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ABSTRACT

As cloud computing becomes increasingly important in data-
base systems, many new challenges and opportunities have
arisen. One challenge is that in cloud computing, business
profit plays a central role. Hence, it is very important for
a cloud service provider to quickly make profit-oriented de-
cisions. In this paper, we propose a novel data structure,
called SLA-tree, to efficiently support profit-oriented deci-
sion making. SLA-tree is built on two pieces of information:
(1) a set of buffered queries waiting to be executed, which
represents the scheduled events that will happen in the near
future, and (2) a service level agreement (SLA) for each
query, which indicates the different profits for the query for
varying query response times. By constructing the SLA-
tree, we efficiently support the answering of certain profit-
oriented “what if” questions. Answers to these questions in
turn can be applied to different profit-oriented decisions in
cloud computing such as profit-aware scheduling, dispatch-
ing, and capacity planning. Extensive experimental results
based on both synthetic and real-world data demonstrate
the effectiveness and efficiency of our SLA-tree framework.
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1. INTRODUCTION
Accelerating adoption of the cloud computing introduces

new challenges to traditional database systems [2, 6, 13].
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For example, a database service in the cloud may have to
serve much more diverse clients than the traditional enter-
prise databases usually do. One key observation is that cloud
service providers have to optimize their profits while serv-
ing diverse clients. Usually, the profit of a cloud service
provider is determined by the services the provider offers
to a variety of customers, governed by certain service level
agreements (SLAs). As a consequence, for a cloud service
provider, how to make intelligent profit-oriented decisions is
a major challenge and a key to success. In this paper, we
present a framework for efficiently supporting SLA-based,
profit-oriented decisions in cloud computing.

Figure 1: An example of cloud computing system.

To further illustrate the challenges and to motivate our
work, we use a real-life scenario. Assume a cloud service
provider is hosting an online shopping site, where queries
come from different users, as shown in Figure 1. When a
query comes from a serious buyer (e.g., a user who is ready to
check out, with high margin items in the shopping cart), the
potential profit of answering the query can be high and the
delay should be short; on the other hand, when the query is
from a casual user (e.g., someone who just uses the shopping
site’s tools to compare features of different products), the
potential profit may be low and longer delay is tolerable.
Yet another query may come from an internal employee who
is collecting some data to make certain business decisions
(e.g., whether to put certain products on sale), and in such
a case a much longer delay is acceptable up to a certain
threshold, after which a penalty may be incurred due to
the failure to make the decision. In addition to different
profit profiles, another observation from this example is that
the workload in a cloud database system can be a mixture
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of short queries (e.g., OLTP queries from buyers) and long
queries (e.g., OLAP queries from internal employees).

In the above scenario, some profit-oriented decisions to be
made by the cloud service provider include

scheduling: When there are multiple queries with different
profit profiles, which query should we serve first?

dispatching and admission control: When a new query
arrives, if there are several servers that can handle
the query, to which server should we dispatch the new
query? Or should we simply reject the new query due
to profit consideration?

capacity planning: Given the current workload and profit
situation, should we add a new server?

To address these profit-oriented issues, traditional tech-
nologies, we believe, have several weak points. First, most
traditional technologies in scheduling and dispatching, focus
on system level metrics such as database throughput, aver-
age query response time, and so on. In contrast, we believe
it is in the service provider’s best interest to directly opti-
mize the profit while making decisions1. Second, although
there exist many business analysis tools for profit-oriented
decisions, they are often heavyweight and offline. The cloud
computing model has to operate in a fast changing envi-
ronment to provide services to unpredictably diverse set of
clients. Therefore, lightweight and real-time decision sup-
porting functionalities are required.

To address these challenges, we propose a framework to
efficiently support profit-oriented decisions in database sys-
tems in the cloud. The basic idea of our framework is that
rather than observing the output of a database server for
query response time and throughput, we proactively look
into the query buffer in front of the server for profit infor-
mation. More specifically, based on the queries buffered in
front of the server and their corresponding SLAs, we build a
novel lightweight data structure called SLA-tree. SLA-tree
not only encodes the information about the profit situation
in the near future, but also is able to efficiently infer the
potential profit impact if certain conditions are changed in
the system. Equipped with such capability, we ask a se-
ries of “what if” questions to SLA-tree in real time to make
profit-oriented decisions in scheduling, dispatching, capacity
planning, and so on. The SLA-tree framework is illustrated
in Figure 2.
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Figure 2: The SLA-tree Framework.

1In the scheduling community, however, there exist several
cost-based methods that are closely related to profit-oriented
decisions, and we will discuss them in related work.

