
 Open access Proceedings Article DOI:10.1109/CIT.2009.109

SLA-Aware Virtual Resource Management for Cloud Infrastructures
— Source link

Hien Nguyen Van, Frédéric Dang Tran, Jean-Marc Menaud

Institutions: École des mines de Nantes

Published on: 11 Oct 2009 - Computer and Information Technology

Topics: Temporal isolation among virtual machines, Virtual machine, Cloud computing, Virtualization and Server

Related papers:

 Virtual machine placement

 Provisioning a computing application executing on a cloud to a client device

 Method and system of sharing podcast information

Process for optimizing software components for an enterprise resource planning (erp) application sap on
multiprocessor servers

 System and method for associating workload management definitions with computing containers

Share this paper:

View more about this paper here: https://typeset.io/papers/sla-aware-virtual-resource-management-for-cloud-
6xup8zycb8

https://typeset.io/
https://www.doi.org/10.1109/CIT.2009.109
https://typeset.io/papers/sla-aware-virtual-resource-management-for-cloud-6xup8zycb8
https://typeset.io/authors/hien-nguyen-van-2xm9ac31nv
https://typeset.io/authors/frederic-dang-tran-1x05yiyl1j
https://typeset.io/authors/jean-marc-menaud-16g58mdta0
https://typeset.io/institutions/ecole-des-mines-de-nantes-2vzw1tuu
https://typeset.io/conferences/computer-and-information-technology-36g2rqbh
https://typeset.io/topics/temporal-isolation-among-virtual-machines-97vjtjqh
https://typeset.io/topics/virtual-machine-1wyvv06f
https://typeset.io/topics/cloud-computing-23j8n0mk
https://typeset.io/topics/virtualization-y3bxbinu
https://typeset.io/topics/server-10sn6dgt
https://typeset.io/papers/virtual-machine-placement-3s9h8qvd8l
https://typeset.io/papers/provisioning-a-computing-application-executing-on-a-cloud-to-748b7rzbg0
https://typeset.io/papers/method-and-system-of-sharing-podcast-information-ywa7jz36t8
https://typeset.io/papers/process-for-optimizing-software-components-for-an-enterprise-38ldzyziu7
https://typeset.io/papers/system-and-method-for-associating-workload-management-2bfh9e8gkr
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/sla-aware-virtual-resource-management-for-cloud-6xup8zycb8
https://twitter.com/intent/tweet?text=SLA-Aware%20Virtual%20Resource%20Management%20for%20Cloud%20Infrastructures&url=https://typeset.io/papers/sla-aware-virtual-resource-management-for-cloud-6xup8zycb8
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/sla-aware-virtual-resource-management-for-cloud-6xup8zycb8
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/sla-aware-virtual-resource-management-for-cloud-6xup8zycb8
https://typeset.io/papers/sla-aware-virtual-resource-management-for-cloud-6xup8zycb8

HAL Id: hal-00474722
https://hal.archives-ouvertes.fr/hal-00474722

Submitted on 20 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SLA-aware virtual resource management for cloud
infrastructures

Hien Nguyen Van, Frederic Dang Tran, Jean-Marc Menaud

To cite this version:
Hien Nguyen Van, Frederic Dang Tran, Jean-Marc Menaud. SLA-aware virtual resource manage-
ment for cloud infrastructures. 9th IEEE International Conference on Computer and Information
Technology (CIT’09), Oct 2009, Xiamen, China. pp.1-8. ฀hal-00474722฀

