Sst-IRES-Cre::Ai14) were used for imaging cortical interneurons.

Wild-type C57BL/6 mice were used for imaging the cerebral

vasculature labeled with FITC-dextran (50 mg ml− 1; 2 × 106 molecular

weight; Sigma-Aldrich). The Thy1-YFP-H mice younger than post-

natal day 14 (oP14) have inadequate numbers of brightly labeled cells

for in vivo imaging. Thus, we selected the mice aged older than P14.

Reagents

The optical clearing agents (OCAs) used in this study include

collagenase (Sigma-Aldrich; T8003), EDTA disodium (Sigma-Aldrich;

D2900000) and glycerol (Sigma-Aldrich; 101640026). The OCAs were

developed according to the composition of the skull. As we know, the

skull consists of an inorganic matrix and an organic matrix. In addition,

the main components of the inorganic matrix and organic matrix are

calcium hydroxyapatite and collagen, respectively. As the mice grow

older, the ratio of inorganic matrix to organic matrix increases. There-

fore, for the infantile mice (oP20), collagenase was used to dissolve

collagenous fiber; for the elder mice (4P20), EDTA disodium was used

to chelate calcium ions (decalcification). In addition, glycerol was used to

match the refractive index.

Schematic diagram of the SOCW technique

Figure 1 shows the schematic diagram of the SOCW technique for

cortical imaging. The main experimental procedures include head

immobilization, skull optical clearing, cortical imaging and recovery

(Figure 1a). After anesthesia, hair removal and scalp incision, mice

were fixed with a custom-built immobilization device (Figure 1b) that

consisted of a custom-built plate and a skull holder. Further, the skull

holder was formed by two conventional double-edged razor blades

sandwiching a layer of waterproof paper. On the surface of the skull-

holder, dental cement was used to form a reservoir that prevented the

OCA from leaking.

The mouse skull is made up of two layers of compact bone

sandwiching a layer of spongy bone (Figure 1c), and this structural

heterogeneity produces a strong scattering effect. The clearing process

takes approximately 15 min and comprises two steps: first, softening

the outermost layer of the skull, and then, matching the refractive

index. Before imaging, a layer of plastic wrap was placed over the

cleared skull to separate the water-immersion objective from the OCA

(Figure 1d). After imaging, we gently detached the holder from the

skull, thoroughly cleaned the skull and the skin to remove the

remaining glue, and sutured the scalp with sterile surgical sutures.

Skull optical clearing methods

Since components of the skull change with age, various clearing

methods were developed for mice of different ages (Figure 1e–1g).
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Figure 1 Schematic diagram of SOCW technique for cortical imaging. (a) Four steps: immobilization, skull optical clearing, cortical imaging and recovery.

(b) A custom-built head immobilization device consisting of a skull-holder and a custom-built plate is used to reduce motion artifact during imaging.

(c) Anatomical structure of mouse skull. (d) Schematic of the SOCW. A layer of plastic wrap is placed over the cleared skull to separate the water-immersion

objective from the optical clearing agent (OCA). (e–g) The skull optical clearing methods for mice aged e P15–P20, f P21–P30, g older than P30, which

include two steps, the first step is different for mice of different ages. Step 1: for mice aged P15–P20, the intact skull was topically treated with 10%

collagenase (w v−1) for 5–10 min; for mice aged P21–P30, the intact skull was topically treated with 10% EDTA disodium (w v−1) for 5–10 min; for mice

older than P30, the thinned skull (100 μm) was treated with 10% EDTA disodium (w v−1) for 5–10 min. Step 2: 80% glycerol (v v−1) was dropped onto the

cleared skull.
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Step 1: For mice aged P15–P20, the intact skull was topically treated

with 10% collagenase for 5–10 min (Figure 1e); for mice aged

P21–P30, the reagent was replaced by 10% EDTA disodium

(Figure 1f). The thickness of the skull increases as mice age; thus,

for mice older than P30, we had to thin the skull to approximately

100 μm before clearing and then treat it with 10% EDTA disodium for

5–10 min (Figure 1g).

Step 2: We removed the first reagent above the skull by using a

clean cotton ball, and then, 80% glycerol was dropped onto the skull.

In vivo two-photon imaging

In vivo images of YFP-expressing dendritic spines/EGFP-expressing

microglia/FITC-dextran-labeled cerebral vasculature were acquired by

a two-photon microscope (FV1200; Olympus, Tokyo, Japan) with a

Mai Tai Ti:sapphire laser (Spectra Physics, Santa Clara, CA, USA) at

925 nm. The output optical power was o40 mW to avoid photo-

toxicity. Image stacks were obtained with a step size of 1 μm using a

water-immersion objective (25× , numerical aperture= 1.05, working

distance= 2 mm; Olympus). To relocate the same location, low-

resolution images of interest were obtained with a step size of 2 μm.

