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Abstract

Cloud computing is a novel computing paradigm, which connects plenty of computing resources and storage

resources via Internet. Cloud computing provides a number of high-quality services, such as cloud storage,

outsourcing computing, and on-demand self-service, which have been widely accepted by the public. In cloud

computing, by submitting their tasks to cloud, plenty of applications share huge computation and storage resources.

However, how to schedule resource efficiently is a big challenge in cloud computing.

In this paper, we propose a SLA-aware resource algorithm to enable cloud storage more efficiently. In our scheme, we

take advantage of the back-end node space utilization and I/O throughput comprehensively simultaneously. We

compare and contrast the existing scheduling storage policies by implementing those algorithms. The extensive tests

show that our algorithm achieves a considerable improvement in terms of violation rate and the number of used hosts.
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1 Introduction
Cloud computing is the development and fusion of the

grid computing, parallel processing, and distributed com-

puting, and it uses Internet to connect lots of computing

resources and storage resources [1]. As a novel comput-

ing paradigm, cloud computing can provide quite cheap

and dynamically scalable storage and computing services

through Internet [2–4]. With the attractive advantages,

more and more clients, including individual, compa-

nies and government employ cloud services, especially

cloud storage service. By using cloud storage service, the

resource-constraint clients can enjoy unstinted storage

spaces.

In spite of tremendous advantages of cloud storage ser-

vice, it also suffers many challenges at the same time.

The first challenge is the security of the outsourced data

in cloud [5]. Because the outsourced data might contain

some private information, which should be kept secret in

the data owner’s view. The traditional encryption is only
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a partial solution to this problem because it is hard to

perform meaningful operations over the ciphertext. The

other one is the cloud computing resource scheduling

problem. In cloud computing, the resource which client

needs is constantly hanging and unpredictable. Besides,

plenty of clients’ applications share hardware and stor-

age devices. Although the cloud service providers can

shield the underlying hardware complexity and increase

the flexibility, it still cannot control continuous change.

Therefore, cloud computing resource scheduling has been

a very rigorous challenge for cloud service providers.

Recently, some researchers have realized the problems

for virtual (service level agreement-aware, SLA-aware for

short) resource management in cloud computing [6–13].

To address the tackle SLA-aware service issue, Wada et

al. [14] designed a multi-objective optimization model in

2008, which is based on the heuristic genetic algorithm.

Theirmodel takes into account themultiple SLAs, and can

provide a series of solutions for equivalent quality simulta-

neously. However, The performance of their model could

not be predicted because their proposed model is based

on the provided heuristic genetic algorithm. In 2009, to

solve the problem of resource provision optimization,

Chaisiri et al. [15] presented an optimal virtual machine

placement algorithm. In their algorithm, they used the

stochastic integer programming to minimize the total
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overhead of resource provision. However, their algorithm

did not take into account the notion of SLA.

In 2010, Wang et al. [16] paid attention to solving the

problem of I/O performance fluctuation in cloud stor-

age, and then, they presented an automatic optimization

scheme (AOSC). In their scheme, to make the perfor-

mance more stable and predictable, they considered data

chunking, placement, and master-slave replication. In

2011, Goudarzi et al. [17] presented an algorithm based

on force-directed search to the problem of SLA-based

resource allocation in cloud computing. Besides, Lin et

al. [18] and Beloglazov et al. [19] focus on energy-aware

resource scheduling algorithm respectively.

In 2013, Gupta et al. [20] proposed an HPC-aware

scheduler to address application-aware allocation. And

then they implemented it on top of OpenStack Compute

(Nova); to be specific, they deployed n instances to phys-

ical hosts from a single pool successfully and efficiently.

In 2015, Singh and Chana [21] and Xiong and Chen [22]

also studied and improved the resource management and

placement for cloud computing. In 2016, Zheng et al.

[23] proposed a novel scheduling policy—remaining time-

based maximal (RTBM) scheduling policy. RTBM pushes

forward link scheduling from a throughput-optimal and

QoS concerning problem to a QoE-based and application-

aware one. However, all of them only focus on the point

of cloud hosting allocation, and their schemes cannot be

applied to the storage volume allocation directly. How-

ever, to the best of our knowledge, less attention was paid

to the issue of volume request distribution in cloud stor-

age, of which the algorithm takes more available space or

less allocated space as it inputs. Therefore, it is essential to

develop and design more reasonable resource scheduling

scheme to manage cloud resources and enhance system

performance.

