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ABSTRACT Cloud computing emerged as one of the leading computational paradigms due to elastic

resource provisioning and pay-as-you-go model. Large data centers are used by the service providers to host

the various services. These data centers consume enormous energy, which leads to increase in operating costs

and carbon footprints. Therefore, green cloud computing is a necessity, which not only reduces energy con-

sumption, but also affects the environment positively. In order to reduce the energy consumption, workload

consolidation approach is used that consolidates the tasks in minimum possible servers. However, workload

consolidation may lead to service level agreement (SLA) violations due to non-availability of resources

on the server. Therefore, workload consolidation techniques should consider the aforementioned problem.

In this paper, we present two consolidation based energy-efficient techniques that reduce energy consumption

along with resultant SLA violations. In addition to that, we also enhanced the existing Enhanced-Conscious

Task Consolidation (ECTC) and Maximum Utilization (MaxUtil) techniques that attempt to reduce energy

consumption and SLA violations. Experimental results show that the proposed techniques perform better

than the selected heuristic based techniques in terms of energy, SLA, and migrations.

INDEX TERMS Energy efficiency, workload consolidation, SLA violation, resource management, cloud

computing.

I. INTRODUCTION

Cloud computing provides on-demand elastic resources with

the help of virtualization [1]–[3]. Virtualization enables cloud

service providers to share physical resources of a single

machine, such as CPU, RAM, and storage among multiple

users. Virtualization increases the utilization of resources and

helps in minimization of active resources through resource

consolidation. Moreover, resource management techniques

are used to acquire and manage virtualized resources. On the

arrival of a new task, either a new virtual machine (VM) is

created or the task is hosted on an existing VM. Furthermore,

resource management techniques also assist in maximizing

the performance of cloud systems with respect to various

research challenges. Resource management techniques are

incorporated to enhance load balancing, energy efficiency,

The associate editor coordinating the review of this manuscript and
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network load management, profit maximization, and fault

tolerance [4], [5].

One of the critical research challenges related to

resource management and cloud computing is energy effi-

ciency [4], [6]. Energy efficiency enables service providers to

achieve/significant reduction in operational expenditure and

carbon-dioxide (CO2) emission [6]–[8]. According to recent

studies, information and communication technology (ICT)

industry consumed 271.8∗109 kWh electricity in 2010 [9],

[10], and it is expected to increase up to 1963∗109 kWh by

year 2020 [11]. Moreover, in the year 2007, ICT industry pro-

duced about 2% of the total CO2 emissions, and it is expected

to increase up to 12% by the year 2020 [12]–[15]. Similarly,

data centers in the U.S. consumed 91∗109 kWh electric-

ity in 2013 that is expected to increase to 140∗109 kWh

by 2020, and carbon emission will reach 150 ∗106 metric

tons [16]. On the other hand, usual server utilization remained

at 12% to 18% during the time between 2006 and 2012 while

almost 20% to 30% of servers in large data centers remained
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unused [16]. According to [17], against 1W energy con-

sumption at the processor level, almost 27W of overall data

center energy is consumed. Therefore, in order to mitigate

the detrimental effects of CO2 emissions and minimization

of the operational cost, researchers are exploring alternate

techniques to enhance energy efficiency.

Over the past decade, researchers have presented

various resource allocation techniques to optimize energy

efficiency of cloud systems. Techniques, such as dynamic

voltage and frequency scaling (DVFS), workload consoli-

dation, and dynamic power management (DPM) are used to

provide energy-efficient solutions [18]. DVFS scales voltage

of the server according to the computational load on the

central processing unit (CPU). Similarly, workload consol-

idation techniques aim to reduce energy consumption by

aggregating workload on the minimum possible servers.

Both techniques use DPM to manage available servers by

dynamically switching them ON and OFF. Resource man-

agement techniques proposed based on the aforementioned

methods are applicable to data centers that use homoge-

neous servers. However, in case of heterogeneous servers,

the above-mentioned solutions fail to select the best server

due to resources’ variation. Heterogeneous servers may differ

in terms of CPU, RAM, and storage. Therefore, researchers

are recently focusing to provide solutions for the heteroge-

neous data centers [19]–[31].

The focus of this work is on workload consolidation

techniques, for heterogeneous cloud data centers. Workload

consolidation techniques increase resource utilization by con-

sidering the fact that for most of the time, the resources

assigned to a VM are not fully utilized [32]. The service

provider and user agree on a service level agreement (SLA)

that ensures the quality of service (QoS). Usually, the level

of QoS provided to the user is based upon the peak amount

of resources required to run the task. However, existing

energy-efficient techniques only consider the current usage of

resources and do not consider the future resource demands of

aVM. Therefore, in case of fluctuatingworkloads and aggres-

sive consolidation, the chances of SLA violations increase

due to non-availability of resources and extra load on a lim-

ited number of servers [33], [39]. Moreover, due to work-

load consolidated on fewer servers, the load on the network

between those servers increases that may lead to network

delays and SLA violations. Therefore, there is a need to

develop solutions that not only focus on energy efficiency but

also avoid possible chances of SLA violations.

