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Abstract—As most on-line services are now hosted on the 

cloud, customers are requesting Service Level Agreements 
(SLAs) in order to use cloud services with acceptable Quality of 
Service. Nonetheless, the cloud is based on provisioning resources 
on demand (known as cloud elasticity). Hence, it is of primary 
importance to design multi-tenant cloud storage solutions that 
can provide storage services with guarantees equivalent or close 
to bare-metal deployments. 

In this paper, we address the problem of scheduling volume 
create requests to backend hosts. We design and implement SLA-
aware scheduling policies based on the distributed OpenStack 
scheduling model. We compare and contrast the existing 
scheduling storage policies by performing a simulation 
experiment. We demonstrate that a new SLA-aware scheduling 
policy that takes into account both the available capacity but also 
the I/O throughput of the backend nodes is needed to offer 
quality storage services. Our SLA-aware scheduling policy is able 
to achieve more than 20% improvement in the rate of SLA 
violations. Furthermore, it requires fewer storage nodes (hence 
lower capital expenses) and can provide higher volume I/O 
throughput performance compared to the default policies. 
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I. INTRODUCTION  
Cloud computing has gained significant attention in both 

academia and industry. Most major IT companies are either 
investing resources into the cloud computing area or buying 
cloud services from major cloud service providers. Cloud 
infrastructure, or Infrastructure as a Service (IaaS), challenges 
the traditional methods of high performance computing and 
datacenter management. It offers high flexibility, scalability 
and cost-effectiveness and a growing number of customers are 
moving their IT services to cloud platforms [1].   

With the popularity of cloud computing, a variety of 
challenges have appeared, such as performance prediction and 
management [2]. More specifically, in today’s cloud storage 
field, many IaaS platforms such as OpenStack [3] and 
Eucalyptus [4] lack an effective performance-oriented resource 
scheduling policy to control the system performance. On the 
other hand, SLAs are one of the major considerations for every 
buyer of cloud computing services. The question often asked is 
how many nines of availability or what is the maximum delay a 
given provider will guarantee. For some sensitive applications, 
a minimum of three nines (99.9%) of availability is required, 
whereas for others, low-latency services are more important. 
The inherently dynamic nature of a cloud offering, combined 
with the fact that resources change dynamically, makes it 

difficult to define a meaningful SLA for various cloud 
computing services. As a consequence, only a few of the cloud 
storage providers are offering service SLAs on I/O throughput 
performance. Amazon Elastic Block Store is the only 
commercial cloud provider who provides a specific level of I/O 
performance by creating a provisioned I/O per second (IOPS) 
volume [5]. This service is able to deliver no less than 90% of 
expected IOPS performance in 99.9% of the time. In order to 
increase the market share in the highly competitive cloud 
market, cloud providers must offer higher and differentiated 
performance SLAs in terms of availability, capacity and I/O 
throughput. 

From the research perspective, only a few studies have 
looked in the issue of SLA-aware virtual resource management 
on the cloud [6] [7] [8], and from the perspective of allocating 
VMs. Nonetheless, due to the essential difference in operation 
mechanisms, these research achievements are not directly 
applicable to the storage volume allocation problem. More 
recently, some studies looked into an energy-aware resource 
scheduling algorithm [9] [10]. In the context of SLA-based or 
SLA-aware resource scheduling, Goudarzi et al. [11] presented 
an SLA-based multi-dimension resource allocation algorithm 
for multi-tier applications in cloud computing environments. 
Wang et al. [12] proposed an automatic optimization schema 
that utilizes data chunking, placement and replication to 
achieve better I/O performance. However, to our knowledge, 
there has not been any work that tackled the volume request 
allocation problem in cloud block storage systems using more 
than the available capacity as an input to the allocation 
algorithm.   

The problem addressed in this paper is the design of a 
scheduling policy to effectively utilize storage resources and 
manage the performance in a cloud infrastructure platform so 
that cloud storage services can be offered with guaranteed 
capacity and I/O throughput. In cloud storage, there are three 
main categories on how the data can be stored: (a) ephemeral 
storage: data are stored on the provisioned cloud VMs and are 
lost after reboot, or the release of that VM; (b) block storage: 
data is stored in the persistent storage that is attached, and it is 
accessible and can be deleted from the VM; (c) object storage: 
data that is accessed from a large number of clients that 
demands scalable access, generally through a REST API.  