After the initial fluorescence image was acquired, the OCAs were

topically applied to the skull, and then, the same area was relocated

and reimaged based on the brain vasculature map to assess the optical

clearing efficacy.

Labeling of microglia and astrocytes in mouse cortex

Mice were perfused intracardially with 4% paraformaldehyde.

The mouse brains were removed, postfixed and sectioned into

50 μm slices. To examine microglia in the mouse cortex, we used

Cx3cr1EGFP/+ transgenic mice, and labeling of astrocytes was per-

formed with antibodies against Glial fibrillary acidic protein (GFAP).

Brain sections were stained for GFAP (Proteintech Group, Rosemont,

IL, USA; 16825-1-AP; 1:100) using a normal immunostaining proto-

col. The images were acquired by a Zeiss 710 LSM confocal

microscope (Oberkochen, Germany) and a Nikon Eclipse Ni-E

wide-field microscope (Tokyo, Japan).

Laser ablation inside the cortex

The laser ablation inside the cortex was performed by focusing a laser

beam on the cortex through the skull. The laser wavelength was

780 nm, and its power was approximately 60–80 mW at the sample.

The beam remained at the position of interest for approximately 60 s

to create a tiny injury site.

PBS

6000

4000

2000

0

6000d

a b

c

4000

2000

0
0 50 100

Pixel index on the line Pixel index on the line

F
lu

o
re

s
c
e
n
c
e
 i
n
te

n
s
it
y

F
lu

o
re

s
c
e
n
c
e
 i
n
te

n
s
it
y

150

PBS

Cleared

PBS

Cleared

200 0 50 100 150 200

A
c
ro

s
s
 1

0
–
1
5
 µ

m

A
c
ro

s
s
 6

0
–
6
5
 µ

m

Cleared PBS Cleared

Figure 2 Representative fluorescence images of the dendrites to assess the optical clearing efficacy achieved by the SOCW method. (a and b) Maximum

projections across images a 10–15 μm and b 60–65 μm below the surface through the intact skull, before and after skull optical clearing (P30, n=10

mice). (c and d) Transverse plots corresponding to the same dendrites and spines indicated by the dashed line in a and b, showing that the fluorescence

intensity is significantly improved. Scale bar=10 μm.
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Data quantification

All data were analyzed by using Image J software that was developed

by National Institutes of Health (Bethesda, MD, USA). For spine

dynamics in Figure 6, all analyses were performed manually on the

raw image stacks. The newly formed spine was the one that was not in

the first image but appeared in the second image. The eliminated spine

was the one that appeared in the initial image but not in the second

image. The elimination and formation rates of spine were, respectively,

the number of spines that disappeared or appeared between two

imaging time points, relative to the total number of spines in the initial

image. In addition, we selected the two-dimensional projections that

contained in-focus dendritic segments (with high image quality) to

make figures. The quantified data were presented as the mean± s.e.m.

Data availability

The data that support the findings of this study are available from the

corresponding authors upon reasonable request.
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Figure 3 Imaging depth through the SOCW. (a) Orthogonal (x–z) projections of dendrites through the intact skull, before and after skull optical clearing,

demonstrating that the depth is obviously enhanced after clearing (the imaging parameter and data processing were the same). Scale bar=10 μm. (b) The

depth when imaging the dendrites of Thy1-YFP neurons, before and after skull optical clearing (P30, n=10 mice; statistical method: one-way analysis of

variance (ANOVA); Po0.001). (c–e) Imaging depth through the SOCW after optimizing the imaging parameters (P30, n=6 mice). (c) Dendrites and spines

of Thy1-YFP neurons at different depths through the SOCW. Scale bar=10 μm. (d) Maximum z-axis projections across 50 μm of microglia through the

SOCW. Scale bar=25 μm. (e) Maximum z-axis projections across 50 μm of FITC-dextran-filled cerebral vasculature through the SOCW. Scale bar=50 μm.
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Figure 4 The repeatability of the SOCW. (a) Repeated imaging of the dendrites and spines of Thy1-YFP neurons within a few hours, which shows that the

SOCW is switchable (P30, n=10 mice). (b and c) Repeated imaging of the dendrites b and spines c of Thy1-YFP neurons obtained over a 1-day interval

(P28–P30, n=10 mice). Scale bar=10 μm.
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Figure 5 Safety assessment of the SOCW technique. (a) Distribution of microglia through the SOCW. After the SOCW technique, microglia remain at the

same position (P28, n=4 mice). Scale bar=25 μm. (b) Maximum projections (z-axis) across 10–40 μm of FITC-dextran-filled cerebral vasculature under the

