
SLA BASED SERVICE BROKERING IN INTERCLOUD
ENVIRONMENTS

Foued Jrad, Jie Tao and Achim Streit
Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe, Germany

{foued.jrad, jie.tao, achim.streit}@kit.edu

Keywords: Cloud Broker, Intercloud Computing, Cloud Interoperability, Service Level Agreement (SLA), OCCI.

Abstract: The fast emerging Cloud computing market over the last years resulted in a variety of heterogeneous and
less interoperable Cloud infrastructures. This leads to a challenging and urgent problem for Cloud users
when selecting their best fitting Cloud provider and hence it ties them to a particular provider. A new
growing research paradigm, which envisions a network of interconnected and interoperable Clouds through
the use of open standards, is Intercloud computing. This allows users to easily migrate their application
workloads across Clouds regardless of the underlying used Cloud provider platform. A very promising
future use case of Intercloud computing is Cloud services brokerage. In this paper, we propose a generic
architecture for a Cloud service broker operating in an Intercloud environment by using the latest Cloud
standards. The broker aims to find the most suitable Cloud provider while satisfying the users’ service
requirements in terms of functional and non-functional Service Level Agreement parameters. After
discussing the broker value-added services, we present in detail the broker design. We focus especially on
how the expected SLA management and resource interoperability functionalities are included in the broker.
Finally, we present a realistic simulation testbed to validate and evaluate the proposed architecture.

1 INTRODUCTION

Cloud computing has recently emerged as a new key
technology for outsourcing organizations’ IT
infrastructures on an economical basis. It allows a
dynamic provisioning of virtual hardware and
scalable applications according to their needs using a
transparent easy “pay as you go” pricing model.
Over the last years the number of Cloud service
providers has significantly increased. On the other
hand “vendor lock in” issues and the lack of
common Cloud standards hindered the
interoperability across these providers. Thus, today
the Cloud customer is facing a challenging problem
of selecting the appropriate Cloud offers that fits his
needs. Therefore, standardized interfaces and
intermediate services are needed to prevent
monopolies of single Cloud providers.

The introduced vision of global interconnected
Clouds called Intercloud (Bernstein et al., 2009),
much like the internet as network of networks,
addresses the above interoperability issues with the
large focus on open standardized interfaces. Hereby
Cloud consumers should be able to freely choose
and seamlessly switch between different Cloud

platforms while satisfying the demands for the
guaranteed quality of service (QoS).

The common future use cases and functional
requirements for Intercloud computing are defined
in (GICTF, 2010). One of these promising use cases
is market transactions via brokers. In such a use case
a broker entity acts as a mediator between the Cloud
consumer and multiple interoperable Cloud
providers. The broker supports the consumer by
selecting the provider that better meets his
requirements. L. Frank Kenney, former research
director at Gartner, claimed (Gartner, 2009) the need
for Cloud brokers: “The future of cloud computing
will be permeated with the notion of brokers
negotiating relationships between providers of cloud
services and the service customers”.

Motivated by the above considerations, we
present in this paper a generic architecture for a
Cloud service broker operating in an Intercloud
environment. Our proposed approach brings the
following three benefits: (1) It allows a seamless
access to Cloud resources through a standardized
abstraction layer between consumers and providers;
(2) It enables through a uniform interface the
monitoring and management of deployed Cloud

76

services hosted on several Cloud providers by hiding
their underlying technical details; (3) It finds the
most suitable Cloud resources taking into account of
user requirements specified by SLA.

The rest of this paper is organized as follows: in
the next section we discuss prior works related to
Cloud service brokering. We also identify how our
work differs from related work. Section 3 presents
the generic architecture of the broker. In section 4
and section 5 we propose a simulation environment
for the broker and present first evaluation results.
Section 6 concludes the paper with a brief summary
and describes our future research directions.

2 RELATED WORK

The problem of multi domain service brokering in
Cloud has received a lot of attention in academia and
industry in the recent years.

(Buyya et al., 2010) presented the architecture of
a federated Cloud computing environment named
InterCloud to support the scaling of applications
across multiple vendor Clouds. The idea behind their
introduced federation concept is to enhance Cloud
providers provisioning capabilities in case of sudden
spikes in workload by leasing available
computational and storage capabilities from other
Cloud service providers. The main components of
the proposed architecture are a Cloud Broker, a
Cloud Exchange and a Cloud Coordinator. A client
initiates a Cloud broker in order to meet the
specified QoS targets, whereas Cloud Coordinators,
acting as gateway between their internal datacenters
and external Clouds, publish their services to the
federation. Cloud Exchange acts as a mediator
bringing together service providers and customers. It
aggregates infrastructure demands from the
application brokers and matches them against the
available resources published by the Cloud
Coordinators. The proposed architectural framework
is still a research vision and its development is
planned in context of the CLOUDBUS6 project.
However, the simulation results showed that the
federation approach brings significant benefits to
user’s application performance.

