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ABSTRACT Virtual machine (VM) consolidation provides a promising approach to save energy and to

improve resource utilization in data centers. However, the aggressive consolidation of virtual machines

may lead to service-level agreements (SLA) violation, which is essential for data centers and their users.

Therefore, it is very meaningful to strike a tradeoff between power efficient and reduction of SLA violation

level. In this paper, we propose a host overloading/underloading detection algorithm and a new VM place-

ment algorithm based on our proposed robust simple linear regression prediction model for SLA-aware and

energy-efficient consolidation of virtual machines in cloud data centers. Different from the native linear

regression, our proposed methods amend the prediction and squint toward over-prediction by adding the

error to the prediction; in this paper, we propose eight methods to calculate the error. We evaluate our

proposed algorithms by extended the CloudSim simulator using PlanetLab workload and random workload.

The experimental results show that our proposed model can reduce SLA violation rates by at most 99.16%

and energy consumption by at most 25.43% for the real-world workload.

INDEX TERMS VM consolidation, linear regression, SLA-aware, energy-efficient, cloud data centers.

I. INTRODUCTION

Cloud data centers consume significant energy owing to the

wide application of IT technology, such as big data and

E business. There are thousands to millions of machines

in cloud data centers, these infrastructure consume high

energy which led to a large amount of carbon dioxide emis-

sions contributing to the greenhouse effect [1]. The energy

of cloud data centers has not been effectively utilized,

Barroso and Holzle [2] analyzed the resource utilization of

thousands of servers over a six-month period, and found that

servers just use 10% to 50% of their resources at most of the

time.

Virtual Machine (VM) consolidation is an efficient way

towards energy conservation in cloud data centers. The

VM consolidation technique is applied to migrate Virtual

Machines (VMs) into lesser number of active Physical

Machines (PMs), so that the PMs which have no VMs can

be turned into sleep state. VM consolidation technique can

reduce energy consumption of cloud data centers because of

the energy consumption by the PM which is in sleep state is

significantly lower than the energy consumption by the PM

which is in active state [3].

However, aggressive consolidation of VMs can lead to

performance degradation, because VMs share the underly-

ing physical resources, and an application may encounter

an unexpected resources requirement which may lead to

increased response times or even failures. Before providing

cloud services, cloud providers should sign Service Level

Agreements (SLA) with customers, so it is essential to pro-

vide reliable Quality of Service (QoS) for cloud providers.

Therefore, it is very meaningful to strike a tradeoff between

energy and performance - minimizing energy consumption

on the premise of meeting SLA.

A live migration [4] approach is presented in [5] to guar-

antee high-level of energy efficient and SLA. The authors

propose that one of the optimization challenges is to decide

which VMs to migrate, when to migrate, where to migrate,

and when and which servers to turn on/off. To achieve this

goal optimally, it is important to predict the future host state

accurately, and make plan for migration of VMs based on
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the prediction. For example, if a host will be overloaded

at next time unit, some VMs should be migrated from the

host to keep the host from overloading, and if a host will be

underloaded at next time unit, all VMs should be migrated

from the host, so that the host can be turn off to save power.

There is a linear relationship between the power consumption

by servers and their CPU utilization, even when Dynamic

Voltage and Frequency Scaling (DVFS) is applied [6], [7].

So in this paper, we focuses on predicting the host CPU

utilization to determine when a host is overloaded or under-

loaded. A prediction model is proposed to forecast the future

CPU utilization and named Robust Simple Linear Regres-

sion (RobustSLR) prediction model. The main objective of

RobustSLR model is to minimize the power consumption

and SLA violation level. The linear regression is a strong

statistical method that used in machine learning schemes

to estimate a prediction function. Different from the native

simple linear regression, by adding the error directly or indi-

rectly to the prediction, our proposed methods amend the

prediction and squint towards over-prediction. In this paper,

we have proposed eight methods to calculate the error. The

experimental results show that our proposed methods can sig-

nificantly reduce SLA violation rates while keeping energy

cost efficient. The main contributions of this paper are the

following.

1. We have proposed a RobustSLR model to predict the

host future CPU utilization, it amends the prediction and

squint towards over-prediction by adding the error to the

prediction. We propose eight methods to calculate the

error.