SOCW obtained 0 (P28, n=4 mice) and 21 days after the treatment. We observe that the cerebrovascular morphology remains nearly unchanged 21 days

after forming the SOCW. Scale bar=25 μm. (c) Histological images of microglia in the case of the SOCW technique; microglia in both the treated and

control sides appear normal (P30, n=3 mice). Scale bar=1 mm (above) and 25 μm (below). (d) GFAP expression under the SOCW technique. The treated

and control hemispheres show similar levels of GFAP expression (P38, n=3 mice). Scale bar=1 mm (above) and 50 μm (below).
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RESULTS AND DISCUSSION

Imaging the dendritic spines at synaptic resolution through the

SOCW

First, we performed in vivo experiments to assess the optical clearing

efficacy achieved by the SOCW method. We found that the image

quality was considerably improved and that it was sufficient for

imaging the dendritic spines through the cleared skull (Figure 2 and

Supplementary Fig. 1). Figure 2a and 2b demonstrate the typical

dendritic spines of Thy1-YFP neurons at the depths of 10–15 and

60–65 μm below the pial surface. Figure 2c and 2d show the

fluorescence intensity for the same locations indicated by dashed lines

in Figure 2a and 2b; we can observe that the image contrast is

significantly improved through the cleared skull. Thus, we can achieve

imaging of the structures at synaptic resolution through the SOCW.

The imaging depth through the SOCW

Then, we evaluated the imaging depth through the SOCW. Figure 3a

demonstrates the image along the depth direction (x–z). In addition to

significant increases in fluorescence intensity, the imaging depth also

obviously enhanced after clearing. For further quantitative compar-

ison, 10 groups were selected to conduct a statistical analysis, and the

mean depth increased approximately twofold (Figure 3b). Considering

that confocal microscopy is more common than two-photon micro-

scopy, we also used confocal microscopy to perform the same

experiment. Supplementary Fig. 2 shows that the SOCW is also

compatible with confocal imaging and that the imaging depth

increases from 20 to 60 μm. These images were obtained with

consistent parameters to ensure the fair comparison of the results

before and after clearing. Furthermore, we could obtain good visibility

of dendrites (Figure 3c), microglia (Figure 3d) and blood vessels

(Figure 3e) up to 250 μm below the pial surface by optimizing the

imaging parameters, which demonstrates that the imaging depth

certainly reaches up to 250 μm.

The above results also show that the SOCW technique is compatible

with various fluorescent proteins and dyes, including GFP (Figure 3d),

YFP (Figure 3c), RFP (Supplementary Fig. 3), FITC (Figure 3e)
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over an hour (60 min). (a and b) Dendritic spines can a appear and b disappear within an hour. (c) Percentage of spines formed and eliminated within an

hour, according to the SOCW technique (n=6 mice). (d and e) Filopodia can also d appear and e convert into a spine-like protrusion within an hour. (f) The

morphology of dendritic spines can change within an hour. The triangle, arrow and asterisk show appearance, disappearance and morphological changes,

respectively. Scale bar=25 μm (above) and 5 μm (below).

Skull optical clearing window for cortical imaging
YJ Zhao et al

6

Light: Science & Applications doi:10.1038/lsa.2017.153

http://dx.doi.org/10.1038/lsa.2017.153


and tetramethylrhodamine (Supplementary Fig. 4). Therefore,

the SOCW technique demonstrates flexibility and widespread

applicability.

The repeatability of the SOCW technique

We also assessed the repeatability of the SOCW technique. The skull

could return to the opaque state very quickly after treatment with PBS

(phosphate-buffered saline), and retreatment with OCAs made the

skull re-clear very quickly (Figure 4a), which shows that the SOCW is

switchable. Obviously, bone re-grows with time; if the imaging interval

was beyond one day, the time for clearing was slightly longer than the

first time. Despite this caveat, we could repeatedly observe the

dendrites (Figure 4b), spines (Figure 4c), microglia (Supplementary

Fig. 5a) and microvasculature (Supplementary Fig. 5b) through the

SOCW. Thus, we could achieve short- and long-term repetitive

imaging of the cortex through the SOCW.

Safety assessment of the SOCW technique

The above repeated imaging of the same position shows an absence of

inflammation. In addition, we performed both in vivo (Figure 5a and

5b) and ex vivo (Figure 5c, 5d and Supplementary Fig. 6) experiments

to assess the safety of this method. First, we observed microglia in vivo

0 and 2 days after craniotomy and after clearing, respectively. We

found that microglia remained at the same position (Figure 5a) when

viewed through the SOCW, which indicates that the SOCW technique

does not affect the microenvironment. In contrast, the distribution of

microglia seen through the open-skull glass window was completely

different (Supplementary Fig. 7a). The craniotomy evidently induced

the movement of microglia.