Our contributions: In this paper, to solve the prob-

lem of resources scheduling in cloud computing, we

propose a novel SLA-aware resource scheduling algo-

rithm for block storage. The main idea of our pro-

posal is that when the scheduler requests a volume to

put decisions, we take I/O throughput as one of the

decision-making factors. And then, we make cloud stor-

age services provide guaranteed space capacity and I/O

throughput. The main contributions of this paper are as

follows:

• We present a weight algorithm, and we integrate it

with the default space filter to design an OpenStack

scheduling module-based SLA aware scheduling

algorithm. Compared with the previous protocols,

our scheme can decrease the SLA violation rate more

effectively. Besides, our scheme needs less nodes

under the same violation rate, which can save the

cost of hardware for cloud providers.

• We consider both of the storage space and the I/O

throughput as the factors of decision-making;

therefore, our scheme can provide better I/O rate for

volume requests. Furthermore, it can also minimize

the number of active hosts and save energy

consumption.

1.1 Related work

The problem of aware resource scheduling for cloud stor-

age is highly important. For the past decades, a lot of

researchers have paid attention to this problem and pro-

posed a series of solutions [24–30].

In cloud computing, to solve the problem of resource

scheduling based on SLA, Li and Guo [31] presented a

new method by using stochastic integer programming

in 2010. In their scheme, they extend Minimised Geo-

metric Buchberger Algorithm(MGBA), and combined the

Grobner bases theory to address the stochastic integer

programming firstly. Then, they presented a method for

the optimal model of SLA-based resource schedule issue.

In 2010, Prasad et al. [6] wanted to use resources effi-

ciently and presented a new method for resource alloca-

tion. In 2014, a dynamic resource management scheme

was presented by Gao et al. [32]. They aimed to solve

the problem of performance management and combined

power. They used the merits of server consolidation and

dynamic voltage to improve the efficiency in cloud data

centers.

In 2014, Yao et al. [33] aimed to solve scheduling vol-

ume create requests to back-end hosts problem. They

paid attention to the volume request scheduling poli-

cies, and they presented an OpenStack Cinder sched-

uler model-based multiple SLA-aware scheduling poli-

cies. They reduce the I/O throughput SLA violations by

combining I/O throughput weighing policy and capacity

filtering. Besides, their scheme can offer higher volume

I/O throughput performance under fewer storage nodes.

Subsequently, Yao et al. [34] proposed a Modified Vector

Best Fit Decreasing algorithm (MVBFD) to address the

volume allocation problem for cloud storage systems in

2015. They chose the proper storage node according to

multiple resources, the volume requests and so on. Their

scheme can perform better and be suitable for most cloud

platforms. Besides, they presented a trace-driven research

methodology [35].

In 2016, Babak et al. [36] studied two candidate algo-

rithms, which based on two-phase learning and feedback

learning, respectively. And then they presented a self-

learning algorithm, which applied machine learning to

help make scheduling decisions. Without knowing any

knowledge of the underlying hardware, their algorithm

can dynamically adapt according to the workload and offer

scheduling decisions efficiently. Besides, their algorithm

can increase the cloud storage resource utilization and
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reduce the cost of infrastructure. In 2017, Babak et al.

[37] proposed a block software-defined storage (BSDS)

for cloud block storage, which can be seen as a step of

designing software defined storage (SDS) system. Their

scheme was based on a self-learning black box scheduler

as introduced in [36]. Their scheme can provide quality

of service under knowing nothing about the underlying

storage hardware. Their scheme can also integrate with

OpenStack Cinder easily.

1.2 Organization

The rest of the paper is organized as follows: some prelim-

inaries are described in Section 2, and we will introduce

our scheme in detail in Section 3. The analysis of our

scheme is discussed in Section 4, including standards for

evaluating and testing, experimental design, and simula-

tion results. Finally, we give a brief conclusion of prior art

in Section 5.

2 Preliminaries

2.1 OpenStack block storage scheduling

OpenStack is a very popular open-source cloud platform

and has attracted lots of attention from industry and

academia. Nowadays, over 200 companies join in devel-

oping the open-source community of the OpenStack.

With the development of the OpenStack platform, it has

provided plenty of different services. In this paper, we

focus on Cinder which is used for block storage. It pro-

vides an infrastructure service for managing block stor-

age devices (e.g., volume). Besides, it also provides an

API, which can be used for requesting and customizing

these storage resources for end clients. Various back-end

storage providers connect to Cinder and provide virtual

storage.