2. We propose a Host Overloading Detection algo-

rithm based on our proposed RobustSLR model in

order to minimize the power consumption and SLA

violation.

3. We propose a Host Underloading Detection algorithm

based on our proposed RobustSLR model in order to

minimize the power consumption and SLA violation.

We also propose an adaptive lower utilization thresh-

old based on the interquartile range (IQR) in our Host

Underloading Detection algorithm.

4. We propose a new VM placement algorithm which

called RobustSLR Power Aware Best Fit Decreasing

algorithm. In this algorithm, the future host load state

is predicted using our RobustSLR algorithm, and the

overloaded and underloaded hosts are excluded from the

hostList for VM placement.

5. We propose eight live migration policies based on our

RobustSLR model and we extend the Cloudsim [8]

simulator for performance evaluation of our proposed

algorithms.

The remainder of the paper is organized as follows.

In Section 2 we discuss the related work. The proposed

RobustSLR model is shown in Section 3. In Section 4 we

introduce our SLA-aware and Energy-efficient VM consol-

idation based on RobustSLR Model. The simulation results

are reported in Section 5.We conclude this paper in Section 6.

II. RELATED WORK

There are two main techniques in data centers for energy

consumption management: Dynamic Voltage and Frequency

Scaling (DVFS) technique and VM consolidation technique.

The DVFS technique is to dynamically adjust the chip’s

operating frequency and voltage according to the different

needs of the application program running on the chip for

computing power, so as to achieve the purpose of energy

saving. There are mainly three categories of DVFS technique:

interval-based [9]–[12], inter-task [13], [14] and intratask

methods [15], [16]. Interval-based methods adjust the pro-

cessor frequency by predicting the future CPU utilization,

inter-task methods assign different tasks to different speed

of processors, and intra-task methods adjust the processor

frequency according to the structure of programs. Although

DVFS technology improves energy utilization, there is still

much room for optimization.

The VM consolidation problem is a NP-hard prob-

lem [17], [18]. So VM consolidation problem is often for-

mulated as an optimization problem with the objective to

find a near optimal solution. The existing VM consolida-

tion approaches can be mainly divided into two categories:

threshold-based heuristics and decision-making based on sta-

tistical analysis of historical data. Threshold-based heuristics

set appropriate threshold to predict the state of a host by

comparing it with the threshold, and then decide themigration

of VMs. The threshold-based heuristics method can also be

divided into two categories: static threshold-based heuristics

and dynamic threshold-based heuristics. Ahamed et al. [19]

propose a static threshold-based heuristics method, they

set two thresholds for host state prediction: an overloaded

threshold and a underloaded threshold. A PM is overloaded

if its CPU utilization is equal or greater than 90%, and

then some VMs should be migrated to avoid overloaded

at next time unit. Again, a PM is underloaded if its CPU

utilization is equal or less than 10%, and then all VMs

should be migrated to save power. However, the static

threshold method is not suitable at most of the time,

because the workloads in cloud data centers are dynamic and

complicated.

Beloglazov and Buyya [5], Beloglazov et al. [20], and

Xue et al. [25] propose two dynamic threshold-based heuris-

tics policies: Median Absolute Deviation (MAD) and Inter

Quartile Range (IQR). MAD is a measure of statistical dis-

persion, it is a robust measure of the variability of a univariate

sample of quantitative data. IQR is a measure of statistical

dispersion, being equal to the difference between 75th and

25th percentiles, or between upper and lower quartiles. The

authors adjust the thresholds using above statistical methods

based on the historical data of CPU utilization. Therefore,

the thresholds can vary with the workloads of hosts. How-

ever, the inherent disadvantages of statistical methods have

negative impact on the effectiveness. For example, if the past

CPU utilizations of a host which are used for the IQRmethod

are same, the upper threshold will be set to 100%, which

obviously is an unsuitable threshold.
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Different from the threshold-based heuristics, decision-

making policies do not set threshold, they predict the state

of a host using the historical data to train some functions.