https://hal.archives-ouvertes.fr/hal-00474722
https://hal.archives-ouvertes.fr

SLA-aware virtual resource management for cloud infrastructures∗

Hien Nguyen Van, Frédéric Dang Tran

Orange Labs

38-40 rue du Géréral Leclerc - 92794 Issy Les Moulineaux Cedex 9, France

{hien.nguyenvan, frederic.dangtran}@orange-ftgroup.com

Jean-Marc Menaud

Ascola, École des Mines de Nantes / INRIA, LINA

4, rue Alfred Kastler - 44307 Nantes Cedex 3, France

menaud@emn.fr

Abstract

Cloud platforms host several independent applications

on a shared resource pool with the ability to allocate com-

puting power to applications on a per-demand basis. The

use of server virtualization techniques for such platforms

provide great flexibility with the ability to consolidate sev-

eral virtual machines on the same physical server, to resize

a virtual machine capacity and to migrate virtual machine

across physical servers. A key challenge for cloud providers

is to automate the management of virtual servers while

taking into account both high-level QoS requirements of

hosted applications and resource management costs. This

paper proposes an autonomic resource manager to con-

trol the virtualized environment which decouples the provi-

sioning of resources from the dynamic placement of virtual

machines. This manager aims to optimize a global utility

function which integrates both the degree of SLA fulfillment

and the operating costs. We resort to a Constraint Pro-

gramming approach to formulate and solve the optimization

problem. Results obtained through simulations validate our

approach.

1 Introduction

Corporate data centers are in the process of adopting a

cloud computing architecture where computing resources

are provisioned on a per-demand basis, notably to handle

peak loads, instead of being statically allocated. Such cloud

infrastructures should improve the average utilization rates

of IT resources which are currently in the 15-20% range. A

key enabling technology of cloud systems is server virtual-

ization which allows to decouple applications and services

from the physical server infrastructure. Server virtualiza-

tion makes it possible to execute concurrently several vir-

tual machines (VM) on top of a single physical machine

(PM), each VM hosting a complete software stack (oper-

ating system, middleware, applications) and being given a

partition of the underlying resource capacity (CPU power

and RAM size notably). On top of that, the live migration

capability of hypervisors allows to migrate a virtual ma-

chine from one physical host to another with no or little

interruption of service.

The downside of the flexibility brought by virtualization

is the added system management complexity for IT man-

agers. Two levels of mapping must be managed (Figure

1): the provisioning stage is responsible for allocating re-

source capacity in the form of virtual machines to applica-

tion. This stage is driven by performance goals associated

with the business-level SLAs of the hosted applications (e.g.

average response time, number of jobs completed per unit

of time). Virtual machines must then be mapped to phys-

ical machines. This VM placement problem is driven by

data center policies related to resource management costs.

A typical example is to lower energy consumption by mini-

mizing the number of active physical servers.

This paper presents an autonomic resource management

system which aims at fulfilling the following requirements:

• ability to automate the dynamic provisioning and

placement of VMs taking into account both

application-level SLAs and resource exploitation

costs with high-level handles for the administrator to

specify trade-offs between the two,

• support for heterogeneous applications and workloads

including both enterprise online applications with

stringent QoS requirements and batch-oriented CPU-

intensive applications,

*This research is supported by the french Agence Nationale de la Recherche with the ANR-08-SEGI-017

Physical Machine Physical Machine Physical Machine Physical Machine

VM VM VM VM VM VM VM VM

Application Environment A Application Environment B Application Environment C

SLA

response time R

throughput D

SLA

response time R

throughput D

SLA

response time R

throughput D

Figure 1. Dynamic resource allocation

• support for arbitrary application topology: n-tier, sin-

gle cluster, monolithic and capacity to scale: either in

a ”scale-up” fashion by adding more resource to a sin-

gle server or in a ”scale-out” fashion by adding more

servers,

Our proposed management system relies on a two-level

architecture with a clear separation between application-

specific functions and a generic global decision level. We

resort to utility functions to map the current state of each

application (workload, resource capacity, SLA) to a scalar

value that quantify the ”satisfaction” of each application

with regard to its performance goals. These utility func-

tions are also the means of communication with the global

decision layer which constructs a global utility function in-

cluding resource management costs. We separate the VM

provisioning stage from the VM placement stage within the

global decision layer autonomic loop and formulate both

problems as Constraint Satisfaction Problems (CSP). Both

problems are instances of an NP-hard knapsack problem for

which a Constraint Programming approach is a good fit.

The idea of Constraint Programming is to solve a problem

by stating relations between variables in the form of con-

straints which must be satisfied by the solution.

