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Abstract

We introduce a novel Skyrme-like conserved current in the effective theory of pions and
vector mesons based on the idea of hidden local symmetry. The associated charge is
equivalent to the skyrmion charge for any smooth configuration. In addition, there exist
singular configurations that can be identified as N f = 1 baryons charged under the new
symmetry. Under this identification, the vector mesons play the role of the Chern-Simons
vector fields living on the quantum Hall droplet that forms the N f = 1 baryon. We pro-
pose that this current is the correct effective expression for the baryon current at low
energies. This proposal gives a unified picture for the two types of baryons and allows
them to continuously transform one to the other in a natural way. In addition, Chern-
Simons dualities on the droplet can be interpreted as a result of Seiberg-like duality
between gluons and vector mesons.
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1 Introduction

In this paper, we study and compare the low energy description of baryons in N f ≥ 2 QCD,
also known as skyrmions [1–4] with the low energy description of baryons in N f = 1 QCD,
recently constructed by Komargodski in [5]. These two objects look very different at low
energies. Skyrmions enjoy a complete description as solitons in the effective theory of pions.
They are topologically stable finite energy configurations, thanks to Π3(SU(N f )) = Z for every
N f ≥ 2. N f = 1 baryons, on the other hand, cannot be described completely using effective
(mesonic) degrees of freedom. In [5] they were constructed using the η′ field as a smooth
configuration everywhere in space except for a singular ring. η′ winds around the ring which
implies that the vacuum expectation value (VEV) of the chiral condensate must vanish on
the ring. One can argue that there should be a U(1)N Chern-Simons (CS) theory living on
the η′ = π disc bounded by the ring. As in the quantum Hall effect, quantization of the CS
theory with Dirichlet boundary conditions leads to a chiral boson living on the boundary. The
combination of the η′ winding around the ring, and the chiral boson winding along the ring
forms a stable soliton which can be identified as the N f = 1 baryon.

The main goal of this paper is to give a unified description of the two different types of
baryons. In particular, we would like to claim that the correct low energy description of the
baryon current is

Hµ =
1

24π2
εµνρσtr

�

2∂νξξ
†∂ρξξ

†∂σξξ
† + 3iVν(∂ρξ∂σξ

† − ∂ρξ†∂σξ)

+3i∂νVρ(∂σξξ
† − ∂σξ†ξ)

�

,
(1)

where Vµ are the U(N f ) vector mesons and ξ ∈ U(N f ) is roughly the square root of the uni-
tary pion+η′ matrix ξ2 = U ∈ U(N f ). The derivation of this current is based on the idea
of hidden local symmetry [6, 7]. The charge computed using Hµ is equivalent to the usual
skyrmion charge for any smooth configuration. In addition, there exists non-smooth config-
urations charged under Hµ and not charged under the usual skyrmion current. The N f = 1
baryon is exactly such a configuration. More precisely, for N f = 1 QCD,

Hµ(N f =1) = −
1

8π2
εµνρσ∂νωρ∂ση

′ , (2)

where ωµ = t r(Vµ) is the U(1) vector meson.1 This expression is equivalent to the charge
of the N f = 1 baryon if we identify the ωµ vector meson with the U(1)N CS vector field
mentioned above. We will give some evidence and discuss some of the consequences of this
identification.

The outline of the paper is as follows. In section 2 we will review some basic facts about
N f ≥ 2 skyrmions and N f = 1 quantum Hall droplets. In section 3 we will show how some of
the features of the N f = 1 baryon emerge when continuously flowing from N f = 2 to N f = 1
by taking one of the quarks’ masses to be very large. Section 4 contains the main results of
the paper. We will start by adding the vector mesons to the low energy effective theory and
reviewing the concept of hidden local symmetry. Later, we will present the current Hµ and its
relation to the two types of baryons. In section 5 we will discuss the proposal of identifying
the ωµ vector meson as the CS vector field on the η′ = π domain wall, including interesting
relations to 3d CS dualities and (non-supersymmetric) Seiberg dualities. In section 6 we will
discuss some additional details and some open problems related to the edge modes living on
the ring.

1See also equation (64) in [28] for a similar expression for the current.
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2 Background

2.1 Nf ≥ 2 Skyrmions: review

In this section we will review some of the basic facts about skyrmions. Our starting point is
SU(N) QCD with N f ≥ 2 massless Dirac fermions. The theory enjoys the global symmetry2

of SU(N f )L × SU(N f )R × U(1)B. In addition, the QCD Lagrangian enjoys the axial symmetry
U(1)A which is broken by non-perturbative effects. However, in the large N limit, the sym-
metry is restored and U(1)A becomes an exact symmetry of the theory. For N f not too large
(below the conformal window), the theory is confining at low energies, and the symmetries
are spontaneously broken by the chiral condensate

SU(N f )L × SU(N f )R × U(1)B × U(1)A→ SU(N f )V × U(1)B , (3)

where SU(N f )V is the diagonal subgroup of SU(N f )L×SU(N f )R leaving the chiral condensate
invariant. We also included U(1)A even though it is at best only an approximate symmetry for
any finite N . The low energy effective theory can be described using Goldstone theorem by a
non-linear sigma model, parametrized by U(x) ∈ U(N f ). The global symmetries act on U as

U → eiαV †
L UVR , VL,R ∈ SU(N f )L,R , eiα ∈ U(1)A . (4)

Indeed, the vacuum U = 1 breaks the symmetries as described in (3). U(1)B on the other
hand doesn’t act on U . From the microscopic point of view, the only gauge invariant operators
charged under U(1)B are the baryons

Bi1...iN = εa1...aNψi1
a1

...ψiN
aN

, (5)

where a1,...,N are color indices and i1,..,N are flavor indices. A surprising fact about baryons
is that even though we wrote an effective theory only for the massless Nambu-Goldstone
(NG) modes and thrown away all the rest, baryons still appear as solitons, famously known as
skyrmions. For the rest of the section we will restrict U(x) ∈ SU(N f ) since the U(1) plays no
role in the construction of skyrmions. The effectve theory is described by the chiral Lagrangian