To avoid SLA violations, various techniques are used by

researchers. A simple method to avoid SLA violations is

to allocate the amount of resources that are agreed at the

agreement level [39]. However, such method leads to low

server utilization and higher energy consumption. Another set

of techniques use the prediction models to forecast the future

needs of VMs [31], [44], [45]. Prediction based methods

perform better than simple method as they reduce energy con-

sumption while limiting SLA violations. However, prediction

based methods may suffer when workloads are fluctuating

and non-periodic. To handle the issues faced in non-periodic

fluctuating workloads, researchers proposed the threshold

mechanisms [39]. Threshold mechanisms keep a propor-

tion of resources free on each server to handle the future

demand of hosted VMs. Though the threshold mechanisms

handle the issue of SLA violations, but it is at the cost of

increase in energy consumption. Threshold mechanisms con-

sumemore energy because some of the resources are kept free

on each server which leads to increase in number of active

servers [46], [47]. In this work, we are using threshold mech-

anism as most of the time workloads are fluctuating and non-

periodic.

It is noticed that energy efficiency can be further enhanced

by introducing workload consolidation techniques that are

more aggressive in consolidating the workloads on fewer

numbers of physical resources. Moreover, there is also an

intention to decrease SLA violations. Therefore, we propose

workload consolidation techniques which intend to provide

energy efficiency while ensuring the agreed QoS. Best fit

decreasing (BFD) bin packing technique is used as a base

for the proposed techniques [34], [35]. BFD is considered

good for VM placement due to efficient bin packing by plac-

ing the VMs with higher resource requirements first. After

placing the large VMs, VMs with low resource requirements

can be easily accommodated on the remaining resources.

Our first technique Minimum Power Best Fit Decreasing

(MPBFD) selects a server whose peak power consumption

is the lowest compared to other servers. Therefore, it will

select those servers that have the lowest energy consumption.

The second proposed technique Maximum Capacity Best

Fit Decreasing (MCBFD) selects a server with maximum

CPU capacity, such that themaximumVMs can be accommo-

dated on a minimum number of servers. In addition, we use a

threshold mechanism to avoid excessive SLA violations due

to higher CPU utilization. Furthermore, we have enhanced

two existing techniques, namely, Enhanced-Conscious

Task Consolidation (ECTC) and Maximum Utilization

(MaxUtil) [40], by further improving the energy efficiency

and SLA-awareness. The major contributions of this paper

can be summarized as follows:

• Two SLA-aware workload consolidation techniques

MPBFD and MCBFD are proposed to handle the issue

of energy consumption and SLA violations.

• A detailed quantitative analysis of ECTC and MaxUtil

is presented using the same environment, assumptions,

and system models.

• The selected existing techniques are enhanced to further

improve the energy and SLA-awareness.

• A detail complexity analysis of all the techniques is also

provided.

The remaining structure of the paper is as follows:

Section 2 presents the state-of-the-art related work of the

topic. In Section 3, system model used for the study is

described and Section 4, presents the complete working of

the techniques which are selected for the comparison pur-

poses. Section 5 and 6, provide the detail discussion on the
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proposed techniques and performance evaluation, respec-

tively. Section 7 presents the conclusions of the study.

II. RELATED WORK

Researchers face numerous research challenges such as

energy efficiency, SLA violation, profit maximization, net-

work and server load management, and fault tolerance in

the field of cloud environment. Among the aforementioned

challenges, energy efficiency is considered critical due to cost

and carbon dioxide (CO2) emission. In recent times, various

hardware and software solutions are proposed that attempt to

improve energy efficiency of cloud data centers [18]. Primar-

ily, DVFS techniques are considered closer to hardware due

to voltage and frequency scaling [19]–[21]. DVFS techniques

scale voltage of the server based on the computational load on

the central processing unit (CPU). In [19], Wu et al. propose

a server level energy-efficient scheduling algorithm for the

cloud data center. Further, energy efficiency is enhanced

by increasing utilization of servers and consolidating work-

loads. Authors in [20] propose enhanced weighted round

robin (EWRR) scheduling for resource management. The

proposed technique monitors the resources used by the VMs

and consolidates the VMs to achieve higher energy efficiency.

Authors in [21] propose a game theoretic technique for

VM placement in DVFS-enabled clouds that ensures energy

efficiency, performance balancing and resource efficiency.

Ali et al. [22] propose a DVFS based framework that attempts

to provide energy efficiency while guaranteeing the agreed

QoS. Moreover, a hybrid technique addresses the issues like

load balancing, service placement, and resource allocation.

The DVFS technique provide energy efficiency but resource

utilization is not improved and there is still scope to improve

energy efficiency.

On the other hand, workload consolidation techniques are

considered as software-based solutions as they reduce energy

consumption by placing incoming workloads on minimum

possible servers [23]–[28]. This technique maximizes the

resource utilization by benefiting from the fact that the allo-

cated resources to the VM remain idle for most of the time.