The remainder of this paper is organized as follows. Sec-

tion 2 presents the architecture of the autonomic virtual re-

source management system. Next, we show some simula-

tion results for different application environments in Section

3. We cover related work in Section 4. Finally, Section 5

concludes and presents future work.

2 Autonomic Virtual Resource Management

2.1 System Architecture

Our management system architecture is shown in Figure

2. The datacenter consists of a set of physical machines

(PM) each hosting multiple VMs through a hypervisor. We

assume that the number of physical machines is fixed and

that they all belong to the same cluster with the possibility

to perform a live migration of a VM between two arbitrary

PMs. An Application Environment (AE) encapsulates an

application hosted by the cloud system. An AE is associated

with specific performance goals specified in a SLA con-

tract. An AE can embed an arbitrary application topology

which can span one or multiple VMs (e.g. multi-tier Web

application, master-worker grid application). We assume

that resource allocation is performed with a granularity of

a VM. In other words a running VM is associated with one

and only one AE. Applications cannot request a VM with

an arbitrary resource capacity in terms of CPU power and

memory size (in the remainder of this paper, we will focus

primarily on CPU and RAM capacity but our system could

be extended to cope with other resource dimension such as

network I/O). The VMs available to the application must be

chosen among a set of pre-defined VM classes. Each VM

class comes with a specific CPU and memory capacity e.g.

2Ghz of CPU capacity and 1Gb of memory.

An application-specific Local Decision Module (LDM)

is associated with each AE. Each LDM evaluates the oppor-

tunity of allocating more VMs or releasing existing VMs

to/from the AE on the basis of the current workload us-

ing service-level metrics (response time, number of requests

per second. . .) coming from application-specific monitor-

ing probes. The main job of the LDM is to compute a util-

ity function which gives a measure of application satisfac-

tion with a specific resource allocation (CPU, RAM) given

its current workload and SLA goal. LDMs interact with

a Global Decision Module (GDM) which is the decision-

making entity within the autonomic control loop. The GDM

is responsible for arbitrating resource requirements coming

from every AE and treats each LDM as a black-box with-

out being aware of the nature of the application or the way

the LDM computes its utility function. The GDM receives

as input (i) the utility functions from every LDM and (ii)

system-level performance metrics (e.g. CPU load) from vir-

tual and physical servers. The output of the GDM consists

of management actions directed to the server hypervisor and

notifications sent to LDMs. The latter notifies the LDM that

(i) a new VM with specific resource capacity has been al-

located to the application, (ii) an existing VM has been up-

graded or downgraded, i.e its class and resource capacity

has been changed and (iii) a VM belonging to the applica-

tion is being preempted and that the application should re-

linquish it promptly. Management actions include the life-

cyle management of VM (starting, stopping VMs) and the

trigger of a live migration of a running VM, the latter oper-

ation being transparent as far as the hosted applications are

concerned.

We now formalize in more detail the inner workings

of the local and global decision modules. Let A =
(a1, a2, ..., ai, ..., am) denote the set of AEs and P =

Application Environment A

Local

Decision

Module

Monitoring

probe

Global Decision Module

Physical Machine

VM VM

Monitoring

probe

Application Environment B

LDM

Monitoring

probe

Physical Machine

VM VM

Monitoring

probe

Physical Machine

VM VM

Monitoring

probe

Constraint

solver

monitor

actions

Request/Release

VMs

Preempt VMs

)(
AA
Nu)(

BB
Nu

i
u

Figure 2. System architecture

(p1, p2, ..., pj , ..., pq) denote the set of PMs in the datacen-

ter. There are c classes of VM available among the set

S = (s1, s2, ..., sk, ..., sc), where sk = (scpu
k , sram

k) speci-

fies the CPU capacity of the VM expressed in MHz and the

memory capacity of the VM expressed in megabytes.