Previous studies showed that the injury of the cortex could trigger

outgrowth and remodeling of the surface pial vasculature19,45, so the

structures of superficial cerebral vessels under craniotomy showed

alterations in topology that may be due to angiogenesis in the

meninges caused by inevitable damage. In this work, we also imaged

the FITC-dextran-filled cerebral vasculature of C57BL/6 mice 0 and

21 days after clearing and found that the distribution of cerebral

vasculature was nearly the same (Figure 5b). This result indicates that

the optical clearing treatment produces no cortical injury.

In general, the microglia are active maximally 2 days after

craniotomy12,19,29, and the expression of GFAP may be upregulated

in activated astrocytes 7–14 days after injury19,29,45. Thus, we carried

out ex vivo experiments to observe microglia 2 days after surgery and

visualize the expression of the GFAP in astrocytes 10 days after

surgery. We found that the microglia in both the SOCW and the

control hemisphere remained in a non-active state with a highly

branched morphology (Figure 5c). Moreover, the density of microglia

in cortical layer I/II under the SOCW is consistent with that under

the contralateral side (0.99± 0.04), which is similar with that

through the thinned-skull cranial window24,29. In addition, the GFAP

immunostaining patterns exhibit similar levels of GFAP expression for

both sides (Figure 5d), which means that the astrocytes were not

activated.

In contrast, through the open-skull glass window, the microglia in

the superficial layers (Supplementary Fig. 7b) had few processes and

extended their branches to the pial surface, similar to the macro-

phages. This indicates that the microglia had become active12,19,29.

In addition, the density of microglia under the open-skull glass

window (cortical layer I/II) was much higher than that under the

control sides (1.62± 0.25)24,29. In addition, the GFAP immunostaining

patterns in the surgery side are very strong and obviously different

from those seen in the contralateral hemisphere (Supplementary

Fig. 7c).

The above results show that the SOCW method does not induce

obvious inflammatory responses in the brain cortex; hence, we can

conclude that this SOCW technique is safe and reliable.

Monitoring the plasticity of dendritic protrusions based on the

SOCW

We next applied this method to dynamically monitor the plasticity of

dendritic protrusions in critical periods. To monitor spine turnover,

we obtained high-resolution image stacks of the dendritic tuft. The

dendritic branches were studded with numerous spines (56.6± 1.4

spine per 100 μm), including mushroom-type, stubby and thin spines,

as well as long filopodia-like protrusions. By time-lapse imaging

dendritic protrusions over an hour (1 h), we found that they exhibited

strong motility. Moreover, dendritic spines can suffer changes within
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1 h, including appearance (Figure 6a) and disappearance (Figure 6b)

of spines and changes of shape (Figure 6f), which points to changes in

the wiring of neuronal circuits. We additionally studied the turnover

of dendritic spines in the barrel cortex in vivo within 1 h after forming

the SOCW. We found that spine formation and elimination were

3.20± 0.21% and 1.83± 0.52%, respectively (Figure 6c, 987 spines,

n= 6 mice). Compared with dendritic spines, filopodia exhibited

higher motility. In addition, filopodia can even convert into spine-like

protrusions (Figure 6e), demonstrating that filopodia are likely to be

the precursors of dendritic spines46,47. These results demonstrate the

dynamic nature of these protrusions, which indicates that the plasticity

of dendritic protrusions during the third week is very intense.

Monitoring dendrites and microglia after laser ablation under the

SOCW

Laser-induced injury is a widely used injury model because the extent

and site of the injury are easily controlled48,49. We also applied this

method to monitor dendrites and microglia after laser injury. We

found that the dendrites on the laser injury side formed bead-like

structures, while the sites that did not suffer damage remained in a

normal state (Figure 7a and 7b). Microglia soma did not show any

significant movement, but the processes with bulbous termini

immediately moved toward the site of injury (Figure 7c and 7d).

The SOCW technique enables us to characterize the effects of laser

injury on cortical structures.

CONCLUSIONS

In this study, we introduce an easy-handling, safe and effective SOCW

for imaging cortical structures at synaptic resolution. Combined with

two-photon microscopy, this SOCW technique allowed us to repeat-

edly visualize the neurons, microglia and microvasculature in the

superficial cortical layers.

Compared with the current cranial windows, the SOCW has several

advantages. First, the SOCW is easier to handle because the SOCW is

established by topically applying reagents on the skull without much

thinning or removing of the skull; thus, it may attract more

researchers to opt for the SOCW technique. Second, this approach

proved to be safe with little risk of producing inadvertent damage or

inflammation. Because of its lack of brain inflammation, this

technique is also more suitable for the study of the immune cells

(microglia) that are highly sensitive to the microenvironment. How-

ever, there is a technical and practical limitation of the SOCW. The

imaging depth is limited to the first 250 μm below the pial surface due

to the existence of the skull, which is not comparable with traditional

cranial windows. Therefore, the SOCW with no need for much

thinning or removal of the skull, as an alternative technique, could

permit us to image cortical cells and vasculature under extremely

similar environments with the normal state of the brain.
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