However, if the VM’s resource demand increases and enough

resources are unavailable, then it would lead to service level

agreements (SLA) violations [33]. A novel energy manage-

ment technique named as soft-resource scaling is proposed

in [24], for the large-scale virtualized environments. More-

over, resources are managed at two levels by local and global

managers. A local manager deals with the energy consump-

tion of a VM residing on a single server, whereas, a global

manager deals withmultiple VMs residing on various servers.

In [25], the authors propose several techniques for coordi-

nated energy management at the server and group levels. The

allocation of VM is addressed as an integer programming

problem to reduce energy consumption and performance loss.

Notably, the authors do not consider the SLA violations under

fluctuating workloads in the above mentioned techniques.

Kusic et al. propose a resource management technique

for maximizing the service provider’s profit by reducing

energy consumption and SLA violations, via look ahead con-

trol [27]. This control is based upon sequential optimization

model and Kalman’s filter, which predicts future resource

demands of the already hosted VMs. A major drawback of

the technique is higher complexity and computation time.

This clearly indicates, simple techniques should be used

such as dynamic resource allocation that is less computation

intensive. In [28], the authors propose a workload consolida-

tion technique that dynamically allocates resources to each

VM on fluctuating user demand. A prediction mechanism

is used to predict the future needs of the VMs and subse-

quently tomanage the resources accordingly.Moreover, static

threshold mechanisms are used to identify over-utilized and

under-utilized resources. Static thresholds are not suitable for

dynamically fluctuating workloads. Therefore, mechanisms

should be devised that should be able to handle ever-changing

behaviors of workloads.

In [29], Addis et al. present a resource management tech-

nique that is based on the hierarchal framework presented

in [30]. The proposed technique uses a nonlinear optimiza-

tion approach to reduce energy and response time. More-

over, resource management activities are divided between

central and application managers. Central manager is respon-

sible of class and server partitioning, whereas, application

manager deals with activities such as load balancing, fre-

quency scaling and capacity. However, SLA violations are

not considered by the authors. In [40], the authors propose

two consolidation techniques to reduce energy consump-

tion. The first technique uses a cost function that sub-

tracts the minimum energy required to host a VM if other

VMs are also hosted on the server, from the actual energy

required to host the VM. Whereas, the second technique

checks the utilization of each server and places the VM on

the server that maximum utilization. Both the techniques

reduce the energy consumptionwithout considering the resul-

tant SLA violations. In [31], the authors present a technique

that dynamically allocates resources to running applications

based on workload prediction. A controller forecasts the

workload and manages resources on an hourly basis to reduce

the system overhead.

Horri et al. propose a workload consolidation algorithm

that provides energy efficiency and SLA-awareness [26].

The VM placement is done based on correlation between

resources utilization and VMs. Authors in [23] propose a

technique that uses the information related to topology and

racks to place the VMs. In order to achieve workload con-

solidation, incoming tasks are accommodated on minimum

servers and racks. To conserve the energy, idle routers and

respective cooling units are turned OFF. Moreover, ser-

vice level agreement (SLA) violations are avoided as all

the servers are turned ON in all the used racks. In [33],

authors use the algorithm proposed in [39] to handle the

issue of energy consumption along with SLA violations.

The consolidation algorithm is used to reduce the energy

consumption, whereas, dynamic thresholds are used to avoid

SL violations.
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In the literature, many studies have focused on minimizing

either energy consumption or SLA violations. However, there

are few studies that have considered both parameters [23],

[26], [31], [33]. The techniques proposed by the authors

of [26] and [31] handle the issue of SLAviolations, but suffers

in case of fluctuating and non-periodic workloads. Whereas,

the solution proposed in [23] keeps all the servers of the

rack active which results in increased energy consumption.

However, the technique used in [33] and [39] handles both the

issues efficiently. Therefore, we will compare the proposed

algorithms with the SLA-aware energy efficient solution pro-

posed in the aforementioned work. In addition to that, the

techniques proposed in [40] are selected for comparison and

enhancement due to their aggressive workload consolida-

tion and energy efficiency. Moreover, to handle the issue of

energy efficiency and SLA violations, we also propose two

SLA-aware energy-efficient techniques.

III. SYSTEM MODEL

The system model considered throughout this work is the

one proposed by Anton and Buyya [33] which is based on

a large data center with heterogeneous servers that can host

multiple applications. Based on the resource requirements

of running applications, heterogeneous VMs are created and

placed on available servers. Heterogeneous VMs and fluc-

tuating resource demands of applications result in dynamic

workloads. Moreover, servers and VMs hosting the work-

loads are characterized by computing power specified in

million instructions per second (MIPS), storage, memory,

and bandwidth. Further, details of the system model are

illustrated in Figure 1, there is a central manager named

a ‘‘global manager’’ that manages the overall resources of

the whole data center. Next, there is a local VM manager

at each server that performs VM resizing, migration, and

change of power mode. VM managers are also responsible

for sharing local resource information with the global man-

ager. Furthermore, live migrations are done using network

attached storage (NAS). NAS provides the central storage

which keeps the duplicated information of VM and facilitates

the migration process [36], [48]. New server gets the current

state of the VM from the NAS instead of old hosting server

of VM [37], [38].