In this paper, we propose an SLA-aware resource 
scheduling policy for cloud block storage. The key idea is 
based on the fact that I/O throughput should be taken into 
account when the scheduler is making a volume request  



 

placement decision. As the beneficiaries of such an approach, 
the cloud storage providers will be able to provide higher I/O 
throughput performance SLA to customers with fewer storage 
nodes. 

The reminder of our paper is organized as follows: In 
Section II, we briefly describe the current scheduling algorithm 
in the OpenStack block storage service and its corresponding 
weaknesses. In Section III, we describe the proposed 
scheduling algorithm design. In Section IV, we present our 
experimental methodology including evaluation metric and 
simulator design. Finally, in Section V we conclude our work 
and present potential extensions.   

II. OPENSTACK CINDER SCHEDULING 
OpenStack is a global collaboration of developers and 

cloud computing technologists producing a ubiquitous open 
source cloud computing platform for public and private clouds. 
The open source community and more than 200 companies 
have joined the development of OpenStack. OpenStack 
consists of multiple components focusing on different cloud 
services so that user is able to customize the infrastructure 
based on their individual needs. The core services in 
OpenStack are identity (Keystone), compute (Nova), network 
(Neutron), Glance for a repository of VM images, and storage 
(Cinder for block storage, Swift for object storage).  

Our work focuses on the Cinder service [13], the block 
storage service of OpenStack. Cinder provides an infrastructure 
for managing block storage devices (i.e. volume) and provides 
end users with a self-service API to request and consume those 
resources. Various storage backends can be connected to 
Cinder to support storage virtualization. Cinder includes three 
components: cinder-api, cinder-volume and cinder-scheduler 
to enable management of volumes and snapshots. The key 
component is the cinder-scheduler, which encompasses several 
scheduling policies. When Cinder receives a volume request 
such as create, the cinder-scheduler selects a storage node as 
the best candidate to serve the request based on each node’s 
status and request parameters. The workflow of the filter 
scheduler is shown in Fig.1 and consists of two steps: 

i. Filtering. Scheduler maintains a list of storage hosts 
with metadata. During this step, some hosts which are 
unable to provide enough capability to meet the need of 
a volume request are filtered out from the list. For 

example, if a 10GB volume is requested, then all hosts 
who have less than 10GB available space will be 
excluded from the candidate list. 

ii. Weighting. After the filtering step, all hosts on the list 
are capable to serve the request. The scheduler 
calculates the cost, i.e. weight, of each host by 
comparing the hosts characteristics and the request 
characteristics. Then hosts on the list are sorted based on 
their weight. The host which has the least weight will be 
chosen as the best candidate. 
 

Several weighting policies have been implemented for the 
filter scheduler in the Havana release of OpenStack in October 
2013. The default weighing policy is the available capacity 
policy, in which hosts are sorted based on their available 
capacity; the host with the largest available capacity will be the 
chosen one to provision. Allocated space policy is an optional 
policy in which hosts are selected based on the lowest allocated 
space. If the total capacity of each host is the same, then the 
allocated space policy will behave as the capacity policy. 
Finally, the Chance policy randomly picks one host from list.   

  Based on the workflow model, the performance of the 
scheduler is heavily dependent upon the weighing step. After a 
new volume is placed on a storage node, all operations on that 
volume will affect the state of the host node and even changes 
the state of whole cloud storage system. Therefore, the decision 
made by the scheduler will prominently influence the 
performance of the storage system. However, not many system 
designers and cloud providers have realized the importance of 
proper resource scheduling in cloud storage systems. Most of 
them have focused on the scheduling optimization on 
computing resources, such as the virtual machine placement 
problem. This is also obvious in the OpenStack’s code base: 30 
scheduling filtering policies have been implemented for the 
Nova compute platform, but only 6 policies exist in the Cinder 
block storage service. Furthermore, there are a number of 
limitations on the current scheduling strategies in Cinder. The 
key disadvantage is that none of the existing policies is I/O 
throughput aware. In other words, the scheduler may not select 
hosts that offer higher I/O throughput, even if they have the 
same available capacities. This may result in poor performance 
for a cloud storage service, unpredictability of the currently 
allocated volumes, and the extra allocation of resources to 
satisfy the end-to-end SLAs. In this paper, the I/O throughput 
performance of current policies is investigated and our results 
show that none of them is able to provide satisfied I/O 
performance management ability.      