PRACTISE [22] is a neural network framework for predict-

ing the resource utilization. The authors have found that

PRACTISE has better prediction accuracy than ARIMA [23]

and basic neural network model. They also have used

PRACTISE to explore VM scheduling strategy to cater

for peak demands in their other research [24]. Neural net-

work prediction method is much more complicated, and is

often used for medium term to long term prediction. Lin-

ear regression [25] is used to generate an estimated future

resource utilization of a PM from analyzing its past resource

utilization statistics. It is often used for short term prediction.

A weighted linear regression method is used to predict the

future workload in [26]. Different from other local regres-

sion or linear regression prediction methods, our proposed

RobustSLR model amends the prediction and squint towards

over-prediction by adding the error directly or indirectly to

the prediction.

In [27] researchers propose an ant colony optimization

meta-heuristic VM placement algorithm, they model the

VM placement problem as a multidimensional bin pack-

ing problem, and they make VM placement plan accord-

ing to the workload and the related resource requirements.

Ma et al. [28] propose a multi-objective ant colony opti-

mization VM placement algorithm, the optimization goal is

the minimization of energy consumption and SLA violations.

Beloglazov and Buyya [5], [29] propose a Power Aware Best

Fit Decreasing (PABFD) algorithm for VM placement, they

choose such a host which has the least power increasing for

a VM after the VM is migrated to the host. The algorithm is

essentially a greedy algorithm, so VMs are often consolidated

aggressively. We propose a new VM placement algorithm by

modifying the PABFD algorithm in this paper.

III. ROBUST SIMPLE LINEAR REGRESSION MODEL

In this section, we first give a brief introduction of the Simple

Linear RegressionModel; and then, we show the detail of our

proposed Robust Simple Linear Regression Model.

A. SIMPLE LINEAR REGRESSION MODEL

Simple Linear Regression(SLR) is a statistical method that

allows us to summarize and study relationship between two

continuous (quantitative) variables: One variable, denoted x,

is regarded as the predictor variable, the other variable,

denoted y, is regarded as the response variable [30]. The

purpose of SLR is finding ‘‘the best fitting line’’ which is

called regression function shown in equation (1).

ŷi = b0 + b1xi (1)

When we use equation (1) to predict the actual response yi,

the observed response for experimental unit i, the residual

error can be calculated as following:

ei = yi − ŷi (2)

One way of finding ‘‘the best fitting line’’ is using the least

squares criterion method [30]. So we should minimize the Q

value:

Q =
n

∑

i=1

(yi − ŷi)
2 (3)

The values of b0 and b1 can be calculated if the equalities (4)

and (5) are satisfied.

∂Q

∂b0
= −2

n
∑

i=1

(yi − b1xi − b0) = 0 (4)

∂Q

∂b1
= −2

n
∑

i=1

(yi − b1xi − b0)xi = 0 (5)

then we get the least squares estimates for b0 and b1:

b0 = ȳ− b1x̄ (6)

b1 =
∑n

i=1(xi − x̄)(yi − ȳ)
∑n

i=1(xi − x̄)2
(7)

where x̄ and ȳ are the means of the xi and yi observations,

respectively.

B. ROBUST SIMPLE LINEAR REGRESSION MODEL

There are two evaluation criterion for the SLR model predic-

tion inaccuracies, the false negative prediction rate and the

false positive prediction rate. The false negative prediction,

which may lead to host overloaded, has a decisive impact on

the performance of hosts; but the false positive prediction,

which may lead to VM migration, also has an important

impact on the performance of hosts. So we need to make

tradeoff between the false negative prediction rate and the

false positive prediction rate. Safety parameter is a method to

reduce the adverse effects. The main idea of safety parameter

is reserving a certain proportion of resources for inaccuracies

on each server. However, safety parameter method, which

keeps a static buffer for the dynamic host load, is not a

good measure to minimise the influence of the false nega-

tive prediction [22]. So in this paper, we propose an adap-

tive dynamic method that amends the prediction and squint

towards over-prediction by adding the error to the prediction.

We propose eight methods to calculate the prediction error in

this paper.

• Mean Square Error, typically is denoted as MSE ,

is shown in equation (8). We add MSE to the prediction

directly, then we get the amendatory prediction which is

shown in equation (9).

MSE =
∑n

i=1(yi − ŷi
2)

n− 2
(8)

ŷn+1 = b0 + b1xn+1 +MSE (9)

• Root Mean Square Error, typically is denoted as RMSE ,

is shown in equation (10). We add RMSE to the pre-

diction directly, then we get the amendatory prediction

which is shown in equation (11).