According to a recent study [39], energy consumption

and CPU utilization has a linear relationship, and a major

proportion of the energy is consumed by the CPU. Therefore,

we have used the power model proposed by Anton et al. [33]

which is based on the utilization of CPU and is defined

by equation 1.

P (u) = k ∗ Pmax+ (1− k) ∗ Pmax ∗ u (1)

where Pmax is the maximum power, k is expressed in fraction

(i.e., 70%) and is the power consumed by the idle server, and

the CPU utilization is represented by u. However, the CPU

utilization may change due to varying workloads. There-

fore, we take the integral of the consumed power by the

server between times to and t1, to calculate the total energy

FIGURE 1. The system model.

consumption of the server, as shown in the equation 2:

E =

∫ t1

t0

P (u (t)) dt (2)

IV. COMPARISON TECHNIQUES

In this work, we have analyzed some of the selected

energy-efficient algorithms for VM placement in clouds. The

analysis of algorithms is done on different metrics that

include: (a) energy consumption, (b) Average SLA violation,

and (c) SLA violations due to virtual machine migrations.

In addition, we propose extensions of ECTC and MaxUtil

techniques to improve their performance in terms of

SLA violations. Following are the techniques selected for the

comparison purposes:

• SLA-aware Best-Fit Decreasing Algorithm (SBFD)

• Modified Best-Fit Decreasing (MBFD)

• Enhanced-Conscious Task Consolidation (ECTC)

• Maximum Utilization (MaxUtil)

A. SLA-AWARE BEST-FIT DECREASING

ALGORITHM (SBFD)

The traditional BFD algorithm performs sorting of incoming

tasks based on their CPU requirements [34]. Once the sorting

is complete, the task placement process starts. A task is

selected from the top of the list and placed on the server that is

already in use and has the maximum CPU capacity compared

to other servers. In such a case, there is no used server that can

host the task, then the server with minimum CPU capacity

is selected. The traditional BFD algorithm does not consider

the SLA violations. However, authors in [35] proposed an

SLA-aware version of the algorithm that uses an upper thresh-

old to keep some of the resources free. The free CPU capacity

is used to handle the future resource demands of the tasks.

B. MODIFIED BEST-FIT DECREASING (MBFD)

Authors in [39] propose Best-Fit decreasing based workload

consolidation technique to achieve energy efficiency. The

Modified Best-Fit decreasing (MBFD) algorithm sorts the

incoming tasks similar to the BFD algorithm. Tasks from the

top of the list are placed on the server that shows a mini-

mum change in energy consumption after hosting the VM,
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as calculated by equation 3. The energy consumption of

the server at any instance can be calculated by using

equation 1.

Pdiff = PAP − PBP (3)

where PBP is the power consumption before VM placement,

and PAP is the power after VM placement.

C. ENHANCED-CONSCIOUS TASK CONSOLIDATION (ECTC)

In ECTC, every resource is checked, and the most energy-

efficient resource is picked [40]. The ECTC uses a cost func-

tion that subtracts the energy consumption of the VMwhen it

is placed on an already used server, from the energy consump-

tion of the same VM when it is running alone. The value of

the cost function fi,j of a virtual machine (VMi) when placed

on a resource rj is computed using equation 4.

fi,j =
((

P1 ∗ Uj + Pmin
)

∗ τ0
)

− (
(

P1 ∗ Uj + Pmin
)

∗ τ1

+P1 ∗ Uj ∗ τ2 (4)

where P1 is the difference between Pmax and Pmin, Pmax is

the power when server is fully utilized, and Pmin is the power

consumed by the server when it is idle. Uj is the utilization

rate of the VMi, and τ0, τ1 and τ2 are the processing time

when VMi is executed alone, along with one VM, and with

multiple VMs, respectively.

D. MAXIMUM UTILIZATION (MAXUTIL)

According to Lee and Zomaya [40], MaxUtil and ECTC fol-

low the same steps for picking an energy-efficient server. The

only difference is their cost function. MaxUtil uses a cost

function that selects a server based on an average utilization.

The aim is to maximize the server utilization and workload

consolidation. This aids in the reduction of energy as it

reduces the number of active servers. The cost function fi,j
of MaxUtil when a virtual machine VMi is placed on a

resource rj can be defined by equation 5.

fi.j =

∑τ0
τ=1 Ui

τ0
(5)

where Ui is the resource utilization of the server under

consideration during the processing time of VMi represented

by τ0.

E. ENHANCED TECHNIQUES

Enhanced ECTC and MaxUtil techniques are proposed that

use thresholds to identify underutilized and overutilized

servers. A lower threshold identifies a server if the resources

in use are below the given utilization threshold. In such a

case, VMs hosted on the server are transferred to the other

server(s), and the offloaded server is switched to the power

saving mode. On the other hand, the upper threshold is used

to keep the check on the server’s utilization so that it should

not be overutilized, and SLA violations could be avoided.