Three components are involved in Cinder: cinder-

api, cinder-volume, and cinder-scheduler. The purpose

of these components is to manage volumes and snap-

shots. Among these three components, the major critical

component is cinder-scheduler, which includes series of

scheduling strategies. When Cinder receives a volume

request, such as creating a volume, according to the state

of each storage node and the parameter of the request,

Cinder-scheduler selects themost suitable storage node to

response this request. Filter scheduling is always used to

manage the storage, the main process two parts as shown

in Fig. 1.

• Filtering. The filtering scheduler maintains a list of

storage hosts. After receiving the volume request, a

suitable host should be selected to provide enough

available storage space for the request.
• Weight sorting. After the filtering step, the selected

host can satisfy the volume request. Therefore, the

Fig. 1 The work process of filter scheduling
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scheduler calculates the corresponding weight firstly,

then compares and sorts the weight on the basis of

the parameter of volume request and the state of

storage host.

In the released version OpenStack, a series of schedul-

ing strategies have been applied in it. The default weight

strategies are as follows: (1) the available space strategy,

the essence of it is to select the host with maximum avail-

able space as the best storage node; (2) the allocated space

strategy, its essence is to select the host with minimum

allocated space as the best storage node; and (3) the ran-

dom matching strategy, which means to be matched at

random from the list of candidate hosts.

Based on the aforementioned process, the scheduler

process largely depends on the weight sorting. After a

new volume is created and allocated to a storage node,

all operations of the volume can affect the storage node

and the state of the whole cloud storage system. Thus, the

decision made by the scheduler affects the performance

of the whole cloud storage system significantly. However,

not all of the system architects and the cloud computing

providers can realize the importance of proper resource

scheduling algorithm in the cloud storage system. Most

of them focus on the computing resource scheduling

optimization, such as the virtual machine scheduling algo-

rithm. This problem is more obvious in OpenStack.

To the best of our knowledge, although there are about

30 kinds of scheduling strategies used to the Nova com-

puting project, only 6 kinds of strategies are applied to the

Cinder project. Therefore, there are still many defects in

the existing Cinder scheduling algorithm. One of the main

defects is that the I/O throughput has not been paid atten-

tion in most strategies. This defect could cause a poor

cloud storage service performance; to be specific, it can-

not predict allocated volumes and whether its additional

attributes meet end-to-end SLAs. Therefore, we add I/O

throughput to schedule strategies in our algorithm, and

then, we improve the management performance of I/O

throughput.

3 SLA-aware scheduling algorithm
We aim to reach two goals in our work: the first one

is to make the cloud storage system implement the I/O

throughput management, and the other one is to use the

improved scheduling to maximize I/O throughput SLA

utilization of each storage node. In terms of cloud storage

services, I/O throughput SLA refers to the I/O throughput

of user volume, which is greater than or equal to a speci-

fied IOPS at least 99.9% time(Input/output operands per

second). The core mechanism of our algorithm is that the

IOPS parameter should be considered when the sched-

uler decides to place a new volume. The default scheduling

algorithm continuously monitors the states of the hosts,

including the states of available space and allocated space.

The improved scheduling algorithm also monitors the

states of available IOPS and allocated IOPS.
In the modified OpenStack, additional attributes should

be added into the Cinder scheduling algorithm, such as

the host IOPS, the host available IOPS, the volume IOPS,

and the volume available IOPS. The volume available

IOPS means that a new volume can obtain IOPS as being

assigned to a storage node. By adding the IOPS attribute

of I/O, the volume allocation algorithm is no longer con-

fined to storage space and also depends on the volume and

the volume IOPS, where the volume has been allocated to

the back-end storage for services, and the volume IOPS

will be allocated to the back-end storage with no service.

Therefore, the improved scheduling algorithm can gain

the capability of I/O performance management, so that

cloud providers can provide a better I/O throughput SLA

for users. In the step of weight sorting, we bind the IOPS

attribute and investigate the performance of Cinder filter

scheduler, as described below.

• Available space filtering: selecting a suitable storage

node which can provide enough available space for a

volume request.
• I/O throughput weight sorting: according to the

qualified host list of available space, selecting a

suitable available IOPS to satisfy the volume request.

Besides, the selected storage node with maximum

space utilization is the best node.

3.1 Available space filtering

Based on the existing space filtering algorithm, we select

the suitable storage node from the host list, and to guar-

antee the SLA, the weight sorting algorithm is applied to

the host list after being filtered. We give an example of

the storage node filtering in Fig. 2, which contains three

storage nodes:

• Host 1. The host 1 with available space of 600 GB,

available I/O throughput of 600 IOPS.
• Host 2. The host 2 with available space of 800 GB,

available I/O throughput of 400 IOPS
• Host 3. The host 3 with available space of 500 GB,

available I/O throughput of 550 IOPS.