RMSE =
√
MSE (10)

ŷn+1 = b0 + b1xn+1 + RMSE (11)

9492 VOLUME 7, 2019



L. Li et al.: SLA-Aware and Energy-Efficient VM Consolidation in Cloud Data Centers

• Mean Absolute Error, typically is denoted as MAE,

is shown in equation (12).

MAE =
∑n

i=1 |yi − ŷi|
n

(12)

In our experiment, we set n = 3 and n = 10 to

calculate MAE respectively, and the results are denoted

asMAE(3) andMAE(10).We addMAE to the prediction

directly, then we get the amendatory prediction which is

shown in equation (13).

ŷn+1 = b0 + b1xn+1 +MAE (13)

• Exponentially Weighted Moving Average Error,

we denote it as EWMAE . In our research, we set n = 3

and n = 10 to build two models respectively, and the

model formulas are shown in equation (14) and (15).

EWMAE(3)

= 0.2|yi−2 − ŷi−2| + 0.3|yi−1 − ŷi−1| + 0.5|yi − ŷi|
(14)

EWMAE(10)

= 0.06|yi−9 − ŷi−9| + 0.07

1
∑

k=0

|yi−8+k − ŷi−8+k |

+ 0.08

3
∑

k=0

|yi−6+k − ŷi−6+k | + 0.12|yi−2 − ŷi−2|

+ 0.16|yi−1 − ŷi−1| + 0.2|yi − ŷi| (15)

We add EWMAE to the prediction directly, then we

get the amendatory prediction which is shown in

equation (16).

ŷn+1 = b0 + b1xn+1 + EWMAE (16)

• standard error of the slope estimate, typically is denoted

as se(b1), is shown in equation (17). We add se(b1) to b1,

then we get the amendatory prediction which is shown

in equation (18).

se(b1) = RMSE
√

∑

(xi − x̄)2
(17)

ŷn+1 = b0 + (b1 + se(b1))xn+1 (18)

• (1 − α)Confidence Interval of the slope estimate. The

formula is shown in equation (19).

(1 − α)CIslope = b1 ± t(α/2,n−2) × (
RMSE

√

∑

(xi − x̄)2
)

(19)

the t(α/2,n−2) is determined using a t-distribution with

n− 2 degrees of freedom. The value of t(α/2,n−2) is such

that the (1−α) confidence level is the area (probability)

between −t(α/2,n−2) and +t(α/2,n−2) under the t−curve.

In our research, we set α = 0.05, to calculate the 95%

Confidence Interval of the slope estimate, we denote it

as 95%CIslope. We add 95%CIslope to b1, then we get the

amendatory prediction which is shown in equation (20).

ŷn+1 = b0 + (b1 + 95%CIslope))xn+1 (20)

According to the eight adaptive dynamic methods which

we have introduced above, we propose our Robust Simple

Linear Regression algorithm for predicting the host CPU

utilization according to the history of past CPU utilization.

The RobustSLR algorithm calculates the host CPU utilization

according to the n last CPU utilization in a host. The value

of n is set to 3 or 10 in our simulation, and the interval of

utilization measurements is five minutes. Algorithm 1 is the

pseudo-code of RobustSLR algorithm.

Algorithm 1 Robust Simple Linear Regression (RobustSLR)

Input: The set of utilization history, utilizationHistory;

Output: The prediction of utilization, prediction;

1: n = utilizationHistory.lenth;

2: for i = 0 to n− 1 do

3: x[i] = i+ 1;

4: y[i] = utilizationHistory[i];

5: end for

6: x̄ =
∑

i xi/n;

7: ȳ =
∑

i yi/n;

8: calculate b0 and b1 according to equation (6) and (7);

9: if use MSE to revise then

10: calculate MSE according to equation (8);

11: calculate prediction according to equation (9);

12: else if use RMSE to revise then

13: calculate RMSE according to equation (10);

14: calculate prediction according to equation (11);

15: else if use MAE(3) to revise then

16: calculate MAE(3) according to equation (12);

17: calculate prediction according to equation (13);