In case of an SLA violation, a VMor set of VMs is transferred

to servers that can easily accommodate incoming VM(s)

without violating the threshold. Moreover, an efficient migra-

tion technique is used to reduce the network’s performance

degradation. Our selected technique picks a VM that needs

the least time for transfer. By selecting such a VM, the net-

work load incurred due to migrations is reduced. Details

of used threshold mechanism and migration technique are

discussed below.

Algorithm 1 Pseudo-Code for Proposed MPBFD Algorithm

Minimum Energy (MPBFD) Algorithm

Input: sList(S), vList(V), threshold;

Output: VM allocation

1) V ′s ← sort all v ∈ V in descending order based on CPU

requirement

2) S ′i ← sort all s ∈ S in ascending order based on peak

power consumption

3) for all vs ∈ V
′
s do

4) Minimum_power← maximum value

5) Hosting_server← Null

6) res_reqs← computational resources required

by VM vs
7) for all pi ∈ S

′
i where utilized resources of

pi + res_reqs < threshold do

8) Peak_Poweri←Maximumpower pi can consume

9) Overall_CPU_capi← Overall CPU capacity

of pi
10) CPU_avail_capi← CPU’s available capacity

of pi
11) if CPU_avail_capi = Overall_CPU_capi and

Hosting_server != Null

12) continue

13) end if

14) if Peak_Poweri > Minimum_power

15) Hosting_server ← pi
16) Minimum_power ← Peak_Poweri
17) end if

18) end for

19) if Hosting_server 6= Null

20) place vs on Hosting_server

21) end if

22) end for

23) Allocation = get_allocation( )

24) return Allocation

1) DYNAMIC THRESHOLD MECHANISM

Dynamic threshold mechanisms are based on the previous

threshold values. A certain function is applied to the set

of previous threshold values to get new threshold values.

We used a median absolute deviation (MAD) mechanism to

calculate the new threshold values. MAD is selected due to its

robustness and resilience against outliers [33]. Equation 6 is

used to calculate the dataset shown by X1, X2, . . . .,Xn.

MAD = mediani(
∣

∣Xi − medianj
(

Xj
)
∣

∣) (6)
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where Xi is the univariate data. After calculating MAD,

equation 7 is used to calculate the threshold (Tu) value.

Tu = 1− s.MAD (7)

where sǫR+ is a safety parameter. The higher the value of s,

the higher will be the SLA violations and vice versa.

2) MIGRATION POLICY

To handle improve the SLA at the network level, a minimum

migration time (MMT) policy is used [33]. MMT selects a

VM that will take the least time for migration. For example,

the MMT will select a VM v if it satisfies equation 8.

vǫVj|∀aǫVj,
RAMu (v)

BW j
≤
RAMu (a)

BW j
(8)

where, Vj is the VMs placed on server j, RAMu (v) represents

the RAM utilized by VM v, and BW j is the unutilized band-

width of server j.

V. PROPOSED TECHNIQUES

Keeping in view the shortcomings of ECTC and MaxUtil,

we propose two new techniques: Maximum Capacity Best-

FIT Decreasing (MCBFD) and Minimum Power Best-Fit

Decreasing (MPBFD). To achieve a better energy efficiency,

the proposed techniques use workload consolidation and

lower threshold. Moreover, the upper threshold mechanism

and MMT migration policy are used to reduce the SLA

violations at the server and network levels, respectively. The

MCBFD and MPBFD work in a similar manner; however,

the basic difference between the two algorithms is of the

server selection criteria.

A. MINIMUM POWER BFD (MPBFD)

Both the proposed techniques work like the existing MBFD

technique. However, there are two server selection criteria are

used by both of them. First, they use the server selection crite-

ria ofMBFD algorithm and alongwith that, they use their own

criteria. The MPBFD sorts the VMs and selects the VM from

the top of the list. The selected VM is placed on the server

that shows the minimum change in power consumption and

consumes minimum peak power. The complete working of

MPBFD technique is demonstrated in Figure 2. Let’s assume

that the minimum power a server can consume is zero and

maximum power is shown in the Figure 2. MPBFD selects

server 3 for the hosting of V2 because it shows minimum

change in power consumption after the hosting of VM and

also has minimum peak power consumption compared to the

other two servers. Moreover, after that server 2 is selected

because it has the second-lowest power consumption. After

the complete VM placement, server 1 is powered off.

The pseudo code of the MPBFD is shown in Algorithm 1.

Initially, lists of VMs and servers are sorted based on the

CPU requirements and peak power consumption, respec-

tively. After sorting, VMs are selected from the top of list

and placed on the servers one by one. It is preferred that

the hosting server is already being utilized and can host

the VM. The server is selected on the basis of peak power that

FIGURE 2. Working of MPBFD.

FIGURE 3. Working of MCBFD.

a server can consume. Server with least power consumption

is selected and VM is placed on it.