L =
F2
π

4
tr (∂µU†∂ µU) + ... . (6)

The ... includes higher derivatives terms and for N f ≥ 3 also the Wess-Zumino term. For any
finite energy configuration, the fields must go to their vacuum at infinity limr→∞ U(x) = 1.
Finite energy configurations are maps from S3 to SU(N f ) which are classified by

Π3(SU(N f )) = Z ∀ N f ≥ 2 , (7)

which allows the existence of stable solitons. The associated topological current is the skyrmion
current

Bµ =
1

24π2
εµνρσtr (U†∂νUU†∂ρUU†∂σU) , (8)

which is identically conserved ∂µBµ = 0 and the associated charge is B =
∫

d3 xB t ∈ Z. We
will focus now on the simple case of N f = 2. A convenient parametrization of U ∈ SU(2) is

U = σ+ iτaπa , σ2 +π2
a = 1 , (9)

2We consider here only the continuous symmetries. See for example [8] for a recent discussion about the
discrete factors.
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where τa are the Pauli matrices. An example for a charged configuration is the hedgehog
ansatz

U = cos( f (r)) +
i sin( f (r))xaτa

r
. (10)

The condition U(r → ∞) = 1 can be satisfied by taking f (r → ∞) = 0 without loss of
generality. Demanding that U has a well defined limit at the origin requires sin( f (r = 0)) to
vanish, which implies f (0) = πK for some integer K . It is a straight forward exercise to show
that for this configuration

B = K . (11)

There are many pieces of evidence and consistency checks that the skyrmions indeed should
be identified with baryons, and that the topological symmetry (8) is the low energy description
of U(1)B. These include the spin, coupling to chiral gauge fields, large N and many more (see
for example [4, 9–17]). For any N f > 2, the story works basically the same by choosing an
SU(2) ⊂ SU(N f ) and embedding the hedgehog solution in this subgroup. For N f = 1 the story
is more complicated. For N f = 1 the theory is gapped as there are no NG bosons. Any effective
description of baryons, if it exists, must include other degrees of freedom.

2.2 Nf = 1 quantum Hall droplet: review

In this section we will review the recent work by Komargodski [5] in which he constructed a
soliton that can identified with the N f = 1 baryon. From the microscopic point of view, N f = 1
baryons can be written as

εa1...aNψa1
...ψaN

. (12)

Due to the anti-symmetrization over color indices, and the fermionic nature of ψ, the spin
indices must be symmetrized over to get something which is not identically zero. Therefore,
there exists only one type of N f = 1 baryon and its spin is N

2 . The low energy effective theory is
gapped. However, as mentioned above, in the large N limit U(1)A becomes an exact symmetry,
and its breaking leads to a NG boson known as the η′. η′ is a periodic scalar η′ ' η′ + 2π.
The effective Lagrangian including the leading 1

N correction is given by

Lη′ =
F2
π

2
(∂ η′)2 −

F2
πM2

η′

2
min
k∈Z
(η′ + 2πk)2 , M2

η′ ∼ O
�

N−1
�

. (13)

The potential term is locally quadratic but has a cusp whenever η′ = π mod 2π. For small
fluctuations around the vacuum η′vac = 0 it simply looks like a mass term, but when global
effects that include non-trivial winding of η′ are present, the cusp plays an important role.
The physical interpretation of the cusp is that when η′ crosses π, heavy fields jump from one
vacuum to the other. [18] This cusp is closely related to the first order phase transition in pure
Yang-Mills theory (YM) when θ = π. [18–22] The simplest way to see this is to notice that
due to the ABJ anomaly, axial transformations lock shifts of η′ by a constant with shifts of θ
by the same constant η′→ η′ +α⇔ θ → θ +α. For θ = π YM, the domain wall connecting
the two vacua must carry a TFT on its worldvolume. More precisely, YM at θ = π has a
mixed ’t-Hooft anomaly between time reversal and the ZN 1-form symmetry. The domain wall
connects two vacua related by the action of time reversal, which implies that the theory on the
domain wall must carry an anomalous ZN 1-form symmetry. The desired anomaly is matched
by U(1)N Chern-Simons (CS) theory.3 It is natural to conjecture that also for N f = 1 QCD, a
configuration that interpolates between η′ = 0 to η′ = 2π carries a U(1)N CS theory on the
sheet η′ = π.

3There is also a dual description in terms of an SU(N)−1 CS theory, but for us the first description will be more
convenient.
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Figure 1: The N f = 1 baryon of [5]. In the figure, the pancake is schematically the η′ = π
sheet where the CS theory lives. For any closed trajectory that goes through the pancake, η′

winds from 0 to 2π.

The theory (13) enjoys a topological U(1) 2-form symmetry, associated with the current

Jµνρ =
1

2π
εµνρσ∂

ση′ . (14)

Charged objects under this symmetry are infinitely extended sheets that interpolate from
η′ = 0 on one side to η′ = 2π on the other [23, 24]. As an example, consider the configu-
ration

η′ = f (z) , lim
z→−∞

f (z) = 0 , lim
z→∞

f (z) = 2π . (15)

Indeed, the configuration satisfies4

Q =

∫

dzJt x y = 1 . (16)

One problem with these sheets is that while their tension is finite, their mass ∼
∫

d xd y di-
verges. One cannot construct finite energy configurations charged under this symmetry in
3+1 dimensions. Instead, we can consider finite sheets of the following schematic form. To
get finite energy, we must demand that limr→∞η

′(~r) = 0 mod 2π. In addition, we will try to
impose that η′(x = y = 0, z) = f (z) as before, with f (0) = π. These two demands cannot live
together without having singularities somewhere in space. The minimal singularity that must
exist is of the form of a ring, surrounding the η′ = π sheet. The configuration is illustrated in
figure 1 where it can be seen that η′ must wind from 0 to 2π as we go around the ring.