(Theilmann et al., 2010) presented a flexible
framework for multi-level SLA management within
Clouds developed in context of the SLA@SOI2 EU
project. The core framework consists of a Business
Manager and an SLA Manager. The Business
Manager controls all the relations between
customers and providers, whereas the SLA Manager
deals with all the SLA related issues including

negotiation, provisioning and monitoring. Besides
the core framework, a domain-specific Service
Manager provides management functionalities for
the SLA Manager by interfacing the native
provisioning system. The main contribution of the
SLA@SOI framework is that the service quality can
be predicted and enforced at run-time through an
automated SLA management.

 (Metsch et al., 2010) implemented a prototype
broker architecture based on a combination of the
core SLA@SOI framework and the RESERVOIR1

framework. This latter allows an easy and on-
demand provisioning of virtualized infrastructure
resources within a federated Cloud platform. In their
presented architecture, the core SLA@SOI
framework acts as an SLA-based broker, whereas
the RESERVOIR sites act as SLA@SOI third party
providers and candidates for SLA provisioning. The
interoperability between the two Cloud frameworks
is achieved by implementing a standardized Service
Manager interface using the Open Cloud Computing
Interface API (OCCI, 2011).

(Kertesz et al., 2011) investigated the use of
autonomic computing principles for resource
management and SLA enforcement in Cloud
environments. They proposed an SLA-based Service
Virtualization (SSV) architecture, which is built on
three main components: a Meta-Negotiator
responsible for agreement negotiations, a Meta-
Broker for selecting the proper execution
environment and an Automatic Service Deployer for
service virtualization and on-demand deployment.

As the first industry driven project, the TM
Forum3 Cloud Service Broker Catalyst explored the
role of a value-added service broker by
demonstrating a proof of concept for a trusted and
transparent Cloud management platform.

A market analysis of the current commercial
Cloud broker solutions shows that most products
concentrate on the aggregation and mediation of the
services deployed on well-known public Cloud
providers by providing integrated management and
monitoring interfaces. From the few products
offering additional brokering features, we refer to
SensibleCloud4 and CloudSwitch5. While the former
offers an automated SLA based multi-Cloud
management, the latter allows customer to select the

1 http://www.reservoir-fp7.eu//
2 http://www.sla-at-soi.eu/
3 http://www.tmforum.org
4 http://www.sensiblecloud.com/
5 http://www.cloudswitch.com
6 http://www.cloudbus.org

SLA�BASED�SERVICE�BROKERING�IN�INTERCLOUD�ENVIRONMENTS

77

best suitable Cloud service for their needs.
In summary, the work in (Buyya et al., 2010),

(Kertesz et al., 2011) and (Metsch et al., 2010) are
the most related works to this paper. The desired
broker architecture in this work acquired some ideas
from the previous designs. However, we have
designed a high-level generic architecture by
integrating several state of the art technologies and
standards. First, our solution combines all the
brokering features included in the previous works
like SLA management, service deployment and
monitoring and provider selection. Second, we
provide an abstraction layer to hide the technical
details of Cloud providers by using current
Intercloud standards. Moreover, our implemented
simulation environment prepares a realistic testbed
to validate and evaluate the proposed architecture.

3 CLOUD SERVICE BROKER
DESIGN

In this section we discuss the design of our proposed
Cloud service broker.

3.1 Overall Architecture

Figure 1 shows a generic architecture of the service
broker. The main components and their roles are
gathered in Table 1.

Figure 1: Cloud service broker architecture.

As depicted in Figure 1, the service broker acts
as a mediator between the Cloud user and multiple

Cloud providers by providing attractive value-added
services to users on top of heterogeneous Cloud
vendors. The main functions of the broker are
assisting the user in finding the best provider for his
service needs with respect to specified SLA and
providing him with a uniform interface to manage
and monitor the deployed services.

The needed interactions between the different
broker components during a service lifecycle and
therefor required interfaces to Cloud providers are
described in detail in the following sections.

Table 1: Components of Cloud service broker architecture.

Component Role

SLA Manager It negotiates the SLA creation and
handles the SLA provisioning.

Monitoring and
Discovery Manager

It queries resource information and
monitors the SLA metrics.

Match Maker
It selects the best Cloud providers
for user requests using different
matching algorithms.

Deployment Manager It deploys the service on the selected
provider.

Identity Manager
It handles the user authentication
and ensures IDs and roles
enforcements.

Persistence
It stores broker specific data (e.g.
monitoring, SLA templates and
resources data).

Abstract Cloud API
A standard abstract API used to
manage Cloud resources on different
Cloud providers.

Intercloud Gateway

It acts as service frontend for the
Cloud provider and interacts through
the standard Cloud API with the
broker.