B. MAXIMUM CPU CAPACITY BFD (MCBFD)

MCBFD is a CPU capacity based technique that selects a

server that has the maximum CPU capacity and shows the

minimum change in power consumption. By choosing servers

with high CPU capacity, more VMs can be accommodated on

fewer servers. It reduces energy consumption and expendi-

tures incurred on it. The complete working of the MCBFD is

demonstrated in Figure 3. Consider the example, in Figure 3,

V2 is selected from the top of list and placed on server 1

because server 1 has the maximum CPU capacity. After V2,

V4 is selected from the list of VMs and placed on server 1

again. This process will continue until server 1 does not

have a CPU capacity to satisfy the demands of next VM.

Afterwards, the next server with highest CPU capacity is

selected, for instance, server 2 in the above example, and the

same process is repeated for all the VMs.

The pseudo code of the MCBFD is shown in Algorithm 2.

Step by step working of theMCBFD is similar to theMPBFD

except in the server selection criteria part. Instead of using the

minimum power consumption, the MCBFD selects a server

based on the CPU capacity.

C. COMPLEXITY ANALYSIS OF PROPOSED MPBFD AND

MCBFD ALGORITHMS

In this section, the complexity analysis of the selected and the

proposed techniques is presented.

1) TIME COMPLEXITY

Time complexity of the proposedMPBFD andMCBFD algo-

rithms is discussed in this section. In the first step, both

algorithms sort the list of x VMs in descending order with the

complexity of O(x.log(x)). Second, the server sorting is done
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Algorithm 2 Pseudo-Code for Proposed MCBFD Algorithm

Maximum Capacity (MCBFD) Algorithm

Input: sList(S), vList(V), threshold;

Output: VM allocation

1) V ′s ← sort all v ∈ V in descending order based on CPU

requirement

2) S ′i ← sort all s ∈ S in descending order based on CPU

capacity

3) for all vs ∈ V
′
s do

4) Maximum_cap← 0

5) Hosting_server← Null

6) res_reqs← computational resources required

by VM vs
7) for all pi ∈ S

′
i where utilized resources of

pi + res_reqs < threshold do

8) Overall_CPU_capi← Overall CPU capacity

of pi
9) CPU_avail_capi← CPU’s available capacity

of pi
10) if CPU_avail_capi = Overall_CPU_capi and

Hosting_server != Null

11) continue

12) end if

13) if Overall_CPU_capi > Maximum_cap

14) Hosting_server ← pi
15) Maximum_cap← Overall_CPU_capi
16) end if

17) end for

18) if Hosting_server 6= Null

19) place vs on Hosting_server

20) end if

21) end for

22) Allocation = get_allocation( )

23) return Allocation

based on a set of criteria. The time complexity of sorting y

servers is O(y.log(y)). Moreover, the outer loop will run x

times to place VMs on servers, and the inner loop will be

executed y times in a worst-case scenario and z (number of

used servers) times in the best-case scenario. In the worst-

case scenario, a used server will not be available for VM host-

ing, and a new server will be selected from unused servers.

Therefore, the best-case and worst-case time complexities

can be calculated with the help of equation 9 and equation 10,

respectively

O(
[

x (log (x)+ z)
]

+ y× log(y)) (9)

O(
[

x (log (x)+ y)
]

+ y× log(y)) (10)

2) SPACE COMPLEXITY

In the following equation, we present the space complexity

of the MCBFD and MPBFD algorithms.

O(2x + y) (11)

TABLE 1. Time and Space Complexities of selected and proposed
techniques.

where x represents the number of VMs, and y shows the

number of servers. The space complexity of both algorithm

is quite modest as the space complexity of the MCBFD

and MPBFD algorithms is very modest because two lists of

sizes x and y are used to serve VMs and servers, respectively.

Moreover, to save the VM placement on a server, a list of

size x is used that stores the server id against each VM.

Table 1 shows the complexity analysis of all the techniques.

VI. EXPERIMENTAL EVALUATION

This section provides a detailed discussion of the perfor-

mance evaluation environments, parameters and achieved

results.

A. EXPERIMENTAL SETUP

For the performance analysis, we used a simulation tool

known as CloudSim [41]. It is a java based open-source tool

that provides a cloud data center environment to implement

and evaluate energy-efficient techniques. Moreover, various

parameters are provided to evaluate the techniques, such as,

energy consumption, SLA violations, host shutdowns, and

performance degradation due to migrations. The aforesaid

parameters are used to check the performance of resource

management techniques.

For evaluation purposes, 800 heterogeneous servers with

configuration shown in Table 2 and VMs instances similar

to Amazon EC2 [42] are used. We have also used real-

world workloads of 10 days provided by PlanetLab [43]. The

data presented in the aforesaid workloads is related to the

CPU utilization of 500 servers when various number of VMs

hosted on those servers.

B. PERFORMANCE EVALUATION PARAMETERS

The proposed and selected techniques are evaluated based on

the following parameters.

1) ENERGY CONSUMPTION

Energy consumption of a data center is the amount of

energy consumed by the active servers for a time under
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TABLE 2. Server configurations.

consideration. The energymodel used for this study is already

discussed in Section 3.