2.2 Local Decision Module

The LDM is associated with an application-specific per-

formance model. Our architecture does not make any as-

sumption on the nature of this model, whether it is ana-

lytical or purely empirical. A performance model is used

by the LDM to assess the level of service achieved with a

given capacity of resources (processing unit, memory) and

the current application workload. The LDM is associated

with two utility functions: a fixed service-level utility func-

tion that maps the service level to a utility value and a dy-

namic resource-level utility function that maps a resource

capacity to a utility value. The latter which is communi-

cated to the GDM on every iteration of the autonomic con-

trol loop. The resource-level utility function u i for applica-

tion ai is defined as ui = fi(Ni). Ni is the VM allocation

vector of application ai: Ni = (ni1, ni2, ..., nik, ..., nim)
where nik is the number of VMs of class sk attributed to

application ai. We require each application to provide up-

per bounds on the number of VM of each class (Nmax
i =

(nmax
i1 , nmax

i2 , ..., nmax
ik , ..., nmax

im)) and on the total number

of VM (Tmax
i) that it is willing to accept. These application

constraints are expressed as follows:

nik ≤ nmax
ik 1 ≤ i ≤ m and 1 ≤ k ≤ c (1)

c
∑

k=1

nik ≤ T max
i 1 ≤ i ≤ m (2)

Note that theses bounds allow to specify a ”scale-up” ap-

plication which is hosted by a single VM of varying capac-

ity by setting Tmax
i to 1.

VM Provisioning VM Packing
Ni

Constraint Solver

Hjdemand

Figure 3. Constraint Solving: Provisioning-

Packing

2.3 Global Decision Module

The GDM is responsible for two main tasks: determin-

ing the VM allocation vectors Ni for each application ai

(VM Provisioning), and placing these VMs on PMs in or-

der to minimize the number of active PMs (VM Packing).

These two phases are expressed as two Constraint Satis-

faction Problems (CSP) which are handled by a Constraint

Solver (Figure 3).

2.3.1 VM Provisioning

In this phase, we aim at finding the VM allocation vectors

Ni for each application ai while maximizing a global utility

value Uglobal. The VMs allocated to all applications are

constrained by the total of capacity (CPU and RAM) of the

physical servers:

∑m
i=1

∑c
k=1

nik.scpu
k ≤

∑q
j=1

Ccpu
j

∑m

i=1

∑c

k=1
nik.sram

k ≤
∑q

j=1
Cram

j

(3)

where Ccpu
j and Cram

j are the CPU and RAM capacity

of PM pj . The VM allocation vectors Ni need to maximize

a global utility function expressed as a weighted sum of the

application-provided resource-level utility functions and an

operating cost function:

Uglobal = maximize

m
∑

i=1

(

αi × ui − ǫ.cost(Ni)
)

(4)

where 0 < αi < 1, and
∑m

i=1
αi = 1. ǫ is a coeffi-

cient that allows the administrator to make different trade-

offs between the fulfillment of the performance goals of the

hosted application and the cost of operating the required re-

sources. cost(Ni) is a function of VM allocation vectors Ni

and must share the same scale as application utility func-

tions, i.e (0,1). This cost function is not hardwired into the

GDM but can be specified arbitrarily.

The output of the VM Provisioning phase is a set of

vectors Ni satisfying constraints 1, 2, 3 and maximizing

Uglobal. By comparing these allocation vectors with those

computed during the previous iteration, the GDM is capa-

ble of determining which VMs must be created, destroyed

or resized. The placement of the newly created VMs as well

as the possible migration of existing VMs is handled by the

VM packing phase described next.

2.3.2 VM Packing

The VM packing phase takes as input the VM allocation

vectors Ni and collapses them into the single vector V =
(vm1, vm2, ..., vml, ..., vmv) which lists all VMs running

at the current time. For each PM pj ∈ P , the bit vector

Hj = (hj1, hj2, . . . , hjl, . . . , hjv) denotes the set of VMs

assigned to pj (i.e.: hjl = 1 if pj is hosting vml). Let

R = (r1, r2, ..., rl, ..., rv) be the resource capacity (CPU,

RAM) of all VMs, where rl = (rcpu
l , rram

l). We express

the physical resource constraints as follows:

∑v

l=1
rcpu
l .hjl ≤ Ccpu

j 1 ≤ j ≤ q

∑v
l=1

rram
l .hjl ≤ Cram

j 1 ≤ j ≤ q
(5)

The goal is to minimize the number of active PMs X :

X =

q
∑

j=1

uj , where uj =

{

1 ∃vml ∈ V |hjl = 1
0 otherwise

(6)

The solving of the VM packing CSP produces the VM

placement vectors Hj which are used to place VMs on PMs.