A key question is what happens on the ring. We can expect that as we go closer and closer
to the ring, the chiral condensate goes to zero until it vanishes exactly on the ring. The physics
on the ring is therefore beyond the scope of the low energy effective theory (13). A progress

4Notice that because this is a 2-form symmetry, the charge is codimension 3. See [25] for more details.
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can still be made if we think of the ring as the boundary of the CS theory living on the η′ = π
sheet. Consider the U(1)N CS theory on a disc of radius 1,

LCS =
N
4π
εµνρaµ∂νaρ . (17)

Under a general variation aµ→ aµ +δaµ, the action transforms as

δSCS =
N
2π

∫

d3 xεµνρ∂µaνδaρ +
N
4π

∫

dφd t(aφδat − atδaφ) , (18)

where φ is the angular coordinate on the boundary. For the specific choice of gauge variations
aµ→ aµ + ∂µλ, the transformation of the action is

δSCS =
N
4π

∫

dφd tλ(∂φat − ∂t aφ) . (19)

The theory can be quantized as follows. In order to have a well defined variational principle we
impose Dirichlet boundary conditions, at = vaφ such that the boundary term in (18) vanishes
identically. In addition, Lorentz invariance leads us to choose v = 1. See footnote (13) of [5]
for more details on this point. Gauge invariance then implies that on the boundary,

(∂φ − ∂t)aφ = 0⇒ aφ = aφ(φ + t) . (20)

The bulk term in (18) gives the equations of motion (EOM), Fµν = 0. The EOM are solved by
having aµ = ∂µλ everywhere. However, aµ can still be non-trivial. For example, we can allow
configurations with non-trivial winding

∫

dφaφ = 2πk. The configuration can be continued to
the bulk smoothly while keeping F = 0 except for one singular point. For k ∈ Z this singular
point is nothing but an invisible "Dirac point" (the 2d analogue of a Dirac string). We can
extend the boundary conditions to the bulk by choosing the gauge at = aφ . Fixing the gauge
and plugging aµ = ∂µλ into the action, one obtains

S =
N
4π

∫

dφd t
�

∂tλ∂φλ− (∂φλ)2
�

. (21)

The result is that the theory is described by a chiral compact boson living on the boundary.
Going back to our theory, we found that there is a chiral boson living on the ring. By coupling
the theory to a background gauge field for the baryon symmetry, it can be shown that the
baryon charge should be equivalent to the winding of the boson

B =
1

2π

∫

dφ∂φλ=
1

2π

∫

dφaφ . (22)

The configuration can be argued to be dynamically stable. There are various contributions
to the energy of the configuration. Denote the radius of the ring by R. The potential for η′

contributes energy proportional to the area of the disc ∼ R2. The vanishing of the VEV of the
chiral condensate on the ring contributes energy proportional to the perimeter of the ring∼ R.
Finally, the edge mode contributes ∼ 1

R due to its momentum on the ring. While the first two
contributions want to minimize R, the last one prefers to increase it, resulting in some finite
radius.

The spin of this configuration can be shown to be precisely N
2 . The most convenient way

to do it is in terms of the two-dimensional chiral theory living on the ring’s worldsheet. The
operator carrying one unit of baryon charge is the vertex operator VN =: eiNλ : whose spin is
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N
2 . Interestingly, in addition to VN , the theory contains also V1 =: eiλ : that carry fractional 1

N
baryon charge. The appearance of this operator can be interpreted as having liberated quarks
on the ring, that also carry 1

N baryon charge. See also [26] for a more elaborated discussion
on this point. This is a summary of some of the main results of [5].

While this construction produces in a very non-trivial way many of the qualitative features
of the N f = 1 baryon, it raises some questions regarding the relation between this baryon and
the skyrmion.

The two types of baryons are charged under two different symmetries. This is not what we
expect to find. There should be one symmetry which is the low energy description of U(1)B
and all the baryons should be charged under it. If, for example, we embed the N f = 1 baryon
inside N f = 2 QCD, it should decay to a skyrmion, even though it carries no skyrmion charge,
but some other topological charge.

Can these two charges be viewed as different descriptions of the same symmetry? Can we
use this unified symmetry to understand the mechanism that allows N f = 1 baryons to decay
to skyrmions?

In the following sections we will try to answer these questions.

3 N f = 2→ N f = 1 flow

In this section we will start from the hedgehog solution of the N f = 2 chiral Lagrangian pre-
sented in section 2 and turn on a large mass for the second quark md . When doing so, we
expect the mass difference between the skyrmion and the 1-flavored baryon to decrease, until
at some point when the second quark is very massive, the 1-flavored baryon is expected to min-
imize the energy within the topological sector defined by B = 1. In the extreme limit where
md →∞, the microscopic theory flows to N f = 1 QCD and the 1-flavored baryon remains the
only baryon in the spectrum. By including the η′ and continuously deforming the hedgehog
to minimize the energy we will reproduce a very similar picture to the one constructed by
Komargodski and described in section 2.2.

With the η′ included, we take the matrix U ∈ U(2). We will parameterize the matrix as

U = eiη′/2(σ+ iπaτa) , σ2 +π2
a = 1 . (23)

The matrix U is invariant under

(η′, σ, πa)→ (η′ + 2π, −σ, −πa) . (24)

For simplicity we will take for now the large N limit where the η′ is massless and treat it as a
NG boson, however nothing qualitative is expected to be different for finite N .

Our next step will be to add a mass term for the second quark. When the mass is small,
the effect is to add to the chiral Lagrangian the following term

LM = t r(MU +MU† − 2M) = 2md(cos(η′/2)σ+ sin(η′/2)π3 − 1) , (25)

where we took the mass matrix

M =

�

0 0
0 md

�

. (26)

As a result, three of the four NG bosons become massive. The mass term vanishes for π1,2 = 0
and sin(η′/2) = π3.