Then when a volume request requires to create a 300-

GB volume with 500 IOPS, the list still includes the hosts

after being filtered since the hosts in the experiments 1,

2, and 3 all have enough available space. If the list is

empty, it means that a SLA violation occurs, and then, the

cloud storage providers should add new storage devices or

storage nodes.

3.2 I/O throughput weight sorting

The I/O throughput weight sorting algorithm employs

the default filtering algorithm(available space scheduling
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Fig. 2 Available space filtering

algorithm). Besides, the I/O throughput attribute is con-

sidered in the step of weight sorting. Figure 3 shows the

process of the weight sorting in our algorithm.We assume

that the examples in Figs. 2 and 3 are the same because

the weight coding algorithm is improved on the basis of

the classic 0 − 1 Knapsack Problem. The weight sorting

algorithm designed in our scheme as below:

max
Sv · Vk

Sk − Ask

· 100,∀k ∈ K

Vk ≤ Tk − Atk , k ∈ K ,Vk ∈ {0, 1}

where the K represents a collection of storage nodes, and

V is a new volume request, namely, Vk ∈ {0, 1} means

that if the newly created volume is allocated to the storage

node K, Vk = 1 or else Vk = 0. S represents the space

size, Sk is the total size of the storage node K, and Sv is

the storage space size of volume request. T represents the

IOPS throughput, Tk is the total IOPS throughput of the

storage node K, and Tv is the IOPS throughput of volume

request. Ask is the allocated space size of the storage node

K, and Atk is the allocated IOPS throughput of the storage

node K.

According to the above weight sorting algorithm, the

storage nodes 1# and 3# conform to the two constrained

conditions. The host 3# is the best node, followed by host

1#, because we need to select the host with maximum

space utilization. That can not only make the available

Fig. 3 I/O throughput weight sorting



Wang et al. EURASIP Journal onWireless Communications and Networking          (2020) 2020:6 Page 6 of 10

IOPS of volume satisfies SLA requirements, but also make

the space utilization of storage node reach its maximum

value. After the available space is filtered, if the host list

is not empty, and the above constrained conditions are

unsatisfied, then the volume request waits until there are

enough resources for its use. And it also means that a

SLA violation occurs. In this case, it needs cloud storage

providers to add new storage devices or storage hosts.

4 Performance evaluation
This part is mainly to evaluate the simulation results of

the cinder scheduling algorithm in OpenStack platform.

Firstly, we deploy a cinder storage system. Because of the

complexity of the cloud storage system, it is rather difficult

to repeat experiments on our cinder storage system. As a

result, we implement our repeated experiments in a sim-

ulation environment. Specifically, we use JAVA to develop

a simulator, which is based on the filtering algorithm

of cinder and weighting algorithm model in OpenStack

platform. Then, we repeat the experiments on it.

We mainly implement two test evaluations. In the first

part, the mainly evaluation results which are of the com-

bination between filtering algorithm and weighting algo-

rithm are shown in Table 1. In the second part, the main

evaluation results of the combination between filtering

algorithm and weighting algorithm are shown in Table 2,

where the largest available IOPS sorting algorithm is a

kind of SLA awareness scheduling algorithm in [33].

4.1 Standards for evaluating and testing

In order to compare different weight algorithms and their

performances effectively, we use SLA violation rate as the

test and evaluation standards. The host list is empty after

the strategies are filtered, or when the available IOPS of

volume is less than the requested. At this moment, the

SLA violation occurs. The SLA violation is defined as

dividing the total of SLA violations in the experimental

sampling by the total of experimental sampling [33].

4.2 Experimental design

To deploy solutions, we select the virtual Cinder block

storage [38], which is recommended by Rackspace. There

are 8 storage nodes in the system, each of which contains a

CPU core, 8 GB memory, and a RAID disk array. The disk

array consists of 12 hard disks (600 GB each 1500 rpm).