18: else if use MAE(10) to revise then

19: calculate MAE(10) according to equation (12);

20: calculate prediction according to equation (13);

21: else if use EWMAE(3) to revise then

22: calculate EWMAE(3) according to equation (14);

23: calculate prediction according to equation (16);

24: else if use EWMAE(10) to revise then

25: calculate EWMAE(10) according to equation (15);

26: calculate prediction according to equation (16);

27: else if use se(b1) to revise then

28: calculate se(b1) according to equation (17);

29: calculate prediction according to equation (18);

30: else if use 95%CIslope to revise then

31: calculate 95%CIslope according to equation (19)

using α = 0.05;

32: calculate prediction according to equation (20);

33: else

34: we should not be here, report some error;

35: end if

36: return prediction;
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Initially, we use the host utilization history to calculate

b0 and b1 according to equation (6) and (7)(line 1-8). Then,

the prediction error and the amendatory prediction are calcu-

lated according to the eight adaptive dynamic methods(line

9-35). Finally, the prediction of host CPU utilization for the

next time unit is returned for detecting whether the host is

overloaded(line 36).

IV. SLA-AWARE AND ENERGY-EFFICIENT

VM CONSOLIDATION BASED ON

RobustSLR MODEL

The VM live migration problem can be divided into four

parts: (1) detecting when a host is overloading; (2) detecting

when a host is underloading; (3) selecting some VMs from

the overloaded hosts and all VMs from the underloaded hosts

for live migration; and (4) making a placement plan for

all VMs which have been chosen from the overloaded and

underloaded hosts. We discuss the details in the following

sections.

A. HOST OVERLOADING DETECTION

We apply our proposed RobustSLR algorithm in host over-

loading detection. Algorithm 2 is the pseudo-code of Host

Overloading Detection (HOD) algorithm.

Algorithm 2 Host Overloading Detection (HOD)

Input: host;

Output: boolean;

1: if utilizationHistory.lenth < 10 then

2: return host.getTotalRequestedMips() > 0.90 ∗
host.getTotalMips();

3: else

4: prediction = RobustSLR(utilizationHistory) ;

5: return prediction >= 1;

6: end if

Initially, a host is cosidered overloaded if the current CPU

utilization is greater than 90% of the host resources if there

are not enough data(at least 10) to be computed for the

RobustSLR model(line 1-2). Then, the prediction is calcu-

lated according to the RobustSLR algorithm(line 4). Finally,

whether the host is overloaded at the next time unit is returned

according to the prediction(line 5).

B. HOST UNDERLOADING DETECTION

We propose an adaptive lower utilization threshold based

on a robust statistic method, the interquartile range (IQR)

method, which is the difference between the third and first

quartiles:

IQR = Q3 − Q1 (21)

We set a lower threshold using the IQR method:

Tl = 0.4(1 − s · IQR) (22)

where s is a safety parameter for VM consolidate. The

higher s, the lower level of SLA violations, but the more the

energy consumption, and vice versa.

Algorithm 3 Host Underloading Detection (HUD)

Input: host;

Output: boolean;

1: if utilizationHistory.lenth < 10 then

2: return host.getTotalRequestedMips() < 0.10 ∗
host.getTotalMips();

3: else

4: Tl = 0.4(1 − s · IQR);
5: prediction = RobustSLR(utilizationHistory) ;

6: return prediction < Tl ;

7: end if

Algorithm 3 describes the host underloading detection

mechanism. Initially, a host is cosidered underloaded if the

current CPU utilization is less than 10% of the host resources

if there are not enough data (at least 10) to be computed

for the RobustSLR model(line 1-2). Then, a lower thresh-

old for CPU utilization is calculated according to equa-

tion (22), and the prediction is calculated according to the

RobustSLR model(line 4-5). Finally, whether the host is

underloaded at the next time unit is returned according to the

prediction(line 6).

C. VM SELECTION

One or more VMs should be selected from the overloaded

host, and all the VMs should be selected to migrate from

the underloaded host. We choose the Minimum Migration

Time (MMT) policy [5] that is widely used for VM selection

in our research. The MMT policy chooses a VM which has

the minimum migration time from source host to target host.

From the formulation of MMT, we can find that the VM that

takes the minimum memory is chosen. The overloaded host

apply the MMT policie iteratively until it is not overloaded.