III. SLA-AWARE SCHEDULING 
The main objectives of our work are (i) to enable cloud 

storage systems with I/O performance management (ii) to 
minimize the I/O throughput SLA violations using effective 
scheduling policies. I/O throughput SLA in cloud storage 
service is defined as the I/O throughput of user’s volume is 
higher or equal to a specific number of IO operations per 
second (IOPS) in at least 99.9% of time. The core mechanism 
of our strategies takes into account the I/O throughput property, 
when the scheduler makes a new volume placement decision. 

Figure 1. Workflow of Filter Scheduler 
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Figure 2. I/O throughput filtering 

The scheduler continuously monitors the state of all storage 
hosts, including available capacity and allocated capacity. 

In the OpenStack’s scheduling implementation, the 
following properties are added (1) host I/O throughput, (2) 
volume I/O throughput and (3) available volume I/O 
throughput. Available volume I/O throughput is defined as the 
I/O throughput a new volume will get after it has been created 
on a specific host. By taking advantage of these properties, 
volume placement decision is not just based on the storage 
capacity, but also depends on the I/O throughput of the both 
the volume in service and the volumes that are going to be 
allocated to the backends. Hence, the scheduler gains the 
ability to manage the I/O performance and the cloud provider 
is able to offer an I/O throughput SLA to the customer. We 
study the performance of the OpenStack Cinder filter 
scheduling by allocating the I/O throughput properties at the 
filtering and the weighting steps. More specifically:  

• I/O throughput filtering. After filtering out hosts without 
sufficient capacity to serve volume request, the 
scheduler also filters out the hosts whose available 
volume I/O throughput is lower than the SLA IOPS. 

• I/O throughput weighing. After sorting the eligible hosts 
according to their available volume I/O throughput, the 
host with the highest I/O throughput will be chosen as 
best candidate to place the volume request. 

A. I/O throughput filtering 
The purpose of taking into account the I/O throughput at 

the filtering stage is to minimize the I/O SLA violations 
because no matter what weighting policy will be applied on the 
filtered list, the final decision is SLA guaranteed. In Fig. 2, an 
example is depicted. Assuming a request to create a 200GB 
volume with 450 IOPS SLA, the scheduler first checks the 
available capacity of each host. The host state shows that the 
available space on all hosts is large enough to serve this 
request. However, host #3 has to be filtered out because it can 
only provide 400 IOPS for this new volume. Host #1 and #2 
pass the filtering step and ready for weighing since their 
available I/O speed is higher than the SLA requirement.  

If the I/O throughput filter returns an empty host list, which 
means no host can serve the volume request with the SLA 
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Figure 3. I/O throughput weighing 

guaranteed, the scheduler will try a second filtering round 
using available capacity filtering policy. If some hosts have 
sufficient capacity, then the volume request will be served 
according to the result of available capacity filtering algorithm. 
The reason we design this way is because serving a request is 
always better than rejecting it, although I/O is not fully 
guaranteed. However, an SLA violation will happen as long as 
I/O throughput filter return an empty list.  

B. I/O throughput weighing     
I/O throughput weighing policy utilizes the default 

available capacity filter, but considers the I/O throughput 
property at the weighing step. Fig. 3 shows the weighing 
procedure. The host with the highest available volume speed 
will be chosen as the best fit. Assuming the same volume 
request, as in the previous example, all hosts will pass the 
capacity filter because there is enough available storage space 
in all nodes. Then, the I/O throughput weighing algorithm sorts 
hosts in descending order by their available volume I/O 
throughput. In the end, host #2 with 550 IOPS available 
volume I/O throughput wins the game although it does not 
have the largest available capacity. Host #3 which is a potential 
SLA violation choice is sorted to the end of list.  In general, the 
top host is able to guarantee the I/O throughput SLA. If the 
available volume I/O throughput of the top host is lower than 
SLA requirement, then all active volumes are violating the I/O 
throughput SLA. In this case, the cloud provider may need to 
add an extra storage node since the current hardware setup is 
unable to support the pre-defined SLA. 

In addition to the above, we are also proposing two 
modified policies based on the I/O throughput weighting 
policies. Both of them are taking into account the available 
capacity and I/O throughput at the weighing step. We call the 
first policy ThrThenCap, which stands for I/O throughput then 
capacity. The scheduler performs two weighing steps before a 
decision is made. After the first I/O throughput weighing step, 
several hosts on the sorted list may have the same available 
volume I/O throughput. These hosts are sorted again based on 
the available capacity. The winner of this method will have the 
highest available volume I/O throughput as well as the largest 
available capacity.  