For a configuration with a non-trivial skyrmion charge, we cannot simply take all the mas-
sive fields to zero. It is obvious from the expression for the current (8) that we need the three
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Figure 2: The value of η′ ∈ [−π,π] for the ansatz (28). The dashed line is the singular ring
that connects the two η′ = π sheets. The value of η′ jumps by ±2π as one crosses the sheets.

pions in order to get a non-trivial charge. For small mass, the hedgehog solution will be de-
formed in some small way to minimize the energy. If the mass of the down quark is very large,
the solution will be highly deformed in a way that minimizes the volume in which the massive
fields are non-zero. The first thing that we can do is to turn on a value for η′. η′ doesn’t enter
into the skyrmion current and we can use it to cancel at least some of the mass contribution.
This is achieved by choosing

eiη′/2 =
σ+ iπ3
q

σ2 +π2
3

. (27)

Notice that with this choice, the bottom-right entry of U is exactly 1. Is this choice of η′ well
defined? The denominator in (27) is zero when π3 = σ = 0. Do such points exist in the
skyrmion solution? For the hedgehog, it happens on the ring defined by z = cos( f ) = 0. Actu-
ally, this ring is a topological invariant in the sense that any topologically non-trivial mapping
from S3 to S3 must include a ring on which σ = π3 = 0. What about π1,2? From the hedgehog
solution, we see that π1,2 are zero at r →∞ and on the z-axis. The regime in which they
don’t vanish has the shape of a bead, which can be continuously deformed to a ring, the same
ring on which σ = π3 = 0. We see that we can push all the massive fields to the ring, where
outside the ring only the massless NG field is excited. We can suggest the following ansatz for
the skyrmion solution in the large md limit,

Uring = ei f̃

�

ei f̃ cos(h) ie−iφ sin(h)
ieiφ sin(h) e−i f̃ cos(h)

�

, (28)

where φ is as usual the angular coordinate along the ring, h equals π/2 on the ring and goes
to zero very fast outside of the ring, and f̃ winds once around the ring from 0 to 2π.5 (28)
carries non-trivial topological charge B = 1, and it is a continuous deformation of the hedgehog
solution. The behaviour of η′ = 2 f̃ is presented in figure 2.

5When continuously deforming the hedgehog to (28), it can be seen that f̃ is roughly sign(z) f . f is even under
z → −z and as you go around the ring, it varies from 0 to π and back to 0 without any winding. f̃ on the other
hand winds once from 0 to 2π.
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As we take md →∞, h goes to 0 everywhere, such that (28) becomes

Uring →
�

e2i f̃ 0
0 1

�

. (29)

We see that as we flow to N f = 1, the skyrmion transforms continuously to a configuration in
which η′ winds around a singular ring, as in [5]. The winding of π1,2 along the ring should
be replaced by a winding of some new degree of freedom that appears on the singular ring.
The construction of [5] tells us that this new degree of freedom is the chiral edge mode. In
the next sections we will present the conservation law that ties these two windings together.

4 The Hidden symmetry

We will start this section by reviewing the conventional method for adding the vector mesons to
the chiral Lagrangian using the idea of hidden gauge symmetry [6,7]. Next we will introduce
a new "hidden" global symmetry and discuss its consequences.

The first step is to write the matrix U in a redundant way as U = ξ†
LξR where ξL,R ∈ U(2).

The transformations
ξL,R→ hξL,R , h ∈ U(2) , (30)

are gauge transformations as the physical matrix U is invariant under them. We can couple
these transformations to dynamical gauge fields Vµ where as usual

DµξL,R = ∂µξL,R − iVµξL,R , Vµ→ hVµh† + ih∂µh† , Fµν = ∂µVν − ∂νVµ − i[Vµ, Vν] . (31)

In addition, we also impose the SU(N f )L × SU(N f )R global symmetries :

ξL → ξL g†
L , ξR→ ξR g†

R . (32)

At the level of two derivatives we can write the following Lagrangian

L =
F2
π

4
tr (∂µ(ξ

†
RξL)∂

µ(ξ†
LξR))−

aF2
π

4
tr [DµξLξ

†
L + DµξRξ

†
R]

2 −
1

4g2
F2
µν , (33)

where a is some dimensionless free parameter and g is the coupling constant.
If we choose the unitary gauge ξR = ξ

†
L = ξ and U = ξ2 we get

L =
F2
π

4
tr (∂µU†∂ µU)−

aF2
π

4
tr [∂µξξ

† + ∂µξ
†ξ− 2iVµ]

2 −
1

4g2
F2
µν , (34)

which contains the usual kinetic terms for the pions and for the vector fields, a mass term for
the vector fields and interactions between the vectors and the pions. Notice that even though
we can expand ξ locally in terms of the pions, we cannot write the interaction with the vector
fields in terms of the original matrix U . Interestingly, using the "hidden" variables ξL,R we can
write a new skyrmion-like conserved current, we will denote by Hµ. The construction is as
follows. We can define the following currents from the ξL,R matrices,

JµL,R =
1

24π2

�

εµνρσtr (ξ†
L,RDνξL,Rξ

†
L,RDρξL,Rξ

†
L,RDσξL,R) +

3i
2
εµνρσtr (FνρDσξL,Rξ

†
L,R)

�

.

(35)
This form of currents, when replacing ξL,R→ U is the correct version of the skyrmion current
when coupled to chiral gauge fields [12,13,27]. The currents are manifestly gauge invariant,
however they are not conserved. Instead

∂µJµL,R =
1

32π2
εµνρσtr (FµνFρσ) . (36)
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An immediate result is that the current

Hµ = JµR − JµL , (37)

is manifestly gauge invariant and conserved identically. If we take the gauge ξR = ξ
†
L = ξ, the

current becomes

Hµ =
1

24π2
εµνρσtr

�

2∂νξξ
†∂ρξξ

†∂σξξ
† + 3iVν(∂ρξ∂σξ

† − ∂ρξ†∂σξ)

+3i∂νVρ(∂σξξ
† − ∂σξ†ξ)

�

.
(38)

At this point we should worry a little bit because it looks like there is an extra conserved current
in the theory. We must understand how exactly it is related to the usual skyrmion current Bµ.
There are two possible logical scenarios. The first one is that the two currents Hµ and Bµ

describe the same symmetry, i.e. every object charged under one, is also charged under the
other. The second possibility is that the symmetries are different, and only one of them is exact
and connected continuously to U(1)B of the uv theory.