D. VM PLACEMENT

Beloglazov and Buyya [5], [29] proposed a Power Aware

Best Fit Decreasing (PABFD) algorithm for VM placement,

the algorithm sorts all the VMs in decreasing order accord-

ing to their CPU utilizations firstly, after that it allocates

each VM to such a host which has the least power increas-

ing after the VM is migrated to the host. The algorithm

is essentially a greedy algorithm, so VMs are often con-

solidated aggressively. We proposed a new VM placement

algorithm by modifying the PABFD algorithm in this paper.

We have modified the existing VM placement algorithm by

adding the RobustSLR prediction algorithm into the PABFD.

Algorithm 4 describes our RobustSLR Power Aware Best Fit

Decreasing (RPABFD) algorithm. In our RPABFD algorithm,

the future host load state is predicted using our RobustSLR

algorithm, the overloaded and underloaded hosts are excluded

from the host list for VM placement.
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Algorithm 4 RobustSLR Power Aware Best Fit Decreasing

(RPABFD)

Input: hostList, vmList;

Output: allocation of VMs;

1: vmList.sortDecreasingUtilization();
2: for vmList.contain(vm) is true do

3: min = MAX;
4: alloctedHost = NULL;
5: for hostList.contain(host) is true do

6: if HOD(host) is true then

7: continue;

8: end if

9: if HUD(host) is true then

10: continue;

11: end if

12: if host can allocate resources for vm then

13: power = getPower(host, vm);

14: if power < min then

15: alloctedHost = host;
16: min = power;
17: end if

18: end if

19: if alloctedHost is not NULL then

20: allocation.add(vm, allocatedHost);
21: end if

22: end for

23: end for

24: return allocation;

V. SIMULATION RESULTS AND ANALYSIS

A. EXPERIMENT SETUP

We have simulated a data center that comprises 400 HP

ProLiant ML110 G4 servers and 400 HP ProLiant

ML110 G5 servers using the CloudSim toolkit. The configu-

ration of hosts are given in Table 1. The power consumption

characteristics of the servers are shown in Table 2, and the

characteristics of the VMs are listed in Table 3.

TABLE 1. Configuration of hosts.

B. WORKLOAD DATA

We evaluate our prediction Model using random workload

and a real world workload:
• RandomWorkload: The users submit requests for provi-

sioning of 50 heterogeneous VMs to the 50 hosts. Each

application has 300 bytes input and 300 bytes output.

Each VM runs the application and the CPU utilizations

are generated according to a random variable. We run

the simulation experiment for 24 hours.

• Real Workload (PlanetLab data): PlanetLab is the mon-

itoring part of the CoMon project. It collected the CPU

utilization data every five minutes from thousands of

servers located at more than 500 places around the

world [31]. We chose three different days of the work-

load traces in our simulations. Table 4 shows the char-

acteristics of each workload.

C. PERFORMANCE METRICS

We have used several metrics to evaluate the performance of

the algorithms. Themain metrics are Energy Consumption by

physical nodes and SLA Violation.
• Energy Consumption: Here we use the power mode

based on the results of real data from the SPECpower

benchmark [32]. The mode of energy consumption of

the servers that we used in this paper is shown in Table 2.

We can see that the energy consumption of the server in

sleep state is much less than the sever in active state.

• SLA Violation: When a cloud provider fails to provide

service to customers in accordance with service level

agreement, a SLA violation will occur. SLAV [5] is an

independent metric that can be measured by SLA vio-

lation time per active host (SLATAH) and performance

degradation due to migration(PDM). The two metrics

are independent and have the same effect on SLAV.

So the SLAV metirc can be calculated as following:

SLAV = SLATAH × PDM (23)

We are going to introduce SLATAH and PDM below.

• SLA violation time per active host (SLATAH): When a

host is experiencing the 100% utilization, it can not pro-

vide service, so SLATAH can be calculated as follows:

SLATAH = 1

N

N
∑

i=1

Toi

Tai
(24)

where N is the number of hosts; Toi is the total time dur-

ing which the host i is experiencing the 100% utilization;

the total time of the host i which in active state is Tai.