The second policy we introduce is the ThrAndCap, which 
stands for I/O throughput and capacity. It is a weighted sum of 



the available I/O and the available capacity of the host. The 
equation of calculating the host weight (W) is as follows: 

      𝑊 = !"#$%#&%'  !/!
!"#$  !"#$%&$'!

+ !"#$%#&%'  !"#$%
!"#$  !"!#$  !"#"!$%&

∗ 100        (1) 

The host with the highest weight will be selected to create a 
new volume. Only one weighing step is performed on this 
algorithm. However, this approach may not always return the 
most ideal candidate when considering I/O throughput. The 
reason is that when the available volume I/O throughput of all 
hosts are very close, and there is a host whose available space 
is significantly higher than other hosts, then this host will have 
the highest weight according to equation (1). In this case, the 
available capacity property is given a higher priority.  

IV. PERFORMANCE EVALUATION 
In this section, we present the performance results obtained 

from the evaluation of OpenStack’s Cinder scheduler policies. 
Due to the complexity of the cloud storage system and the fact 
that it is hard to perform multiple iterations of our experiments 
in our Cinder storage deployment, we chose to use a simulation 
environment to achieve repeatability of our experiments. We 
developed a simulator in Java based on the Cinder scheduling 
model and implemented the corresponding scheduling policies. 
The combination of different filtering and weighing scheduling 
policies tested in this evaluation are shown in Table 1. 

TABLE I.  POLICY COMBINATION  

Policy Number Filtering Policy Weighing Policy 
1 Capacity Available Capacity 
2 Capacity Chance 
3 Capacity I/O throughput 
4 Capacity ThrThenCap 
5 Capacity ThrAndCap 
6 I/O throughput + Capacity  Available Capacity 
7 I/O throughput + Capacity Chance 
8 I/O throughput + Capacity I/O throughput 
9 I/O throughput + Capacity ThrThenCap 

10 I/O throughput + Capacity ThrAndCap 
 

A. Performance Metrics 
In order to compare the efficiency of different scheduling 

policies and evaluate their corresponding performance, we use 
two metrics. The first metric is the SLA violation percentage. 
When a volume performs I/O operations and the I/O 
throughput is lower than the SLA threshold, an SLA violation 
occurs. The SLA violation percentage is defined as the total 
number of SLA violation events relatively to the total number 
of sampled simulation time. The second metric is the volume 
I/O throughput. On the agreement of complying with the SLA 
performance, customers always expect higher volume speed 
than they will have. An intelligent scheduling algorithm should 
be able to demonstrate outstanding management ability in 
terms of both these metrics.  

B. Experiment Design 
We choose the virtual Cinder block storage deployment 

proposed by Rackspace [14]. There are 8 storage nodes in the 
system, each node is comprised of 1 CPU core, 8 GB memory 
and 12 * 600GB 15K Serial Attached SCSI (SAS) in a 
Redundant Array of Independent Disk (RAID) 1+0. A single 

 
Figure 4. Percentage of SLA violation for different weighing policies with 

available capacity filtering policy 

 
Figure 5. Percentage of SLA violation for different weighing policies with 

different I/O throughput SLA  

hard disk is able to achieve 190 IOPS throughput with 8k block 
size when I/O operation is 70% read and 30% write. This load 
ratio is the most common ratio in cloud storage systems [15] 
[16]. We use a RAID IOPS calculator [16] to compute the 
maximum I/O bandwidth of a storage node to be 1948 IOPS. 
The test workload consists of 5000 volume requests. Each 
volume request contains parameters such as arrival time, 
expiration time, volume size and I/O throughput SLA. Arrival 
time and expiration time is modeled according to a Poisson 
distribution with the mean value of 20 and 600 minutes, 
respectively. We choose Poisson distribution for simplicity, as 
other distributions do not affect the core outcome of our results. 
The simulation simulates 120000 minutes operation and the 
data are sampled between 1000 to 9000 minutes to achieve 
steady state performance. Volume sizes are randomly selected 
from 100GB, 500GB or 1TB. Each experiment has been run 10 
times. 