The main contributions of this paper are summarized as
follows.

• We propose a novel data structure, SLA-tree, to sup-
port profit-oriented decisions in cloud computing. SLA-
tree combines a sequence of buffered queries together
with the SLA of each query, and it is able to efficiently
infer the potential profit change if certain set of queries
are postponed or expedited.

• We present how SLA-tree can be used as an efficient
framework to improve the profit efficiency of variety
of system components, such as scheduling, dispatch-
ing, and capacity planning, which are relevant to cloud
computing systems.

The rest of the paper is organized as the following. In
Section 2, we provide background information. In Section 3,
we introduce SLA-tree by using a simple 1/0 profit model.
In Section 4, we show how SLA-tree can be extended to
handle general profit models. In Section 5, we describe the
implementation of SLA-tree in detail and analyze its time
and space complexities. In Section 6, we demonstrate how
to leverage the information in SLA-tree for profit-oriented
tasks in a cloud database system such as scheduling, dis-
patching, and capacity planning. We show experimental re-
sults in Section 7 and discuss some limitations of SLA-tree
in Section 8. Finally, we conclude the paper in Section 9.

2. BACKGROUND INFORMATION
In this section, we provide some background information.

We start with an introduction to service level agreements
(SLAs). Then we describe the system setting in our frame-
work. Finally, we discuss some related work.

2.1 Service Level Agreements (SLAs)
An SLA is a contract between a service provider and its

customers. SLAs are used to indicate the profits the service
provider may obtain if the service is delivered at certain
levels, and the penalty the service provider has to pay if
the agreed-upon performance is not met. There exist many
forms of SLAs with different metrics (query response time,
throughput, availability, security, etc.) and measurement
methods (e.g., measured at a per-customer level or a per-
query level).

In this paper, we use the SLA metric on query response
time, which is the time between a query is presented to the
system and the time when the query execution is completed.
For the SLA shape, we choose to use stepwise functions, be-
cause they were commonly used in previous studies and they
naturally capture business terms stated in the service con-
tracts [21]. More specifically, as illustrated in Figure 3(a),
assuming a query is presented to the system at time 0, if the
system is able to finish the execution of the query at time t,
where t is earlier that t1, then the service provider obtains
a gain of g1; otherwise, if t1 < t ≤ t2, the gain is g2, and
so on. Finally, if the answer cannot be delivered within a
certain delay (t2 in our example), a penalty p is incurred2.

2In this case, the service provider can actually choose to
drop the query, since the penalty p has already happened.
However, in this paper we choose not to drop the query, as-
suming the client may still request the query result even the
deadline has passed, which can be seen in many application
scenarios.
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As an example of the use case for the SLA in Figure 3(a),
we use the system described in Figure 1 again. When a
buyer issues a query (e.g., by clicking a “check-out” button)
to place an order, a response time less than t1 may indicate
a normal check-out time. On the other hand, if the response
time is longer than t1, the buyer may lose patience and at-
tempt to cancel the order. Finally, t2 may represent the
timeout threshold of the client’s browser, whereas after t2, a
query result (e.g., the order confirmation) becomes invalid.
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Figure 3: SLAs with (a) general profit-penalty
model, (b) g/0 profit model, and (c) 1/0 profit
model, assuming the query arrives at time 0.

Other than Figure 3(a), in Figures 3(b) and 3(c) we show
two special cases of SLAs with a single step in the stepwise
functions. These special cases will be used to facilitate the
introduction of our framework.

In addition, we choose query-level SLAs instead of customer-
level SLAs. The reason for this choice is that very often,
even for the same customer, the service provider can assign
different prices for queries within the expectation (e.g., the
first 1000 queries during a day) and those beyond budget
(e.g., over-use charge).

Profit vs. Revenue From the service provider’s point
of view, its profit is the difference between the revenue (e.g.,
determined by SLAs) and the cost(e.g., hardware and soft-
ware costs). In most part of this paper, when we talk about
profit, we refer to the revenue part, which is directly related
to SLAs. That is, we consider the cost part to be fixed when
comparing the profit of different decisions.

2.2 System Setting
Our high-level system setting is shown in Figure 4. The

system consists of multiple servers, where queries arrive to
the system dispatcher. The dispatcher dispatches each in-
coming query to one of the servers (or maybe rejects the
query if admission control is in place). When a query is dis-
patched to a database server, if the server is busy, the query
joins a buffer of queries waiting to be executed. When the
execution of the current query in the server is completed, the
query at the front of the buffer is executed next, or option-
ally, a scheduler picks a query from the buffer to be executed
next according to certain scheduling policies.