2) PERFORMANCE DEGRADATION DUE

TO MIGRATIONS (PDM)

In this study, PDM is used to check the impact of migrations

that are encountered due to SLA violations. This can help

reduce migrations and performance degradation by selecting

a better migration technique. Equation 12 is used to calculate

the value of the PDM.

PDM =
1

N

N
∑

i=1

Cdi

Cri
(12)

where N are the total VMs, Cdi is the expected performance

degradation of a certain VM i andCri is the requested capacity

by that VM.

3) SLA VIOLATION (SLAV)

The proposed techniques are further evaluated on the basis of

SLA violations. SLAV is a metric proposed by authors in [20]

to keep the check on the SLA violations that are encountered

due to non-availability of resources. Equation 13 is used to

calculate the SLAV .

SLAV = SLATAH ∗ PDM (13)

where, SLATAH is the total violation time of the active server,

and PDM is already discussed in the previous section. The

PDM and SLATAH can be calculated using equations 12

and 14, respectively.

SLATAH =
1

N

N
∑

i=1

Tsi

Tai
(14)

where N are the total servers, Tsi represents the total time

when the server i remains fully utilized and Tai is the total

active time of the server.

C. RESULTS

All the techniques discussed in this study attempt to reduce

energy consumption. However, the ECTC andMaxUtil do not

TABLE 3. Details of ECTC and MaxUtil variants.

take SLA violations into account. Consequently, we modified

these techniques to introduce the SLA-awareness and further

improve the energy consumption. Therefore, in the first sub-

section, we discuss the performance of different variants of

these techniques based on the above-mentioned performance

metrics. In the second subsection, we compare our pro-

posed techniques, the MCBFD andMPBFDwith the selected

techniques.

D. PERFORMANCE EVALUATION OF ECTC AND

MAXUTIL VARIANTS

In this section, the original ECTC, MaxUtil and BFD are

compared with their enhanced versions. The ECTC consid-

ers energy consumption during the server selection process,

whereas, the selection criteria of the MaxUtil and BFD use

the CPU utilization information. Table 3 shows the details

of each technique. ECTC, MaxUtil and BFD represent the

original techniques that use random select (RS) migration

policy. The RS migration policy randomly selects VMs

from the overloaded servers for migration. The ECTC/MMT,

MaxUtil/MMT and BFD/MMT use the MMT migration pol-

icy for the selection of VMs. Whereas, EECTC, EMaxUtil

and EBFD use lower threshold mechanism along with the

MMT to further improve the energy consumption. Moreover,

SEECTC, SEMaxUtil and SEBFD are SLA-aware versions

that use the upper threshold mechanism to reduce SLA vio-

lations. The comparison of these variants along with original

techniques is presented in Figures 4, 5, and 6.

1) ENERGY CONSUMPTION

Figure 4 shows the energy consumption of the different vari-

ants of ECTC, MaxUtil and BFD techniques. Results show

that the enhanced variants perform better than the existing

ones in terms of energy consumption. The reason behind the

better energy consumption is the aggressive consolidation

and efficient resource utilization. The aggressive workload

consolidation results in less active servers and low energy
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FIGURE 4. Energy consumption of ECTC, MaxUtil and BFD variants.

FIGURE 5. Average SLA violations of ECTC, MaxUtil and BFD variants.

FIGURE 6. Performance degradation due to migrations of BFD, ECTC and
MaxUtil variants.

consumption. Therefore, results show that the EECTC is the

most energy-efficient technique, whereas, the SEBFD is the

least energy-efficient resource management technique. The

EECTC consumes 10% less energy compared to the original

ECTC, and 8% less energy compared to ECTC/MMT. More-

over, the energy consumption of EECTC is 14% less than

SLA-aware counterpart SEECTC. If most energy-efficient

and least energy-efficient techniques are compared, then it

can be noticed that EECTC uses 23% less energy compared

to SEBFD.Whereas, if the best two techniques are compared,

then the EECTC consumes 5% less energy than the EMaxUtil

and 7.5% less compared to EBFD.

TABLE 4. Details of selected and proposed techniques.

2) AVERAGE SLA VIOLATIONS

Figure 5 shows that the proposed SLA-aware extensions

of ECTC, MaxUtil and BFD outperform other variants in

terms of SLA violations. As the energy efficient versions of

the techniques perform aggressive workload consolidation,

which leads to better resource utilization. However, in case

of increase in resource demand of a VM, hosting server does

not have enough resources, which leads to non-availability

of resources and SLA violations. To handle this issue,

SLA versions use the upper threshold. If the resource demand

of any VM changes, free resources are assigned to it and

SLA violation is avoided. Therefore, it can be seen that

the SLA-aware version of BFD (SEBFD) performs best and

EECTC performs worst. The SEBFD has 13% fewer SLA

violations compared to EECTC, 12% less than EMaxUtil

and 8.5% fewer violations than the energy efficient variant,

i.e., EBFD. Moreover, SEBFD has 8% less SLA violations

than the original BFD and 6.5% fewer violations compared to

BFD/MMT. If the best techniques in terms of SLA violations

are compared, then the SEBFD has 2.5% and 4.5% less

violations than the SEMaxUtil and SEECTC, respectively.