Since the GDM is run on a periodic basis, the GDM com-

putes the difference with the VM placement produced as a

result of the previous iteration, determines which VM needs

to be migrated. An optimal migration plan is produced as

described in [2] to minimize the number of migration re-

quired to reach the new VM-to-PM assignment. Minimiz-

ing the cost of a reconfiguration provides a plan with few

migrations and steps and a maximum degree of parallelism,

thus reducing the duration and impact of a reconfiguration.

The migration cost of a VM is approximated as proportional

to the amount of memory allocated to the VM.

3 Validations & Results

To illustrate and validate our architecture and algorithms,

we present some simulation results which show how the

system attributes resources to multiple applications with

different utility functions and how the resource arbitration

process can be controlled through each application’s weight

αi and the ǫ factor. Our simulator relies on the Choco [7]

constraint solver to implement the VM provisioning and

packing phases as separate constraint solving problems.

Our simulated environment consists a cluster of 4 PMs

of capacity (4000 MHz, 4000 MB) which can host the two

following applications:

Table 1. Virtual machine classes

VM class s1 s2 s3 s4

CPU capacity (MHz) 500 1000 2000 4000

RAM capacity (MB) 500 1000 2000 4000

• Application A is a multiplayer online game where

the load of player connections is spread on a cluster

on servers. The SLA goal of this application is the

average response time of requests. This application

has stringent real-time requirements and the associated

utility function is shown in Figure 4(b) with a target re-

sponse time τSLA.

• Application B is a Web application implemented as

a resizable cluster of Web servers. The SLA goal of

the application is also the average response time of re-

quests. The workload is measured as the number of

requests per second. The utility function of this appli-

cation is shown in Figure 4(c).

VM configurations are chosen among 4 pre-defined

classes as shown in Table 1. We examine how the sys-

tem behaves by injecting a synthetic workload measured in

terms of requests per second which is distributed to appli-

cations by a round-robin algorithm. An empirical perfor-

mance model based on experimental data allows to deter-

mine the average response time obtained for a given work-

load and a given CPU capacity as illustrated in Figure 4(a).

Considering that CPU power is more important than

memory, we define the cost function as Cost(CPU) =
CPUdemand/CPUtotal, i.e. the ratio between the CPU ca-

pacity allocated to applications CPUdemand and the total

physical CPU capacity.

The simulation proceeds according to the following steps

on a periodic basis:

1. Workload values (in request/s) for each application are

evaluated for the current time.

2. the VM Provisioning module is run. For a tentative

CPU allocation, this module upcalls a function that

computes the global utility as follows:

(a) The performance model (Figure 4(a)) is used to

determine the response time achieved with the

CPU capacity. As the model is based on discrete

experimental data, the response time for a spe-

cific CPU allocation is estimated as the average

of the values provided by two nearest curves if

the resource amount does not match any curve

(e.g: for a demand, if the resource amount is of

3000MHz, the response time is the average of the

response time (ms)

U
ti
lit

y

1

SLA

0

response time (ms)

U
ti
lit

y

1

0

(b) (c)

SLA

u u’

2. SLA

Demand (requests per second)

R
e
s
p

o
s
e
 t

im
e
 (

m
s
)

50 100 200 300 500

100

0

500 (MHz)

2000 4000
10000

16000

(a)

50

150

400

Figure 4. Performance model (a), Utility functions (b) and (c)

results obtained from two curves 2000MHz and

4000MHz).

(b) The utility function of each application (Figures

4(b), 4(c)) provides the local utility from this re-

sponse time.

(c) After all local utilities have been produced, the

global utility is computed as a weighted sum of

the local utilities and an operating cost function.

3. The VM Provisioning module iteratively explores the

space of all possible CPU allocation and picks the so-

lution having the best global utility.