We consider the case where there is only one buffer for
each server. Furthermore, we focus on online decision mak-
ing where the query workload is not known beforehand.

2.3 Related Work
In the areas of computer networks and database systems,

scheduling and dispatching have been studied for decades [14]
and numerous policies have been proposed and studied in
various areas such as computer networks [4], database sys-
tems [18], and Web services [19].

queries
arrive

Sm

dispatcher

S1

S2

S

databasequery

q1q2q3q4q5

execution
arrive
queries

buffer sever

query

complete

scheduler

zooming in on
a single server

Figure 4: The system setting.

Some well-known scheduling policies include first-come-
first-serve (FCFS), shortest-job-first (SJF), earliest-deadline-
first (EDF), and so on. Each of these scheduling policies has
its own merits. However, these scheduling policies are profit-
unaware and they usually optimize certain system-level met-
rics such as throughput and average response time. More
recently, there has been some work on profit-based schedul-
ing. Haritsa et al. [10] proposed a value-based scheduling in
database systems, where the value of a query is based both
on a fixed priority and a hard deadline. Peha et al. [15] pro-
posed CBS, a cost-based scheduling that schedules queries
according to their expected cost (profit) whereas the cost
changes over time. Gupta et al. [9] argued that, in a business
intelligent system, a performance metric should use a user’s
perspective instead of a system perspective, and accordingly
proposed an end-to-end solution that takes fairness, effec-
tiveness, efficiency, and differentiation into consideration.
Similar ideas had appeared in the field of high-performance
grid computing. Chun et al. [3] used a user-centric perfor-
mance metric, where the utility of a job depends on the
execution time, and designed scheduling algorithms accord-
ingly. Irwin et al. [11] considered a utility function with
a gradually increasing penalty with a bound and demon-
strated better performance than that in [3].

For dispatching, other than the simplest Round-Robbin
policy, a commonly used approach is least-work-left (LWL),
which dispatches a query to the server that currently has
the least workload (including the workload left for the query
being executed in the server and the expected total work-
load among all queries waiting in the buffer; see Zhang et
al. [20] for a detailed discussion). More recently, Schroeder
et al. [17] proposed size-interval based task assignment (SITA),
which classifies queries according to their execution time and
then dedicates certain number of servers to each query class.
However, most existing work on dispatching targeted at bal-
ancing the workload, and they are not profit aware.

Another topic related to profit-oriented decision making
is to predict the query execution time, because it is needed
for making the right decisions. There have been some recent
studies that estimate query execution time by using machine
learning techniques. Elnaffar et al. [5] used classification
techniques to predict if a workload is OLTP or DSS (Decision
Support System). Ganapathi et al. [7] used advanced kernel
methods and a k-nearest-neighbor approach to predict the
execution time of a query, by using the information in the
query plan. The encouraging results from these studies show
that we can obtain reliable estimation of query execution
time and use it in profit-oriented decision making.
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3. SLA-TREE FOR 1/0 PROFIT MODEL
Fundamentally, SLA-tree is mainly used to efficiently an-

swer two key questions about potential profit change among
queries in the buffer. In this section, we introduce these two
questions, discuss why they cannot be answered efficiently
by using naive approaches, and show how SLA-tree is built
to answer the questions efficiently.

3.1 Two Key Questions to Answer
Assume that at a given time t, there are N indepen-

dent queries {q1, . . . , qN} to be executed sequentially in a
database server, and each query has its own SLA. Further-
more, we assume the order of query execution is fixed (either
determined by the time when the queries join the buffer, or
decided by a certain scheduling policy). Without loss of gen-
erality, we assume the query execution order is q1 ≺ q2 ≺
· · · ≺ qN , i.e., q1 is to be executed first and then q2, ..., and
finally qN .

The high-level objective of our SLA framework is as fol-
lows. By combining the order q1 ≺ q2 ≺ · · · ≺ qN with the
SLAs associated with the queries, we build a data structure,
SLA-tree, in order to efficiently answer the following two key
questions.
Two key questions: For any m and n such that 1 ≤ m ≤
n ≤ N , and for arbitrary time interval τ ,

postpone(m,n,τ) How much profit will be lost if we post-
pone queries qm, qm+1, . . . , qn (with respect to their
originally scheduled starting time) by a time of τ?

expedite(m,n,τ) How much profit will be gained if we ex-
pedite queries qm, qm+1, . . . , qn (with respect to their
originally scheduled starting time) by a time of τ?