C. Simulation Results 
Fig. 4 presents the number of SLA violations of the policies 
#1-#5 over 10 simulation runs. For our first  



 
Figure 6. Percentage of SLA violations for different weighing policies with 

capacity and I/O throughput filtering policy 

 
Figure 7. Percentage of SLA violations with different number of nodes 

experiment, we set the I/O throughput SLA violation threshold 
to 450 IOPS. Note that the first two policies are the ones 
currently implemented in Cinder scheduler. Evidently the 
Capacity and Chance weighting policies provide the worst 
performance. The first one may result in 23% of SLA 
violations, whereas the second one in 30%. On the contrary, 
our I/O throughput weighting policy (#3 in Table 1) provides 
only 2.01% of SLA violations. In other words, nearly 98% of 
the time the volumes will receive more than 450 IOPS by the 
block storage hosts. Due to the weakness we discussed in 
Section III-B, available capacity plus I/O throughput strategy 
still have 20.29% violation rate. The mean and the confidence 
intervals of Fig.4 are also shown in Table II. However, the two 
stage weighing policy has SLA violations close to the I/O 
throughput policy (around 2%).  

TABLE II.  THE MEAN OF SLA VIOLATIONS  

Policy Number Mean  95% CI  
1 23.29% (22.14% 24.44%) 
2 30% (29.10% 30.90%) 
3 2.01% (1.33% 2.69%) 
4 20.29% (19.06% 21.52%) 
5 2% (0.93% 3.07%) 

 
Figure 8. Volume speed performance of different policies 

In Fig.5, we performed the same experiment with a variable 
number of SLA violation threshold. The threshold is varied 
from 100-550. We did not vary for higher numbers because 
changes to the simulated hardware setup would have been 
required to achieve predictable SLAs. One may observe that 
the I/O Throughput weighting policy can provide better 
performance across the whole range of the IOPS values. Hence, 
we conclude that to provide the best SLA performance, I/O 
throughput policy should be applied at the weighing step. 

We then proceed with a different strategy. We now modify 
the filtering policies. Fig.6 presents policies #6 - #10 from 
Table 1. This graph reveals that such a change would not affect 
the number of SLA violations, which would be constant and 
around 5%. However, none of these combinations can achieve 
lower SLA violations rate than policy #3 (2%). Hence, taking 
into account I/O throughput at the weighting step is necessary 
to improve the SLA performance instead of the I/O throughput 
filtering.   

We also modify the simulated hardware setup. We increase  
the number of nodes, such that the load is distributed across 
more storage nodes. We set again the limit for the SLA equal 
to 450 IOPS, and investigate how the number of nodes affect 
the SLA violations. In Fig.7, we observe that the throughput 
policy that we proposed requires eight storage  nodes to 
decrease the SLA violation to less than 0.5%. On the other 
hand, both the default scheduling policies in Cinder require 
more than 20 nodes to achieve such a performance. This shows 
that the proposed scheduling policy can decrease the capital 
expenses for storage nodes to almost half of what it would be if 
the default policies of Cinder were used. 

Finally, we also look into the volume speed performance. 
Fig. 8 shows a box plot of the volume speed. All policies have 
the same median value. Not surprisingly, the chance weighing 
policy has the largest variance because the decision is made 
randomly. The distribution of the available capacity and 
throughput policy is very close. Nevertheless, I/O throughput 
still achieves higher minimum value and there is no outlier. We 
may conclude that I/O throughput weighing policy have better 
volume speed performance than the default available capacity 
policy.     



V. CONCLUSION 
In this paper, we focused on volume request scheduling 

policies that can reduce the I/O throughput SLA violations in 
cloud storage systems. To achieve this goal, we proposed 
multiple SLA-aware scheduling policies based on the 
OpenStack Cinder scheduler model. Our simulation results 
indicate that the combination of capacity filtering and I/O 
throughput weighing policy reduces the I/O throughput SLA 
violation rate. Furthermore, the volume speed increases and the 
number of nodes to satisfy the SLA are decreased. Overall, the 
proposed policies can significantly reduce the capital 
expenditures for the cloud storage providers.  

As a future work, we plan to contribute the cloud storage 
scheduling algorithms code base to the OpenStack community. 
At the same time, we are deploying our own private cloud in 
order to perform experiments on bare metal servers using 
Commercial Off-The-Shelf (COTS) hardware. 
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