• Performance degradation due to migration (PDM): Live

migration of VMs has negative impact on application

performance. The PDM can be calculated as follows:

PDM = 1

N

N
∑

i=1

Cd i

Cr i
(25)

where N is the number of VMs; Cd i is the performance

degradation of the VM i due to migrations, we set it as

10% of the CPU utilization according to [33]; Cr i is the

total CPU capacity requested by the VM i.

• Average SLA violation: The metric can be calculated as

follows:

Average SLAV

=
∑N

k=1(requestedMIPS) −
∑N

k=1(allocatedMIPS)

N
(26)

where N is the number of VMs.
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TABLE 2. Power consumption by the selected servers at different load levels in Watts.

TABLE 3. Four kinds of VM types.

TABLE 4. Workload data characteristics(CPU utilization).

• Overall SLA violation: The metric can be calculated as

follows:

Overall SLAV

=
∑N

k=1(requestedMIPS) −
∑N

k=1(allocatedMIPS)
∑N

k=1(requestedMIPS)

(27)

where N is the number of VMs.

• Number of VMmigrations: Themetric can be calculated

as follows:

Migrations(F, t1, t2) =
N

∑

i=1

∫ t2

t1

Migi(F) (28)

where N is the number of hosts, F is the placement of

VMs at host i, Migi(F) is the number of migration of

host i from time t1 to time t2.

• Number of host shutdowns: Themetric can be calculated

as follows:

H = 1

n

n
∑

i=1

hi (29)

where hi is the number of active hosts at the time i. H is

the number of host shutdowns from time 1 to time n.

D. ANALYSIS OF SAFETY PARAMETER S

Using the workload data described above, we have simu-

lated all combinations of the eight proposed host detection

algorithms (MSE, RMSE, MAE(3), MAE(10), EWMAE(3),

EWMAE(10), se(b1) and 95%CI) and the MMT VM selec-

tion algorithms. Moreover, because the safety parameter s in

equation (22) is a key parameter for our model, so we first

choose the best s for each combination through experiments.

For each detection algorithm we have varied the parameters

as follows: for MSE from 0.5 to 4.0 increased by 0.5, and

for the others from 0.5 to 3.0 increased by 0.5. Figs.1 show

the energy consumption, SLA violations under different value

of s using the ‘‘20110303’’, ‘‘20110322’’ and ‘‘20110420’’

data sets.

Fig. 1 show that the lower s, the less the energy con-

sumption, but the higher the level of SLA violations. There-

fore, we have to choose the appropriate safety parameter s

for dealing with the energy-performance tradeoff - minimiz-

ing energy consumption on the premise of meeting SLA.

According to the experimental results, we set s = 0.5 for

95%CI-MMT-s algorithm, s = 1.0 for se(b1)-MMT-s algo-

rithm, s = 1.5 for RMSE-MMT-s algorithm, s = 2.0 for

MAE(3)-MMT-s algorithm, s = 2.5 for MAE(10)-MMT-s,

EWMAE(3)-MMT-s and EWMAE(10)-MMT-s algorithms,

and s = 4.0 for MSE-MMT-s algorithm respectively.

we also do some experiments using the random work-

load, and get the similar results with the real workloads.

Figs. 2-4 illustrate the energy consumption, SLA violations,

number of VM migrations under different value of s for our

eight proposed algorithms respectively.

E. COMPARISON WITH OTHER BENCHMARKS

We are interested in comparing our proposed model to the

state-of-the-art algorithms using the PlanetLab data described

above. We select ‘‘20110303’’ data set as the workload

and our proposed eight algorithms with the appropriate

safety parameter s which are MSE-MMT-4.0, RMSE-MMT-

1.5, MAE(3)-MMT-2.0, MAE(10)-MMT-2.5, EWMAE(3)-

MMT-2.5, EWMAE(10)-MMT-2.5, se(b1)-MMT-1.0, and

95%CI-MMT-0.5 are chosen for comparison. The compari-

son benchamrks are NPA(None Power Aware) [8], DVFS [9],

THR-MMT-1.0 [5], THR-MMT-0.8 [5], IQR-MMT-1.5 [5],

MAD-MMT-2.5 [5], LR-MMT-1.2 [5], and LRR-MMT-

1.2 [5]. The hosts which use the NPA policy consume their

maximum power all the time. The THR-MMT-1.0 algorithm

uses the fixed threshold of 100%. Table 5 show the details

of experimental results, and Figs. 5-7 illustrate the Energy

consumption, SLA violations, number of VM migrations for

the main algorithms respectively.