4. The VM Packing module logically places VMs on PMs

for the solution while minimizing the number of active

PMs and the number of required migrations.

5. the simulated time is increased to the next step.

In the first experiment, we nearly do not take into ac-

count the operating cost by testing the simulation with

ǫ = 0.05 and the parameters shown in Table 2. All these

parameters have been presented in Equations 1, 2, 3 and 4.

The time series plots are shown in Figure 5. At times t0 and

t1, as workloads of A and B are both low, CPU demands

are negligible, hence there is only one PM needed. Between

times t2 and t3, workloads increase, so the system tends to

attribute more resource (CPU) accordingly. However, the

workloads are not too heavy, there are still enough resource

to keep response time under the SLA goal (τ = 100ms)

for all applications. In this interval, almost all PMs are mo-

bilized. The impact of the application weights α i is also

illustrated between time t4 and t5, where demands for ap-

plication A and B are both high. As 0.8 = αA > αB = 0.2,

A has the higher resource allocating priority. Since there is

not any CPU resource left to provision to application B, the

response time of B exceeds the SLA goal. Note that at these

intervals, the global utility has slightly decreased (to 0.85)

because of the SLA violation of B. At times t6, t7 and t8 a

Table 2. Experiment setting 1

AE α T max nmax
1 nmax

2 nmax
3 nmax

4

A 0.8 17 5 5 5 5

B 0.2 17 5 5 5 5

peak of demand for application A corresponds to a trough

of demand for application B and vice-versa. CPU capac-

ity is switched between the two applications to maintain an

optimal global utility.

Now we examine how the operating cost factor ǫ affects

the global utility value and the allocation result. We keep all

parameters to their values defined in the first test but we now

set ǫ = 0.3. The result is shown in Figure 6: as the resource

demands increases, the global utility value decreases more

than during the previous test. The worst value is reached at

t4 and t5 (0.55) when both applications need a maximum

amount of resource. We can see at these intervals and even

at t7, t8, B descends quicker and than only holds a small

amount, as compared to Figure 5, even when nearly all re-

source was released by A, this behavior is due to the weight

αB = 0.2 is negligible against αA = 0.8, and the local

utility value of B is not enough to compensate the operating

cost which is ”boosted” by ǫ = 0.3. Consequently, there are

some SLA violations of B, notably at time t7.

Keeping all other parameters of the first test, in order to

show how weight factor αi affects the resource allocation,

we now set αA = 0.3, αB = 0.7. As shown in Figure 7, at

times t4 and t5, the situation has turned around: thanks to

the advantageous weight, B now obtains a sufficient amount

of CPU and is able to meet its SLA response time goal. The

increase of the response time of A (about 250ms) during

high workload intervals is the result of its lower contribution

the global utility value.

From a performance point of view, the average solving

time for the provisioning phase is 5500ms with T max
A =

T max
B = 17. The average solving time for the packing

Figure 5. Time series plots of 1) Demands DA

and DB, 2) CPUs RA and RB, 3) Number of ac-

tive PMs, 4) Global utility, 5) Response times
TA and TB

.

Figure 6. αA = 0.8, αB = 0.2; ǫ = 0.3

Figure 7. Time series plots of 1) Demands DA

and DB, 2) CPUs RA and RB, 3) Response

times TA and TB; αA = 0.3, αB = 0.7; ǫ = 0.05

phase is 1000ms in the worst case (the Choco constraint

solver was running on a dual-2.5GHz server with 4GB of

RAM). A key handle to limit the space of solutions that the

constraint solver must explore during the VM provisioning

phase is to limit the VM configurations allowed through the

T max
i and nmax

i parameters taking account the specificities

of each application. For example a clusterized application

might prefer to have its load spread on a low number of

high-capacity servers rather than on a high number of low-

capacity servers.

As an illustration if T max
A and T max

B are reduced to 4,

the solving time is reduced to 800ms.

The constraint solver aims to explore all possible solu-

tions for a set of input data (demands and constraints) and

to return the best solution. To avoid spending a high amount

of time to get an ”expired” solution which is no longer suit-

able to the current workload, we limit the time alloted to the

solver to get an acceptable solution (which satisfies all con-

straints of our problem but does not necessarily maximize

the global utility).