In order to compare between the two symmetries, it is convenient to write Bµ in terms of
ξ using U = ξ2. This results in

Bµ =
1

24π2
εµνρσtr

�

2ξ†∂νξξ
†∂ρξξ

†∂σξ− 3∂νξ∂ρξ∂σ(ξ
†)2
�

. (39)

We can see that the difference between the two currents is a full derivative,

Hµ − Bµ =
1

8π2
εµνρσ∂σtr

�

∂νξ∂ρξ(ξ
†)2 + iVν(∂ρξξ

† − ∂ρξ†ξ)
�

. (40)

This means that assuming that everything is smooth and goes to the vacuum at infinity, the
charges computed using each one of the currents will be the same. In particular, the hedgehog
ansatz studied extensively in the literature is charged under Hµ. The only difference between
them is the local definition of current density. To emphasize this point, we can take the thou-
sands of papers about skyrmions, and in all of them replace Bµ with Hµ, and nothing bad will
happen, they will still be correct. So it looks like the two currents describe the same symmetry.
However, this is only true when dealing with smooth configurations in which the radius of the
target space is finite everywhere. In principle, the definition and conservation of topological
symmetries rely on the hidden assumption that the target space is well defined. If we are able
to take the radius of the target space to zero somewhere, we can unwind the configuration
and change the topological charge. This is true in general unless the topological symmetry
is connected continuously to some symmetry in the uv. In this case, new degrees of freedom
that carry the charge will appear on the singularities. From this perspective, it is clear that
in order to distinguish between the two symmetries, we must study singular baryons, such as
the N f = 1 baryons. We will show next that the N f = 1 baryon is charged under Hµ even
though it is not charged under Bµ. Therefore, we would like to suggest that Hµ is the correct
description of the baryon current in the sense that it is connected to the U(1)B current in the
uv.

The first interesting observation is that unlike Bµ, Hµ is non-zero even when N f = 1. The
first two terms in (38) vanish because they involve anti-symmetrization over more than one
generator, but the last term survives,

Hµ(N f = 1) = −
1

8π2
εµνρσ∂νωρ∂ση

′ , (41)
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where we simply plugged into (38), Vµ = ωµ , ξ = eiη′/2. For later purposes, it will also be
useful to derive this result by reduction of N f = 2 to N f = 1. For N f = 2 we can parametrize

ξ= eiη′/4(α+ iβaτa) , α2 + β2
a = 1 , α2 − β2

a = σ , 2αβa = πa . (42)

It is easy to verify that ξ2 = U as required. The only ambiguity in (42) is an overall sign
ξ→ −ξ which doesn’t appear in any physical quantity. We will also denote the components
of the vector meson by Vµ =

1
2(ωµ +τaV a

µ ). The last term in (38) is

i
8π2

εµνρσTr[∂µVν(∂ρξξ
† − ∂ρξ†ξ)] = −

1
16π2

εµνρσTr
�

∂µVν
�

∂ρη
′ + 4(α∂ρβa − βa∂ρα)τa

��

= −
1

16π2
εµνρσ

�

∂µων∂ρη
′ + 4∂µV a

ν (α∂ρβa − βa∂ρα)
�

.

(43)
When we reduce to N f = 1, we should take

π1,2 = β1,2 = V 1,2
µ = 0 , ωµ = V 3

µ , eiη′/2 =
σ+ iπ3
q

σ2 +π2
3

. (44)

The last equation is solved by

π3 = sin(η′/2) , σ = cos(η′/2) , α= cos(η′/4) , β3 = sin(η′/4) . (45)

Plugging it into the current, we again find (41). (41) is a non-trivial current that exists for
N f = 1. As stated above, the difference between Bµ and Hµ is a full derivative, and indeed
(41) is also a full derivative. The integral over this current reduces to a boundary term at
infinity, only if we can use Stokes theorem safely. However, this is not the case for our N f = 1
baryon presented in figure 2. In order to compute its charge under (41), we will divide space
into two regimes separated by the surface on which |η′|= π. In each one of the two regimes,
η′ remains in its fundamental domain η′ ∈ [−π,π] and we can use Stokes theorem.

Recall that the value of η′ on the boundaries is:

η′ on the boundaries: Upper half of the surface Lower half of the surface
From the outside π −π
From the inside −π π

Therefore, the charge associated with Hµ is

H = −
1

8π2
εi jk

�∫

out
d3 x∂iω j∂kη

′ +

∫

in
d3 x∂iω j∂kη

′
�

=
1

4π
εi jk

�

∫

upper half

d2 x n̂k∂iω j −
∫

lower half

d2 x n̂k∂iω j

�

.

(46)

We can again integrate by parts and replace the two surface integrations with integral over
the ring connecting the two surfaces. Parametrizing the coordinate on the ring as φ ∈ [0, 2π]
we have

H =
1

2π

∫

dφωφ . (47)

(47) is identical to (22) if we identify theωµ meson as the CS vector field living on the η′ = π
domain wall. In the next sections we will explore this possibility.
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Assuming for now that this is correct, we see that both the skyrmions and the N f = 1
baryons are charged under the same current Hµ. This construction gives a unified descrip-
tion for the two types of baryons. In the spirit of section 3, we can continuously deform the
skyrmion to the singular N f = 1 baryon. The winding of ωµ along the ring is inherited from
the winding of π1,2 along the ring as in (28). This point will be elaborated in 6.2.

