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Abstract. Current service-level agreements (SLAs) offered by cloud
providers make guarantees about quality attributes such as availability.
However, although one of the most important quality attributes from
the perspective of the users of a cloud-based Web application is its re-
sponse time, current SLAs do not guarantee response time. Satisfying a
maximum average response time guarantee for Web applications is dif-
ficult due to unpredictable traffic patterns, but in this paper we show
how it can be accomplished through dynamic resource allocation in a
virtual Web farm. We present the design and implementation of a work-
ing prototype built on a EUCALYPTUS-based heterogeneous compute
cloud that actively monitors the response time of each virtual machine
assigned to the farm and adaptively scales up the application to satisfy
a SLA promising a specific average response time. We demonstrate the
feasibility of the approach in an experimental evaluation with a testbed
cloud and a synthetic workload. Adaptive resource management has the
potential to increase the usability of Web applications while maximizing
resource utilization.

1 Introduction

Cloud providers such as Google and Amazon offer computational and storage re-
source rental services to consumers. Consumers of these services host applications
and store data for business or personal needs. The key features of these services,
on-demand resource provisioning and pay-per-use, mean that consumers only
need to pay for the resources they actually utilize. In this environment, cloud
service providers must maximize their profits by fulfilling their obligations to
consumers with minimal infrastructure and maximal resource utilization.

Although most cloud providers provide Service Level Agreements (SLAs) for
availability or other quality attributes, the most important quality attribute for
Web applications from the user’s point of view, response time, is not addressed
by current SLAs. The reason for this is obvious: Web application traffic is highly
unpredictable, and response time depends on many factors, so guaranteeing a
particular maximum response time for any traffic level would be suicide for the
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cloud provider unless it had the ability to dynamically and automatically allocate
additional resources to the application as traffic grows.

In this paper, we take steps toward eliminating this limitation of current
cloud-based Web application hosting SLAs. We present a working prototype
system running on a EUCALYPTUS-based [1] heterogeneous compute cloud that
actively monitors the response time of the compute resources assigned to a Web
application and dynamically allocates the resources required by the application
to maintain a SLA that guarantees specific response time requirements.

There have been several efforts to perform adaptive scaling of applications
based on workload monitoring. Amazon Auto Scaling [2] allows consumers to
scale up or down according to criteria such as average CPU utilization across a
group of compute instances. [3] presents the design of an auto scaling solution
based on incoming traffic analysis for Axis2 Web services running on Amazon
EC2. [4] demonstrate two software systems, Shirako [5] and NIMO [6]. Shirako
is a Java toolkit for dynamic resource allocation in the Xen virtualization en-
vironment that allocates virtual resources to guest applications from a pool of
available resources. NIMO creates an application performance model using ac-
tive learning techniques. The authors use NIMO to build performance models by
capturing resource requirements, data characteristics, and workload statistics for
a guest application. They then use Shirako to allocate the necessary resources to
the application. [7] use admission control and dynamic resource provisioning to
develop an overload control strategy for secure Web applications hosted on SMP
(Symmetric MultiProcessing) platforms. They implement and experiment with a
global resource manager for the Linux hosting platform that is responsible for al-
locating resources to application servers running on it and ensuring desired QoS
in terms of performance stability during extreme overload. The server machines
in their system are able to automatically adapt to changes in workload.

To the best of our knowledge, our system is the first SLA-driven resource
manager for compute clouds based on open source technology. Our working pro-
totype, built on top of a EUCALYPTUS-based compute cloud, provides adaptive
resource allocation and dynamic load balancing for Web applications in order
to satisfy a SLA that enforces specific response time requirements. We evaluate
the prototype on a heterogeneous testbed cloud and demonstrate that it is able
to detect SLA violations from individual computational resources and perform
adaptive resource management to satisfy the SLA.

There are a few limitations to this preliminary work. We only address the
application server tier, not the database tier or network. Our prototype is only
able to scale up, although it would also be easy to enable the system to scale down
by detecting the ends of traffic spikes. Finally, cloud providers using our approach
to response time-driven SLAs would need to protect themselves with a detailed
contract (imagine for example the rogue application owner who purposefully
inserts delays in order to force SLA violations). We plan to address some of
these limitations in future work.