4 Related Work

Existing works on autonomic management systems for

virtualized server environments tackle the allocation and

placement of virtual servers from different perspectives.

Many papers differ from our work insofar as they either fo-

cus on one specific type of applications or they do not con-

sider the problem of dynamic provisioning or the possibility

of resource contention between several applications with in-

dependent performance goals. For example, [3] proposes a

virtual machine placement algorithm which resorts to fore-

casting techniques and a bin packing heuristic to allocate

and place virtual machines while minimizing the number

of PMs activated and providing probabilistic SLA guaran-

tees. Sandpiper [4] proposes two approaches for dynam-

ically map VMs on PMs: a black box approach that re-

lies on system-level metrics only and a grey box approach

that takes into account application-level metrics along with

a queueing model. VM packing is performed through a

heuristic which iteratively places the highest-loaded VM on

the least-load PM. Some of these mechanisms, for instance

prediction mechanisms, could be integrated in our archi-

tecture within application-specific local decision modules.

Regarding the VM packing problem, we argue that a Con-

straint Programming approach has many advantages over

placement heuristics. Such heuristics are brittle and must be

returned with care if new criteria for VM-to-PM assignment

are introduced. Moreover these heuristics cannot guarantee

that an optimal solution is produced.

A CSP approach for VM packing provides an elegant

and flexible approach which can easily be extended to take

into account additional constraints. A constraint solving ap-

proach is used by Entropy [2] for the dynamic placement of

virtual machines on physical machines while minimizing

the number of active servers and the number of migrations

required to reach a new configuration. Our work extends

this system with a dynamic provisioning of VMs directed

by high-level SLA goals.

Utility functions act as the foundation of many auto-

nomic resource management systems as a means to quantify

the satisfaction of an application with regard to its level of

service beyond a binary ”SLA goal satisfied / not satisfied”

metric.

[13] lays the groundwork for using utility functions in

autonomic system in a generic fashion with a two-level

architecture which separates application-specific managers

from a resource arbitration level. We specialize this archi-

tecture to take server virtualization into account and to inte-

grate resource management costs in the global utility com-

putation.

[8] proposes a utility-based autonomic controller for dy-

namically allocating CPU power to VM. Like our work,

they attempt to maximize a global utility function. But they

do not consider the possibility of provisioning additional

VMs to an application and restrict themselves to homoge-

neous application workloads modeled with a queuing net-

work. The CPU capacity of VMs is determined through a

beam-search combinatorial search procedure.

[11] uses a simulated annealing approach to determine

the configuration (VM quantity & placement) that maxi-

mize a global utility. They simplify the VM packing pro-

cess by assuming that all VM hosted on a PM have an equal

amount of capacity. It is worth evaluating the respective

performance of simulated annealing and constraint solving.

Shirako [1] proposes an autonomic VM orchestration for

the mapping between the physical resource providers and

virtualized servers. Like our work, they advocate a sepa-

ration between VM provisioning and VM placement in a

federated multi-resource-provider environment.

5 Conclusion & Future Work

This paper addresses the problem of autonomic vir-

tual resource management for hosting service platforms

with a two-level architecture which isolates application-

specific functions from a generic decision-making layer.

We take into account both high-level performance goals

of the hosted applications and objectives related to the

placement of virtual machines on physical machines. Self-

optimization is achieved through a combination of utility

functions and a constraint programming approach. The VM

provisioning and packing problems are expressed as two

Constraint Satisfaction Problems. Utility functions pro-

vide a high-level way to express and quantify application

satisfaction with regard to SLA and to trade-off between

multiple objectives which might conflict with one another

(e.g. SLA fulfillment and energy consumption). Such an

approach avoids the problems encountered by rule- and

policy- based systems where conflicting objectives must be

handled in an ad-hoc manner by the administrator.

Simulation experiments have been conducted to validate

our architecture and algorithms. We are in the process of

implementing a test-bed based on a cluster of servers fitted

with the Xen hypervisor [18] along with virtual server man-

agement service handling the storage, deployment of VM

images and the aggregation of performance metrics both at

system-level (e.g. CPU load) and at application-level (e.g.

response time).