5 ωµ as the Chern-Simons vector field

As was explained in 2.2, the CS domain wall theory plays an important role in the construction
of the N f = 1 baryon. In this section we will argue that theωµ meson is actually the CS vector
field on the domain wall. See also [28] for a related proposal. As part of this suggestion, we
will propose to add to the Lagrangian the term

LCSη′ =
Ni

8π2
εµνρσωµ∂νωρ t r(∂σξRξ

†
R − ∂σξLξ

†
L) = −

N
8π2

εµνρσωµ∂νωρ∂ση
′ . (48)

The first evidence for the existence of (48) comes from the Wess-Zumino (WZ) term. As was
shown in [29], under the gauging of a vectorlike U(1) global symmetry U → eiQαUe−iQα where
Q is some diagonal matrix, gauge invariance of the WZ term requires adding to the theory6

LGW Z = NAµJµ +
iN

24π2
εµνρσ∂µAνAρ t r[Q2∂σUU† +Q2U†∂σU +QUQU†∂σUU†] , (49)

where Aµ is the associated gauge field and

Jµ =
1

48π2
εµνρσ t r[Q∂νUU†∂ρUU†∂σUU† +QU†∂νUU†∂ρUU†∂σU] . (50)

A surprising observation is that if we take Q to be proportional to the identity, we get a non-
trivial contribution even though the matrix U is invariant under such transformation. In par-
ticular, by taking Q = 1

N , we can recover the baryon current directly from (50)

Q =
1
N
⇒ Jµ = Bµ . (51)

We would like to make the following observation. From the hidden gauge principle, we know
that ωµ is the U(1) gauge field of the transformation

ξL,R→ eiλξL,R . (52)

U = ξ†
LξR is of course gauge invariant, but following the same logic of [29], it is plausible to

identify ωµ as the U(1) gauge field associated with taking Q = 1. With this identification, we
find that the following terms should be added to the Lagrangian

Ltop = NωµBµ +
iN

8π2
εµνρσ∂µωνωρtr [∂σUU†] = NωµBµ −

N
8π2

εµνρσωµ∂νωρ∂ση
′ . (53)

Except for reproducing the desired term (48), we also notice that (53) can be written as
Nωµ(Hµ+ ...) where ... stands for terms containing fields that do not exist in this construction
(the traceless part of Vµ and ξL,R in a combination that cannot be written in terms of U). It can
be interesting to reproduce the entire coupling NωµHµ in a similar way. However, we leave
this to future work.

6In [29] there is a minus sign in front of the first term in (49). The difference is due to different conventions
for the covariant derivative and the gauge field transformation.
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The addition of (48) to the Lagrangian has an interesting consequence. Consider the fol-
lowing domain wall configuration

η′ = η′(z) , lim
z→−∞

η′(z) = 0 , lim
z→∞

η(z) = 2π . (54)

We can ask what is the effective three dimensional theory living on the domain wall. At the
classical level, this is done by expanding the fields around the background (54) and integrat-
ing over the z direction. (48) then generates N

4πε
µνρωµ∂νωρ which is exactly the U(1)N CS

Lagrangian. In addition, from the other terms in (34) we get the usual Maxwell kinetic term
(which is irrelevant in three dimensions) and a mass term for ωµ. We conclude that the do-
main wall theory is a U(1)N Chern-Simons-Higgs (CSH) theory. Is this result consistent with
our expectations? As explained above, the θ = π domain wall in YM must support a topo-
logical field theory such as U(1)N CS theory due to anomaly matching. In QCD, on the other
hand, there is no 1-form symmetry and hence no 1-form anomaly. Therefore, it is reasonable
to expect the domain wall theory to be a continuous deformation of U(1)N pure CS, where this
deformation breaks the ZN one-form symmetry without adding new light degrees of freedom.
This expectation makes the CSH theory to be a very natural candidate for the domain wall
theory (see also [22]). Indeed, thanks to (48), this theory is reproduced classically from the
effective mesonic Lagrangian. One can also argue that when including (48), the η′ potential
is actually generated by integrating out the ωµ meson.7

This is very similar to the effective model of [18]. In [18], it had been shown that the η′

potential can be generated from the VEV of the Gluonic topological density

Q =
g2

64π2
εµνρσGa

µνGa
ρσ . (55)

It happens in the following way. First, we fix the coupling between Q and η′ such that shifts
of η′ by a constant will generate a shift in the Lagrangian

η′→ η′ +α ⇒ L →L −αQ , (56)

in accordance with the chiral anomaly. This is reproduced by the term

LQη′ = −η′Q , (57)

where for simplicity we took the θ angle to be zero. In addition, we can write an effective
theory for Q that includes in the large N limit only a quadratic term. The effective theory for
Q is given by the Lagrangian

LQ =
1

2F2
πM2

η′

Q2 −η′Q . (58)

By integrating Q out, we get8

LQ→−
F2
πM2

η′

2
min
k∈Z
(η′ + 2πk)2 , (59)

as in (13). It is also interesting to notice that the η′ = π domain wall theory can be read off
directly from (57). As in the discussion after (54), it is straight forward to show that (57)
generates an SU(N)−1 CS term on the domain wall.

7We would like to thank Zohar Komargodski for pointing it out to us.
8When integrating Q out, we should be careful about the periodicity of η′ and the quantization of

∫

d4 xQ ∈ Z.
These lead to a periodic potential with a cusp at η′ = π, instead of just a quadratic term.
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The SU(N)−1 ↔ U(1)N CS duality on the domain wall suggests a duality between the
gluons and the vector mesons.9 This is related to the conjecture that the vector mesons serve
as Seiberg dual to the gluons [28,30–32]. On the same way, a dual description for the source
of the η′ potential involves integrating out theωµ meson when (48) is present in the effective
Lagrangian.10

The only ingredient left in the construction of the N f = 1 baryon is understanding the edge
modes living on the singular ring that serves as the boundary for the domain wall theory. To
the best of our knowledge, edge modes in CSH theory with a boundary haven’t been studied
in the past. This issue will be discussed in the next section.