In the rest of this paper, we describe our approach, the prototype
implementation, and an experimental evaluation of the prototype.
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2 System Design and Implementation

To manage cloud resources dynamically based on response time requirements,
we developed two components, VLBCoordinator and VLBManager, in Java. We
use Nginx [8] as a load balancer because it offers detailed logging and allows
reloading of its configuration file without termination of existing client sessions.

VLBCoordinator interacts with the EUCALYPTUS cloud using Typica [9].
Typica is a simple API written in Java to access a variety of Amazon Web
services such as EC2, SQS, SimpleDB, and DevPay. Currently, Typica is not
able to interact with EUCALYPTUS-based clouds, so we patched it to al-
low interaction with EUCALYPTUS. The core functions of VLBCoordinator
are instantiateVirtualMachine and getVMIP, which are accessible through
XML-RPC.

VLBManager monitors the logs of the load balancer and detects violations of
response time requirements. It reads the load balancer logs in real time and
calculates the average response time for each virtual machine in a Web farm
over intervals of 60 seconds. Whenever it detects that the average response
time of any virtual machine exceeds the required response time, it invokes the
instantiateVirtualMachine method of VLBCoordinator with the required
parameters and obtains a new instance ID. After obtaining the instance ID,
VLBManager waits for 20 seconds (the maximum time it takes for a VM to boot
in our system) then obtains the new instance’s IP address using an XML-RPC
call to VLBCoordinator. After receiving the IP address of the newly instantiated
virtual machine, it updates the configuration file of the load balancer then sends
it a signal requesting it to reload the configuration file.

VLBManager executes as a system daemon. Nginx’s proxy log entries record
among other information the node that serves each specific request. VLBManager
reads these log entries for 60 seconds and calculates the average response time of
each node. If it finds that the average response time of any node is greater then
required response time, it makes an asynchronous call to VLBCoordinator that
adaptively launch a new virtual machine and add that virtual machine to the
Web farm controlled by the Nginx load balancer. Following is the pseudocode
for the main use case of VLBManager.

1: set SLArt = 2.0 {Maximum Response time (seconds) allowed in SLA}
2: set isScaling = false
3: while true do
4: vlbManager.ReadNginxLogEnteries(60)
5: for each node in nginxWebFarm do
6: vlbManager.calculateAvgRT (node)
7: end for
8: if Avgrt of any node > SLArt and isScaling == false then
9: isScaling = true

10: instanceId = V LBCoordinator.instantiateV irtualMachine()
11: vmip = vlbCoordinator.getV MIP (instanceId)
12: vlbManager.addV MtoNginxWebFarm(vmip)
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13: isScaling = false
14: end if
15: end while
The Boolean isScaling is used to prevent concurrent invocations of the scale-up
procedure. VLBManager creates a child thread to interact with VLBCoordinator
after detection of response time requirements violation at Line 8.

3 Experiments

In this section we describe the setup for an experimental evaluation of our pro-
totype based on a testbed cloud, a sample Web application, and a synthetic
workload generator.

3.1 Testbed Cloud

We built a small heterogeneous compute cloud using four physical machines.
Table 1 shows the hardware configuration of the machines.

Table 1. Hardware configuration of physical machines used for the experimental
compute cloud

Node Type CPU RAM

Front end Intel Pentium 2.80 GHz 2 GB
Node1 Intel Pentium 2.66 GHz 1.5 GB
Node2 Intel Celeron 2.4 GHz 2 GB
Node3 Intel Core 2 Duo 1.6 GHz 1 GB

We used EUCALYPTUS to establish a cloud architecture comprising one Cloud
Controller (CLC), one Cluster Controller (CC), and three Node Controllers (NCs).
We installed the CLC and CC on a front-end node attached to both our main LAN
and the cloud’s private network. We installed the NCs on three separate machines
(Node1, Node2, and Node3) connected to the private network.

3.2 Sample Web Application and Workload Generation

The CPU is normally the bottleneck in the generation of dynamic Web content
[10]. We therefore built a simple synthetic Web application consisting of one Java
servlet that emulates the real behavior of dynamic web applications by alternating
between a CPU intensive job and idle periods, simulating access to non-compute
resources such as network connections and local I/O. The servlet accepts two pa-
rameters, a baseline time and the number of iterations to perform, and performs a
matrix calculation up to the baseline time for the given number of iterations. We
used httperf to generate synthetic workload for our experiments. We generate
workload for a specific duration with a required number of user sessions per second.
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Fig. 1. Workload generation for both experiments. We linearly step the load level from
load level 1 through load level 12 every four minutes. Each load level represents the
number of user sessions per second, and each session involves 10 requests to the sample
Web application.