3) PERFORMANCE DEGRADATION DUE TO MIGRATION

Figure 6 shows that the SEBFD has 47% less performance

degradation compared to EECTC, which shows the high-

est performance degradation. On the comparison of the

SLA-aware BFD (SEBFD) with its most energy-efficient

variants EBFD, it shows 40% less performance degradation.

Moreover, performance degradation of the SLA-aware BFD

is 36% less compared to the original BFD. Furthermore,

the comparison of the best two techniques shows that the

SEMaxUtil has 10% higher performance degradation com-

pared to the SEBFD.

E. pERFORMANCE eVALUATION OF mcbfd AND mpbfd

This section presents the performance analysis conducted

among the proposed and elected techniques. Details of the

techniques discussed in this section are shown in Table 4. The

energy efficient and SLA-aware versions of the ECTC and

MaxUtil are selected for the comparison with variants of the

proposed MCBFD and MPBFD techniques. Moreover, well
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FIGURE 7. Energy consumption of proposed MPBFD and MCBFD
algorithms along with selected techniques.

known SLA-aware energy efficient BFD algorithm (MBFD)

is also included for comparison.

1) ENERGY CONSUMPTION

In Figure 7, the energy consumed by the techniques under

consideration is shown. The proposed MCBFD and MPBFD

techniques perform better than other techniques. The rea-

son behind the superior performance of the proposed tech-

niques is the improved selection criteria of servers that help

achieve better workload consolidation. The MCBFD slightly

outperforms the MPBFD because it selects a server with

higher CPU capacities that enables the MCBFD to consoli-

date more workloads on fewer number of servers. However,

the MPBFD outperforms the MaxUtil and MBFD because

it selects the servers that consume the minimum power.

Whereas, the MaxUtil selects a server with higher CPU

utilization, and the MBFD places the VM on a server that

depicts a minimum hike in the energy consumption after

the VM placement. Both techniques do not consider the

overall CPU capacity and energy consumption of the servers.

Consequently, the energy-aware MCBFD (MCBFD) con-

sumes 46% lower energy compared to the MBFD algorithm.

Whereas, the MCBFD consumes 14% less energy in compar-

ison to SMCBFD.Moreover, if we compare the energy-aware

MCBFDwith the energy-aware ECTC, which is second-best,

then it is observed that MCBFD consumes 8% less energy

compared to ECTC.

2) AVERAGE SLA VIOLATIONS

Figure 8 highlights the fact that the SMCBFD and SMPBFD

beat energy-efficient techniques in terms of the average SLA

violations. The results show that the MBFD algorithm out-

performs the rest of the algorithms in terms of the average

SLA violations. TheMBFD performs well compared to other

techniques because of non-aggressive workload consolida-

tion and use of thresholds. This helps the algorithm to keep

enough free resources on each server and accommodate the

fluctuating workload. The MBFD has 9% fewer violations

compared to the next-best SLA-aware MaxUtil (SEMaxUtil)

and 10% less violations, compared to third-best SLA-aware

FIGURE 8. Average SLA violations of proposed MPBFD and MCBFD
algorithms along with selected techniques.

FIGURE 9. Performance degradation due to migrations of proposed
MPBFD and MCBFD algorithms along with selected techniques.

MPBFD (SMPBFD). When the MBFD is compared to the

worst technique, it exhibited 19% fewer violations compared

to the MCBFD.

3) PERFORMANCE DEGRADATION DUE TO MIGRATION

In Figure 9, the performance degradation of the proposed and

selected techniques is shown. The MBFD is the best tech-

nique with respect to SLA violations and performance degra-

dation. The MBFD has 20% lower performance degradation

in comparison to the SMaxUtil, which is 2nd best. Whereas,

theMBFD has 27% less degradation in comparison to 3rd best

SLA-aware MPBFD (SMPBFD). Moreover, the MBFD has

55% lower performance degradation compared to the energy-

aware MCBFD, which is worst in terms of performance

metric under consideration.

VII. CONCLUSION

In this work, we conducted a comprehensive analysis of the

selected resource allocation techniques for cloud environ-

ments. Major findings of this paper are that our proposed

techniques, MCBFD and MPBFD, outperform their previous

counterparts with respect to energy consumption, SLA viola-

tions, and performance degradation. The proposed algorithms

achieve the aforesaid goals by selecting the best servers with

regards to energy consumption and CPU capacity. More-

over, the use of lower threshold identifies the underutilized
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server that leads to decrease in energy consumption, whereas,

the upper threshold reduces the SLA violations by keeping

some of the resources free to accommodate the ever-changing

demands of VMs. Furthermore, the minimum migration time

policy along with an upper threshold reduces the performance

degradation due to migration by choosing a VM that requires

a least migration time.

The work presented in this study can be further improved

by introducing more research challenges, such as network

load, load balancing, fault tolerance, and profit maximiza-

tion. The network load consideration can further decrease the

network load and performance degradation issues. Moreover,

considering fault tolerance while performing the energy effi-

ciency can be an interesting research dimension.
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