Vendor Cloud
Platform

The native Cloud platform hosted by
the Cloud provider.

3.2 SLA Management

In (Linlin et al., 2010) an SLA is defined as a formal
contract between service providers and consumers to
guarantee that consumers’ service quality
expectation can be achieved. According to them, the
SLA lifecycle in utility computing systems has six
steps, which are ‘discover service providers’, ‘define
SLA’, ‘establish agreement’, ‘monitor SLA
violation’, ‘terminate SLA’ and ‘enforce penalties
for violation’.

In this work the broker acts on behalf of the
consumer to process all the SLA management tasks.
In the following subsections we discuss how SLA
management is handled in our proposed architecture
throughout the entire SLA lifecycle.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

78

Figure 2: The SLA negotiation flow.

3.2.1 SLA Discovery and Definition

In order to discover the SLA features supported by
the different Cloud providers the user asks, with the
assistance of a user interface, the SLA Manager to
retrieve the provider SLA templates published
through the Intercloud Gateways. An SLA template
represents amongst others the QoS parameters and
the margin values that the provider can accept (e.g.
supported OS, gold or silver SLA level). In a next
step, the user can populate a suitable template with
required values or even define a new SLA from
scratch to describe the functional and non-functional
service requirements. Some typical SLA parameters
used in context with IaaS Cloud provisioning are
provided in Table 2. These parameters are important
for a provider matching by the broker and therefore
the user needs to give reasonable values for them.

Table 2: Sample SLA parameters for IaaS.

functional non-functional
CPU cores response time

memory size budget
CPU speed completion time

in/out bandwidth data transfer time
OS type availability

storage size persistence (Yes/No)
image URL reservation (Yes/No)

3.2.2 SLA Negotiation

In this step a negotiation process managed by the
broker is started in order to reach an SLA agreement
between the user and the appropriate Cloud
providers. The ideal SLA negotiation flow of an
incoming SLA user request to the service broker is
illustrated by the sequence diagram in Figure 2.

The SLA negotiation is done as follows: The
user submits a service request (1) with the previous
defined SLA to the SLA Manager. Then, the SLA
Manager, after parsing the SLA definition (2), asks
the Match Maker, if it could execute the service with
the specified requirements (3). In order to respond to
this request, the Match Maker starts a match making
process to find the best suitable provider (5) by
matching the gathered resource properties (e.g.
datacenter configuration and supported SLA
metrics) from the Monitoring Manager (4) with the
service requirements by applying predefined
matching algorithms. At the end, the user gets a
response to his request from the SLA Manager with
the respective matching results. Upon user
acceptance, an agreement can be established (6) with
the matched provider and the required resources
could be reserved. If none of the providers can be
matched, the aforementioned steps may be repeated
for renegotiation (7) until reaching an agreement.

SLA�BASED�SERVICE�BROKERING�IN�INTERCLOUD�ENVIRONMENTS

79

Figure 3: The SLA provisioning and monitoring flow.

3.2.3 SLA Provisioning and Monitoring

After establishing an agreement, a provision request
(1) is submitted by the user to the SLA Manager.
The interactions needed by the broker components to
handle the provision request are shown by the
sequence diagram in Figure 3.

The SLA provisioning is done as follows: After
receiving the provision request, the SLA Manager
translates (2) the associated SLA to a service request
and asks the Deployment Manager to deploy the
service (3). The Deployment Manager forwards the
request to the appropriate Intercloud Gateway to
create and start the requested resources. As response
a unique service ID, used to address the deployed
service, is returned. The user is then able to monitor
the service (4) by requesting the metric values of the
agreed QoS parameters from the Monitoring
Manager. The user is also able to perform actions on
the deployed resources (e.g. start and stop) (5). Once
an agreement is terminated (6), all the created
resources should be released by the Cloud platform.

3.3 Provider Intercloud Gateways

The entire communication between the broker and
Cloud providers is realized through Intercloud
Gateways. This key component runs on the provider
side by interfacing the vendor Cloud platform. It

provides management and monitoring interfaces
while hiding the internal provider policies. The
concept of Intercloud Gateways is similar to the
Cloud Coordinator in (Buyya et al., 2010), with the
difference in that, the former simply interacts only
with the broker, whereas the latter needs interaction
with both the Cloud Exchange and the Cloud broker.

While looking for an abstract Cloud API
compatible with our architecture, we found that the
Open Cloud Computing Interface specification
(OCCI, 2011) is the most applicable among existing
APIs. OCCI is an extensible specification for remote
management of Cloud infrastructures, allowing the
development of interoperable tasks. The current
OCCI specification focuses on IaaS offerings by
defining three abstract resource types, which are
compute, storage and network. All the operations for
creating, deleting, starting and stopping these
resources can be requested on a REST manner over
HTTP methods (GET, POST, PUT and DELETE).