Fig. 2. Experimental setup for Experiment 1 (static resource allocation). The Nginx-
based Web farm consists of one virtual machine (VM1) running the Web application.
VLBManager is only used to obtain the average response time by actively monitoring
the Nginx logs.

Each user session makes 10 requests to the application including 4 pauses to simu-
late user think time. We performed two experiments based on this application.
Experiment 1 profiles the system’s behavior with static allocation of resources
to the application. Experiment 2 profiles the system’s behavior under adaptive
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Fig. 3. Experimental setup for Experiment 2 (dynamic resource allocation). The Web
farm is initialized with one virtual machine (VM1), while VM2 and VM3 are cached
using EUCALYPTUS. VLBManager monitors the Nginx logs and detects violations of
the SLA. VLBCoordinator adaptively invokes additional virtual machines as required
to satisfy the SLA.

allocation of resources to the application to satisfy specific response time require-
ments. The same workload, shown in Figure 1, is generated for both experiments.
We linearly step the load level from load level 1 through load level 12 every four
minutes. Each load level represents the number of user sessions created per second,
and each session involves 10 requests to the sample Web application.

3.3 Experiment 1: Static Allocation

In this experiment, we established the experimental setup shown in Figure 2, in
which only one virtual machine (VM1) hosts the Web application. We installed
the Nginx load balancer on our front-end node and the Apache Tomcat applica-
tion server on the virtual machine. The Nginx-based Web farm thus consists of
only one virtual machine (VM1). VLBManager is only used to obtain the average
response time by actively monitoring the Nginx logs.
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3.4 Experiment 2: Adaptive Allocation

In this experiment, we used our proposed system to prevent response time in-
creases and rejection of requests by the Web server. Figure 3 shows the experi-
mental setup we established for this experiment. The Nginx-based Web farm is
initialized with one virtual machine (VM1), while VM2 and VM3 are cached
using EUCALYPTUS. In this experiment, we try to satisfy a Service Level
Agreement (SLA) that enforces a two-second maximum average response time
requirement for the sample Web application regardless of load level. We use
VLBManager to monitor the Nginx logs and detect violations of the SLA. We use
VLBCoordinator to adaptively invoke additional virtual machines as required to
satisfy the SLA.

4 Results

4.1 Experiment 1: Static Allocation

This section describes the results we obtained in Experiment 1. Figure 4 shows
the CPU utilization of VM1 during Experiment 1. After load level 5, the CPU
is almost fully utilized by the Tomcat application server. We observe downward
spike in the beginning of each load level because all user sessions are cleared
between load levels and it takes some time for the system to return to a steady
state.

Figure 5(a) shows the number of requests served by our system. After load
level 6, we do not observe any growth in the number of served requests because
the sole Web server reaches its saturation point. Although the load level increases
with time, the system is unable to serve all requests, and it either rejects or
queues the remaining requests. Figure 5(b) shows the number of requests rejected
by our system during Experiment 1.

Figure 6 shows the average response time we observed during each load level.
From load level 1 to load level 5, we observe a nearly constant response time, but
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Fig. 4. CPU utilization of VM1 during Experiment 1. The duration of each load level
is 4 minutes. The CPU is saturated at load level 5.
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(a) Number of requests served.
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(b) Number of requests rejected.

Fig. 5. Number of served and rejected requests during Experiment 1. The duration of
each load level is 4 minutes. After load level 6, we do not observe any growth in the
number of served requests, because the Web server reaches its saturation point. As the
load level increases with time, the system is increasingly unable to serve requests and
rejects more requests.
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Fig. 6. Average response time for each load level during Experiment 1. The duration
of each load level is 4 minutes. From load level 1 to load level 5, we observe a nearly
constant response time. After load level 5, we see rapid growth in the average response
time. When the Web server reaches the saturation point, requests spend more time in
the queue, and the system rejects some incoming requests. From load level 6 to load
level 10, some requests spend time in the queue and few requests get rejected. After
load level 10, the Web server queue is also saturated, and the system rejects most
requests.

after load level 5, the arrival rate exceeds the limit of the Web server’s processing
capability, so requests spend more time in the queue, and response time grows
rapidly. From load level 5 to load level 10, requests spend more time in the queue
and relatively few requests get rejected. After load level 10, however, the queue
also becomes saturated, and the system rejects most requests. Therefore we do
not observe further growth in the average response time.