6 Edge modes quantization

6.1 Nf = 1

In this section we will discuss the existence of edge modes on the ring, giving rise to quantized
value of the integral 1

2π

∫

dφωφ ∈ Z as required in (47). The first thing we need to understand
is what parts of the effective Lagrangian survive on the ring. For this we will add the so called
dilaton field χ [33]. The conventional picture we are going to follow is (see for example
[34,35])

Lη′ωχ =
1
2
(∂ χ)2 +

F2
π

4

�

χ

Fχ

�2

(∂µη
′)2 +

aF2
π

4

�

χ

Fχ

�2

(∂µS − 2ωµ)
2

−
1

4g2
F2
µν −

N
8π2

εµνρσωµ∂νωρ∂ση
′ − Vχ ,

(60)

where ∂µS = −i(∂µξLξ
†
L + ∂µξRξ

†
R) and Vχ is a potential that has a minimum at χ = Fχ . Its

exact form will not be important for us. The appearance of χ to some power in front of the
different terms is chosen to restore classical conformal symmetry where χ has scaling dimen-
sion 1. On the ring, ∂ η′ is not well defined, and in order to get a finite energy configuration, χ
must go to zero. The important point is that when this happens, the vector field ωµ becomes
massless. The idea that the vector mesons become massless at high energies is an important
ingredient of the Seiberg duality mentioned above. The fact that the topological term survives
on the ring, even though η′ is not well defined seems a little bit problematic.11 However, the
consequence of this term on the ring is equivalent to having a Chern-Simons theory with a
boundary. In particular, under gauge transformations ωµ→ωµ + ∂µλ the action is no longer
invariant, but

δSη′ωχ = −
N

8π2

∫

d4 xεµνρσ∂µλ∂νωρ∂ση
′ = −

N
2π

∫

d2 xλεi j∂iω j , (61)

where the last integral is over the ring’s worldsheet and i, j parametrize the coordinates on it.
This problem can be solved by adding new physics on the boundary to restore gauge invari-
ance. The simplest and minimal choice is to add a chiral boson. Assuming that such chiral

9This is a duality for pure CS theories. Since the domain wall theory is actually U(1)N CSH theory, the dual
theory is expected to be SU(N)−1 coupled to a fundamental fermion. It is not clear how the fermions enter into
(58) since the theory is strongly coupled and uncontrolled. However, as in [22], we suggest that the domain wall
theory contains also a fermion in a way consistent with the duality.

10Unlike [18], here we don’t expect εµνρσ∂µων∂ρωσ to develop a VEV. It is more likely that the η′ potential
comes from summing over ωµ instanton-like configurations.

11One might suggest that the naive power counting is not correct and that this term should also come with some
powers of χ in front of it. However, gauge invariance implies that the coefficient N

8π2 must be quantized and cannot
flow continuously as we change the scale, similar to the level of a CS theory.
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boson exists on the ring’s worldsheet, we automatically reproduce all the results of [5]. It
is interesting to understand the excitations of ωµ in the bulk and the similarities and differ-
ences from the massless case. If we didn’t have a mass term for ωµ then the situation would
have been similar to pure CS. The EOM F = 0 implies that ωµ should be locally a pure gauge
everywhere. For example, ωµ = δµφ . The singular string on the z-axis is nothing but an invis-
ible Dirac string. The demand that the string should be invisible is equivalent to saying that
1

2π

∫

dφωφ ∈ Z.
What happens when the vector field is Higgsed? The EOM now don’t force the field strength

to vanish, and such configurations are not excluded from the spectrum. We can still have F = 0
everywhere but there is a price we need to pay. For ωµ = ∂µλ, we can excite S to cancel the
contribution from the mass term everywhere except for on the singular string. S winds around
the string and therefore on the string, χ must go to zero. Now the string is not a Dirac string
anymore, but more similar to an abelian Higgs vortex. Instead of having an infinite string
along the z-axis (which costs infinite amount of energy), we will have a vortex-loop circling
the ring. To minimize the energy, the loop will shrink to infinitesimal radius until it is localized
on the ring. It looks like the vortex will break the rotational symmetry φ → φ + c. However,
since the vortex becomes a local operator on the ring’s worldsheet, it should be quantized as a
two-dimensional excitation which cannot break continuous symmetries. In fact, it is tempting
to interpret the vortex as the chiral boson living on the ring.

For all this procedure to work, we must:

• Forbid configurations with 1
2π

∫

dφωφ /∈Z: Such configurations will necessarily have
non-zero magnetic field through the ring F 6= 0. They will cost more energy but we
couldn’t find any clear argument to exclude them from the spectrum.

• Forbid the vortex loop from crossing the ring or shrinking to zero size and disappearing
completely.

The mechanism behind these two points might be related to the new physics that appear on
the ring when χ → 0. We hope to gain better understanding of this in the future. At least
for the second point, we can get some insights from gauge invariance. As we saw, the action
(60) is gauge invariant in the presence of a ring only if the field strength on the worldsheet
vanishes. This demand can be translated to the condition that

∂t

∫

dφωφ = 0⇒
∫

dφωφ = const . (62)

Therefore, any procedure that changes the winding of ωφ is forbidden. In particular, the
vortex-loop circling the ring cannot cross the ring or decay completely. In the next section we
will see that the same type of gauge invariance demand for N f = 2 QCD connects N f = 1
baryons with N f = 2 skyrmions such that only the total baryon number is preserved.