By integrating OCCI in our architecture, the
Intercloud Gateway becomes an OCCI server,
whereas the abstract Cloud API is the OCCI Client.
In this way, the entire communication between the
broker and providers runs through standard OCCI
interfaces and no adapters are needed in the broker.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

80

4 SIMULATION TESTBED

We developed based on the CloudSim simulation
toolkit (CoudSim, 2011) a simulation environment
for the broker. This allows us to validate and
evaluate the proposed broker architecture without
the setup of a real testbed, which is extremely time
and cost consuming. CloudSim is a scalable open
source simulation tool offering features like support
for modeling and simulation of large scale Cloud
computing infrastructures including datacenters,
brokers, hosts and VMs on a single host.

We extended CloudSim with an Intercloud
Gateway package to simulate an OCCI-based
service frontend. For this, we used the open source
(OCCI4JAVA, 2011) OCCI implementation to
mediate the CloudSim DatacenterBroker class. In
contrast to the OCCI specification, we do not use a
REST based communication between the Cloud
service broker and the Intercloud Gateway, as the
CloudSim simulation runs on one host. In such way,
only minimal changes are needed in the broker to
use it with real OCCI enabled production Clouds.
Moreover, we implemented an OCCI monitoring
mixin to allow the Intercloud Gateway to query
resource properties and metrics from CloudSim.

5 EVALUATION RESULTS

In order to assess the scalability of our proposed
approach, an experiment has been conducted: We
continuously generate VM requests (at a rate of 1
req/min) and let the broker select a random provider
from 6 datacenters (each made up of 50 hosts with 2
CPUs) and then deploy the requested VM on it. The
VM can be one of the 4 Amazon EC2 instance types
(micro, small, large and high CPU). We measured
the percentage of successfully deployed VMs by
varying the request number from 50 to 2000. We
repeated the experiment with only one and then with
three datacenters (DC). The results presented in
Figure 4 show that our approach scales well with
increasing number of service requests and providers.

Figure 4: Cloud service broker deployment efficiency.

6 CONCLUSIONS

The lack of interoperability and the heterogeneity in
current public Cloud platforms justify the need for
intermediate broker services to assist the user in
finding the appropriate provider for his needs.

In this paper we described the architecture design
of a Cloud service broker and proposed a simulation
environment to test and evaluate the broker.
Especially, we focused on the SLA management and
interoperability features included in the broker.

In our future work, we will use simulation to
investigate and evaluate the performance and
efficiency of different SLA-aware match making
algorithms by supporting multiple SLA parameters.
Furthermore, we will investigate the execution of
workflows with the help of the Cloud service broker
and improve the automated SLA negotiation in the
broker by implementing a new OCCI SLA mixin.

REFERENCES

Bernstein. D. et al. (2009). Blueprint for the Intercloud:
Protocols and Formats for Cloud Computing
Interoperability. In ICIW2009, 4th International
Conference on Internet and Web Applications and
Services, pages 328-336.

Buyya R., Ranjan R. and Calheiro R. N. (2010).
InterCloud: Utility-Oriented Federation of Cloud
Computing Environments for Scaling of Application
Services. In ICA3PP2010, 10th International
Conference on Algorithms and Architectures for
Parallel Processing, pages 13–31.

CloudSim 2.1.1 (2011). CLOUDS Lab, Unversity of
Melbourne, http://www.cloudbus.org/cloudsim/.

Gartner (2009). Cloud Consumers Need Brokerages to
Unlock the Potential of Cloud Services. Press Release.

GICTF (2010). Use Cases and Functional Requirements
for Inter-Cloud Computing. White Paper 9-8-
2010.Kertesz A., Kecskemeti G. and Brandic I.
(2011). Autonomic SLA-aware Service Virtualization
for Distributed Systems. In PDP2011, 19th Euromicro
International Conference on Parallel, Distributed and
Network-based Processing, pages 503-510.

Linlin Wu and Buyya R. (2010). Service Level Agreement
(SLA) in Utility Computing Systems. Tech. Rep. 2010.

Metsch T., Edmonds A. and Bayon V. (2010). Using
Cloud Standards for Interoperability of Cloud
Frameworks. Tech. Rep. 2010.

OCCI v1.1 (2011). Open Cloud Computing Interface
specification. OCCI-WG, http://www.occi-wg.org.

OCCI4JAVA v0.2 (2011). https://github.com/occi4java.
Theilmann W., Happe J., Kotsokalis C., Edmonds A. and

Kearney K. (2010). A Reference Architecture for
Multi-Level SLA Management. In Journal of Internet
Engineering, Vol 4, No 1, December 2010.

SLA�BASED�SERVICE�BROKERING�IN�INTERCLOUD�ENVIRONMENTS

81