Clearly, we cannot provide a SLA guaranteeing a specific response time with
an undefined load level for a Web application using static resource allocation.



SLA-Driven Adaptive Resource Management for Web Applications 251

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 30000

 0  1  2  3  4  5  6  7  8  9  10  11  12  13

# 
of

 r
eq

ue
st

s 
se

rv
ed

Load level

Number of requests serverd with each load level

(a) Number of requests served.

 0

 50

 100

 150

 200

 0  1  2  3  4  5  6  7  8  9  10  11  12  13

# 
of

 r
eq

ue
st

s 
se

rv
ed

Load level

Number of requests rejected with each load level

(b) Number of requests rejected.

Fig. 7. Number of served and rejected requests by system during Experiment 2 with
adaptive resource allocation. The number of requests served by system grows linearly
with the load level while only 120 requests are rejected during the first violation of
response time requirements.
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Fig. 8. Average response time for each virtual machine during Experiment 2. Whenever
the system detects a violation of response time requirements in any virtual node, it
dynamically creates another virtual machine and adds it to the Web farm.

4.2 Experiment 2: Adaptive Allocation

This section describes the results of Experiment 2. Figure 7(a) shows the number
of requests served by the system over time. We observe linear growth in the
number of requests served by the system with each load level. Figure 7(b) shows
the number of requests rejected during Experiment 2. Only 120 requests are
rejected during the first violation of response time requirements.

Figure 8 shows the average response time of each virtual machine as it is
adaptively added to the Web farm. Whenever the system detects a violation of
the response time requirement from any virtual machine, it dynamically invokes
another virtual machine and adds it to the Web farm. We observe continued
violation of the required response time for a period of time due to the latency
of virtual machine boot-up.
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Fig. 9. CPU utilization of virtual machines during Experiment 2. The duration of each
load level is four minutes. After load level 6, VM2 is adaptively added to the Web farm
to satisfy the response time requirement. After load level 10, VM3 is adaptively added
to the Web farm. Different load levels for different VMs reflect the use of round robin
balancing and differing processor speeds for the physical nodes.

Figure 9 shows the CPU utilization of each virtual machine over the experi-
ment. After load level 6, VM2 is adaptively added to the Web farm to satisfy the
response time requirement. After load level 10, VM3 is adaptively added to the
Web farm. Different load levels for different VMs reflect the use of round-robin
balancing and differing processor speeds for the physical nodes.

The experiments show that adaptive management of resources on compute
clouds for Web applications would allow us to offer SLAs that enforce specific
response time requirements. To avoid continued violation of the SLA during
VM boot-up, it would be better to predict response time requirement violations
rather than waiting until the requirement is violated.

5 Conclusion and Future Work

In this paper, we have described a prototype system based on EUCALYPTUS
that actively monitors the response time of a Web application hosted on a cloud
and adaptively scales up the compute resources of the Web application to satisfy
a SLA enforcing specific response time requirements. Adaptive resource manage-
ment in clouds would allow cloud providers to manage resources more efficiently
and would allow consumers (owners of Web applications) to maintain the us-
ability of their applications.

We use the log-based approach to monitor Web applications and detect re-
sponse time violations on the basis of the actual time it takes to service requests.
The main benefit of this approach is that it does not require any modification
of the application or adding components to the user’s virtual machines. An
event-based approach such as CPU utilization monitoring could be used, but
this would not guarantee satisfaction of the SLA. CPU utilization or other event
based approaches, while not sufficient in isolation, could be used in tandem with
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log-based response time monitoring to help predict future increases in response
time.

We are extending our system to scale down Web applications when appropri-
ate, and we are planning to predict VM response times in advance to overcome
the virtual machine boot-up latency problem. We also plan to use fair balanc-
ing instead of round robin balancing to eliminate the need to check each VM’s
response time. Finally, we plan to port our system to the Amazon Web Services
infrastructure.
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