From the simulation results, we have got the following

conclusions: (1) VM consolidation technique significantly

surpasses NPA and DVFS; (2) because of reducing the

level of SLA violations observably, dynamic threshold-based

heuristics algorithms considerably outperform the static

threshold-based heuristics algorithm(THR-MMT-1.0), but

there is no statistically significant difference with the
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FIGURE 1. Energy consumption and SLAV under different value of s for
real workload. (a) MSE-Energy. (b) MSE-SLAV. (c) RMSE-Energy.
(d) RMSE-SLAV. (e) MAE(3)-Energy. (f) MAE(3)-SLAV. (g) MAE(10)-Energy.
(h) MAE(10)-SLAV. (i) EWMAE(3)-Energy. (j) EWMAE(3)-SLAV.
(k) EWMAE(10)-Energy. (l) EWMAE(10)-SLAV. (m) se(b1)-Energy.
(n) se(b1)-SLAV. (o) 95%CI-Energy. (p) 95%CI-SLAV.

static threshold-based heuristics algorithm with the thresh-

old set to 80%(THR-MMT-0.8); (3) our proposed eight

decision-making algorithms can significantly outperform

FIGURE 2. Energy consumption under different value of s for random
workload.

FIGURE 3. SLAV under different value of s for random workload.

FIGURE 4. Number of VM migrations under different value of s for
random workload.

the benchmarks of one static threshold-based heuristics

algorithm with the threshold set to 80% and four dynamic

VM consolidation policies including two dynamic threshold-

based heuristics algorithms and two decision-making algo-

rithms, they can reduce the metric of Energy consumption by

at most 25.43%, average 17.10% , and they can reduce the
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TABLE 5. Simulation results of the best algorithm combinations and benchmark algorithms.

FIGURE 5. Energy consumption for the main algorithms.

FIGURE 6. SLAV for the main algorithms.

metric of SLAV by at most 99.16%, average 94.27% , and

they can reduce the metric of number of VM migrations

by at most 90.11%, average 83.91%. (4) MSE-MMT-4.0,

FIGURE 7. Number of VM migrations for the main algorithms.

RMSE-MMT-1.5, MAE(3)-MMT-2.0, MAE(10)-MMT-2.5,

EWMAE(3)-MMT-2.5, EWMAE(10)-MMT-2.5, and se(b1)-

MMT-1.0 algorithms are almost at the same level perfor-

mance, but the MAE(10)-MMT-2.5 algorithm gets the best

tradeoff between the Energy consumption and SLA viola-

tions; (5) 95%CI-MMT-0.5 algorithm consumes almost the

same energy with the benchmarks dynamic threshold-based

heuristics algorithms, but it gets the best SLA performance,

it reduces SLA violations to almost 0.

VI. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this paper, we have proposed a RobustSLR model to

predict the host future CPU utilization, and ourmodel amends

the prediction and squint towards over-prediction by adding

the error directly or indirectly to the prediction. We have

proposed eight methods to calculate the error. We have pro-

posed a Host Overloading/Underloading Detection algorithm
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based on our proposed RobustSLR model in order to min-

imize the power consumption and SLA violation. We also

have proposed a new VM placement algorithm which called

RobustSLR Power Aware Best Fit Decreasing algorithm in

our model.

We have extended the Cloudsim simulator for performance

evaluation of our proposed algorithms using PlanetLab work-

load and random workload. The results of the experiments

have shown that our proposed eight decision-making algo-

rithms can significantly outperform the benchmarks of one

static threshold-based heuristics algorithm with the threshold

set to 80% and four dynamic VM consolidation policies

including two dynamic threshold-based heuristics algorithms

and two decision-making algorithms, they can reduce Energy

consumption by at most 25.43% and SLA violations by at

most 99.16% for the PlanetLab workload. As a future work,

we plan to optimal our model to further improve energy

efficient and reduce SLA violations considering the other

resources, for example, the RAM and net.
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