6.2 Embedding in Nf = 2

In this section we will embed the N f = 1 baryon inside the N f = 2 theory, and study its decay
to the regular skyrmion. The embedding is done by choosing a U(1) subgroup inside U(2) and
taking all the other fields to zero

π1,2 = V 1,2
µ = 0 , ωµ = V 3

µ , eiη′/2 =
σ+ iπ3
q

σ2 +π2
3

, Vµ ≡
1
2
(ωµ +τaV a

µ ) . (63)

An important ingredient that we add to the theory is the N f = 2 completion of the topological
term LCSη′ which we conjecture to be

Ltop = NωµHµ , (64)
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where in the unitary gauge, can be written as

Ltop =
N

24π2
εµνρσωµtr

�

2∂νξξ
†∂ρξξ

†∂σξξ
† + 3iVν(∂ρξ∂σξ

† − ∂ρξ†∂σξ)

+3i∂νVρ(∂σξξ
† − ∂σξ†ξ)

�

.
(65)

We will use the parametrization (42). Assuming that V 1,2
µ will not play any role in the decay (at

least qualitatively) we can set them identically to zero, such that the topological term becomes

Ltop =
N

12π2
εµνρσωµtr

�

∂νξξ
†∂ρξξ

†∂σξξ
†
�

+
Ni

8π2
εµνρσωµ∂νtr

�

Vρ(∂σξξ
† − ∂σξ†ξ)

�

=
N
π2
εµνρσωµ

�

(β3∂να−α∂νβ3)∂ρβ1∂σβ2 + ∂να∂ρβ3(∂σβ1β2 − ∂σβ2β1)
�

−
N

16π2
εµνρσωµ∂ν

�

ωρ∂ση
′ + 4V 3

ρ (α∂σβ3 − β3∂σα)
�

.

(66)
Similar to the N f = 1 case, we can compute the gauge variation of the action in the background
of an N f = 1 baryon. We need to be careful when integrating by parts due to the singular ring
and several discontinuous fields. For the N f = 1 baryon

σ = cos(η′/2) , π3 = sin(η′/2) ⇒ α∂ β3 − β3∂ α=
1
4
∂ η′ . (67)

Therefore, the variation of the action is

δStop =
N

4π2

∫

d4 xεµνρσ∂µλ
�

−∂νη′∂ρβ1∂σβ2

�

−
N

16π2

∫

d4 xεµνρσ∂µλ
�

∂νωρ∂ση
′ + ∂νV 3

ρ ∂ση
′
�

.

(68)

Integrating by parts carefully we get the worldsheet term

δStop = −
N
4π

∫

εi jλ(∂iω j + ∂iV
3
j + 4∂iβ1∂ jβ2) . (69)

The gauge invariance condition is now modified such that only the combination

εi j(∂iω j + ∂iV
3
j + 4∂iβ1∂ jβ2) , (70)

should vanish on the worldsheet. This can be translated to the constraint that
∫

dφ(ωφ + V 3
φ + 4β1∂φβ2) = const . (71)

Starting from an N f = 1 baryon with

∫

dφ(ωφ + V 3
φ) = 2π , β1,2 = 0 , (72)

we find that it can decay to a configuration with

ωφ + V 3
φ = 0 ,

∫

dφβ1∂φβ2 =
π

2
. (73)

16

https://scipost.org
https://scipost.org/SciPostPhys.9.1.008


SciPost Phys. 9, 008 (2020)

Once the vector mesons are turned off, there is nothing that can prevent the ring with its η′

excitations from shrinking to zero radius and disappearing. When this happens we are left just
with the pion fields excited. σ and π3 remain as they were before the vanishing of the ring.
π1,2 are excited such that on what was previously the ring

∫

dφβ1∂φβ2 =
π

2
. (74)

Up to continuous deformations, this is exactly satisfied by (28). We already saw in section
3 how the η′ excitation is related to the π3 and σ excitations. This analysis shows the rela-
tion between the vector meson excitation to the π1,2 excitations, completing the qualitative
description of how the two different baryons can continuously transform one into the other.

6.3 A pancake or a pita?

In this section we would like to make a comment about the winding of η′. The H = 1 baryon
(the minimal charge) in our setup looks different than the quantum Hall droplet discussed
in [5]. The difference between the two is that the η′ = π surface in the quantum Hall droplet
setup looks like a pancake, while in our setup it looks rather like a pita. Phrased more mathe-
matically, in the setup of [5], there is one finite η′ = π surface that ends on the singular ring.
Therefore, η′ winds once around the ring as can be seen in figure 1. On the other hand, in
our setup there are two η′ = π surfaces stitched together on the singular ring, as illustrated in
figure 2. This implies that in our setup η′ winds twice around the ring. If a pancake that carry
edge modes indeed exists, it will have charge 1

2 under Hµ. Another way to view the problem
with the pancake is that as we saw, when continuously flowing from N f = 2 to N f = 1, the
skyrmion is deformed such that η′ winds twice around the ring. On the same way, if we try
to embed the pancake in N f = 2 QCD, (67) tells us that π3 and σ are not continuous even
outside of the ring.

These arguments suggest that the pita is the minimal charged baryon, while the pancake
should be excluded. However, these arguments come from N f = 2, while the pancake looks
perfectly fine in N f = 1 QCD. In order to see what can go wrong with having a pancake from
the N f = 1 point of view, we will start by writing the fields ξL,R before gauge fixing,

ξR = e
i
2 (S+η

′) , ξL = e
i
2 (S−η

′) . (75)

Under η′→ η′ + 2π, ξL,R→−ξL,R. −ξL,R is gauge equivalent to ξL,R so the physics is indeed
invariant under η′→ η′+2π, but there are still consequences. To have a finite energy config-
uration, we must demand that ξL,R are well defined as you go around the ring. It means that
the sum of the windings of η′ and S should be even. One possibility is that S doesn’t wind and
η′ winds twice, which is exactly our pita. In the pancake, η′ winds once which means that
also S must wind once around the ring. While the two dishes are legitimate by themselves,
we should ask whether they can be ordered with the extra special ingredient of edge modes.
According to our analysis in 6.1, an edge mode requires S to wind along the ring. As we just
said, the pancake requires S to wind around the ring. The two orthogonal windings of the
same scalar S hints that there is a physical difference between the pancake and the pita. Un-
fortunately, we don’t have a good argument for excluding pancakes with edge modes, but we
would like to suggest that they are excluded due to some (yet unknown) mechanism related
to the windings of S, such that the pita is the minimal charge baryon.
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