Table 1 Combination of filtering algorithm and weighting

algorithm

Algorithm no. Filtering algorithm Weight sequencing

1 Available capacity Available capacity

2 Available capacity Random selection

3 Available capacity I/O throughput

4 Available capacity Allocated capacity

Table 2 Combination of filtering algorithm and weighting

algorithm

Algorithm no. Filtering algorithm Weight sequencing

5 Available capacity Available capacity

6 Available capacity Max available IOPS

7 Available capacity I/O Throughput

Every single disk can reach 175 IPOS when the file block

size is 8 kB with 70% reading and 30% writing. According

to the calculation formula of RAID IOPS, we can con-

clude that the maximum IOPS of each storage node can

be up to 1948. Our work is mainly to deal with 9000 vol-

ume requests on the basis. Among them, each volume

request includes arrival time, deadline, volume size, and

IOPS parameters set by SLA. To perform the experimen-

tal operation more simply, we select Poisson distribution

to state the two incidents of arrival and deadline. The

arrival time and the deadline of volume requests should

conform to the Poisson distributions with λ = 20min and

λ = 600min respectively. The volume size is selected ran-

domly from 100, 500, to 1000 GB. To improve the veracity,

we repeat each experiment more than 30 trials.

4.3 Simulation results

We set the specified value of SLA to 450 IOPS and oper-

ate the strategies from 1# to 4# at a SLA violation rate

for more than 30 times, and the results are shown in

Fig. 4. It is obvious that the random selection sorting per-

forms worst, the available space sorting and the allocated

space sorting perform better, and I/O throughput behaves

best. Specifically, the SLA violation rates of the available

space sorting and the allocated space sorting both are

close to 24%, and the random selection sorting is about

45%. However, the SLA violation rate of the presented I/O

throughput sorting is about 2%. It means that about 98%

of volume requests can use IOPS, which is greater than or

equal to 450 IOPS set by SLA.

Figure 5 shows different violation rates of weight algo-

rithm under the same conditions with IOPS from 200 to

600. When the IOPS is between 200 and 500, the SLA vio-

lation rate of the I/O throughput sorting is much better

than those of other weight sorting strategies. When the

number of the IOPS is between 500 and 600, although its

violation rate increases, something has to do with the real-

ization process. To satisfy the volume request of IOPS,

the volume request will wait for all the time until there

is appropriate host providing enough available IOPS. The

SLA violation rate will increase if no new storage nodes

added. Therefore, in weight sorting strategies used, the

I/O weight sorting algorithm can provide better manage-

ment performance.

To load volume allocated requests with more storage

nodes, we can change the simulation hardware by increas-
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Fig. 4 Different violation rates in available space filtering strategies

ing the storage nodes. We set the SLA volume IOPS as

450 and test the results of different counts of nodes on

the SLA violation rate. As shown in Fig. 6, when the SLA

violation rate is about 2%, the I/O throughput weight sort-

ing algorithm’s storage nodes is 8; however, the Cinder

available and allocated space scheduling algorithm’s stor-

age nodes reach to 20. Besides, when the random selection

sorting scheduling algorithm’s storage nodes reach to 24,

the SLA violation rate only reaches 3.5%. In other words,

our algorithm needs less storage nodes under the same

I/O performance management.

We combine the algorithms of 5# − 7#, and the num-

ber of average of used hosts shown in Fig. 7. From the

Fig. 7, we can know that the maximum number of hosts

is 8, and the number of used hosts is increasing with the

volume requests. Besides, when the number of request

Fig. 5 Different SLA violation rates of different weight strategies with different values
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Fig. 6 Violation rates of different weight sorting strategies with different counts of nodes

reaches 5, the number of hosts used in our algorithm is

less than that in themaximum available IOPS sorting algo-

rithm and the default maximum space available sorting

algorithms which are raised in [33]. Furthermore, when

the number of volume requests comes to 30, 8 hosts used

in our presented algorithm, which is same with the other

two algorithms. That is, the number of volume requests

have gradually reached the maximum which the physi-

cal host can handle. Through the contrast experiment,

we can get that our proposed algorithm is better than

the default scheduling algorithm in OpenStack and the

algorithm presented in [33] in the using hosts.

Fig. 7 Number of average used hosts of different weight sorting algorithm with different counts of nodes
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5 Conclusion
In this paper, we investigate the Cinder weight algorithm

in OpenStack, which is a SLA-aware scheduling algorithm

based on the OpenStack Cinder scheduling module. The

implementations show that the combination of the weight

algorithm with the default space filter used in OpenStack,

as presented in this paper, can effectively decrease the

SLA violation rate. That means, under the condition of the

same violation rate, less nodes are used in our presented

algorithm. The expenses of cloud storage providers can

also be reduced. However, a drawback of our weight algo-

rithm is that it cannot adjust the number of cloud host

node dynamically. Therefore, in the future work, we plan

to design a dynamically scalable weight algorithm, which

dynamically adjusts the number of cloud storage nodes

according to demands.
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