The autonomic management system is being designed

a component-based framework with a clear separation be-

tween generic mechanisms and pluggable modules.

References

[1] L. Grit, D. Irwin, A. Yumerefendi and J. Chase. Vir-

tual Machine Hosting for Networked Clusters. Pro-

ceedings of the 2nd International Workshop on Virtu-

alization Technology in Distributed Computing, 2006.

[2] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller

and J. Lawall. Entropy: a Consolidation Manager for

Cluster. In proc. of the 2009 International Conference

on Virtual Execution Environments (VEE’09), Mar.

2009.

[3] N. Bobroff, A. Kochut and K. Beaty. Dynamic Place-

ment of Virtual Machines for Managing SLA Viola-

tions. 10th IFIP/IEEE International Symposium on In-

tegrated Network Management, May 2007.

[4] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif.

Black-box and Gray-box Strategies for Virtual Ma-

chine Migration. 4th USENIX Symposium on Net-

worked Systems Design and Implementation, 2007.

[5] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M.

Kalantar, S. Krishnakumar, D.P. Pazel, J. Pershing,

and B. Rochwerger. Océano - SLA Based Manage-

ment of a Computing Utility. IEEE/IFIP International

Symposium on Integrated Network Management Pro-

ceedings, 2001.

[6] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, and

D. Becker. Sharing Networked Resources with Bro-

kered Leases. Proceedings of the annual conference

on USENIX ’06 Annual Technical Conference, 2006.

[7] N. Jussien, G. Rochart, X. Lorca. The CHOCO con-

straint programming solver. CPAIOR’08 workshop on

Open-Source Software for Integer and Constraint Pro-

gramming (OSSICP’08), 2008.

[8] D. A. Menascé and M.N. Bennani. Autonomic Virtu-

alized Environments. Proceedings of the International

Conference on Autonomic and Autonomous Systems,

2006.

[9] J. O. Kephart, H. Chan, R. Das, D. W. Levine,

G. Tesauro, F. Rawson and C. Lefurgy. Coordinat-

ing multiple autonomic managers to achieve speci-

fied power-performance tradeoffs. Proceedings of the

Fourth International Conference on Autonomic Com-

puting, 2007.

[10] R. Das, G. Tesauro and W. E. Walsh. Model-Based

and Model-Free Approaches to Autonomic Resource

Allocation. IBM Research Division, TR, November

2005.

[11] X. Wang, D. Lan, G. Wang, X. Fang, M. Ye, Y. Chen

and Q. Wang. Appliance-based Autonomic Provision-

ing Framework for Virtualized Outsourcing Data Cen-

ter. Autonomic Computing, 2007.

[12] S. Bouchenak, N.D. Palma and D. Hagimont. Au-

tonomic Management of Clustered Applications.

IEEE International Conference on Cluster Computing,

2006.

[13] W.E. Walsh, G. Tesauro, J.O. Kephart and R. Das,

Utility Functions in Autonomic Systems. Autonomic

Computing, 2004.

[14] G. Khanna, K. Beaty, G. Kar and A. Kochut, Applica-

tion Performance Management in Virtualized Server

Environments. Network Operations and Management

Symposium. 2006.

[15] T. Kelly, Utility-Directed Allocation, First Workshop

on Algorithms and Architectures for Self-Managing

Systems. June 2003.

[16] R.P. Doyle, J.S. Chase, O.M. Asad, W. Jin and A.M.

Vahdat. Model-based resource provisioning in a web

service utility. Proceedings of the 4th conference on

USENIX Symposium on Internet Technologies and

Systems, 2004.

[17] F. Benhamou, N. Jussien, and B. O’Sullivan. Trends in

Constraint Programming. ISTE, London, UK, 2007.

[18] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-

ris, A. Ho, R. Neugebauery, I. Pratt, A. Warfield. Xen

and the Art of Virtualization. Proceedings of the nine-

teenth ACM symposium on Operating systems princi-

ples, 2003.