Then equipped with the capability of answering these two
key questions efficiently, we can ask a variety of “what if”
questions to support profit-oriented decisions in the system.
We will defer the discussion on the application areas of“what
if” scenarios in a later section (Sections 6) and instead, in
this section and the next two sections, we describe how to
answer postpone(m,n,τ) and expedite(m,n,τ) efficiently
by using SLA-tree.

3.2 Naive Approaches
Before showing how SLA-tree is built to efficiently answer

the above two key questions, we first examine why naive
approaches fail to do so.

The most naive approach is to directly calculate the an-
swers to the postponing and expediting questions from the
query buffer. More specifically, we first compute the origi-
nal total profit for queries qm, qm+1, . . . , qn, assuming they
would be executed on schedule; then we compute the new to-
tal profit assuming these queries would be postponed (or ex-
pedited) by τ from their originally scheduled starting time;
the difference between the two profits is therefore the an-
swer. As can be seen, to answer each question about post-
poning and expediting, it will take O(N) time. This is too
slow if answers to many such questions are needed at the
same time. For example, it will take O(N2) time if answers
to N such questions are needed by certain applications.

A more sophisticated approach is to pre-compute the an-
swers to postpone(1,i,τ) and expedite(1,i,τ) for each
query qi. After this pre-computation, the profit change for
postponing or expediting any subset qm, qm+1, . . . , qn can be

derived in O(1) time. A moment of thought will reveal that
this approach can only handle a fixed constant τ , and it fails
if τ is a variable in the questions. However, as will be seen
momentarily, this idea of pre-computing cumulative values
to facilitate efficient question answering is one key technique
used by our SLA-tree data structure.

3.3 Building and Querying the SLA-tree
In this subsection, we introduce our SLA-tree for effi-

ciently handling the two key questions of postpone(m,n,τ)
and expedite(m,n,τ). To begin with, in this section we fo-
cus on the simplest SLA, the 1/0 profit SLA as shown in
Figure 3(c), where a profit of 1 is gained if the delay is less
than t1 and 0 otherwise (i.e., there is no penalty). We extend
SLA-tree to general SLAs in the next section.

3.3.1 Converting Delay to Slack

To make the discussion easier to follow, we first convert
the delivery time in the SLA definition (Figure 3) into an-
other concept of the slack time.

In the 1/0 profit SLA model, for each query qi in the
buffer, there are three parameters: td

i , ts
i , and τi. td

i is the
deadline for query qi. That is, if query qi is finished before
td
i , the profit to the service provider is 1, otherwise the profit

is 0. Obviously, td
i depends on the arrival time and the SLA

threshold t1 for query qi. ts
i is the scheduled starting time

for query qi. τi is the execution time for qi in the database
server. For convenience, instead of td

i and ts
i , in the following

siτi

ts
i td

i

time

Figure 5: Illustration of how the slack is derived.

discussion we focus on a derived value—the slack time si

for qi, where si = td
i − ts

i − τi, as illustrated in Figure 5.
In other words, slack si is the time that qi can be further
postponed (with respect to its originally scheduled starting
time) without introducing additional penalties. If the slack
is a negative value, we reverse its sign and call the result
tardiness, which is again a positive value. In other words,
if si < 0, then the tardiness -si indicates the time that qi

has to be expedited (with respect to its originally scheduled
starting time) in order to avoid its profit loss.

3.3.2 Building the Slack Tree S+

The SLA-tree framework consists of a pair of components—
a slack tree S+ and a tardiness tree S−. The slack tree S+

is a complete binary search tree built as follows. First, we
compute the slacks s1, . . . , sN for all the queries q1, . . . , qN

and sort them in the increasing order (without loss of gen-
erality, we assume these N slack values are distinct). Then
the queries whose slack values are non-negative are used to
construct the binary search tree S+, which is constructed
by merging the sorted list in a bottom-up fashion. More
specifically, the sorted list of queries (sorted by their slacks,
which are positive) are the leaf nodes of S+, and upward
pairwise merges are recursively applied to build the internal
nodes of S+. Each node d of S+ has two parts: a slack value
dτ and an ordered list of descendants dl. Here is a recursive
description:
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• Each leaf node d in S+ corresponds to a query qi: its
slack value dτ is the query’s slack τi and its descendant
list contains a single item: i, the id of the correspond-
ing query qi;

• For an internal node d, its slack value dτ is the middle
point between the largest slack value in its left subtree
and the smallest slack value in its right subtree; and
its descendant list contains the query id’s of all its
descendant nodes, sorted by query id.
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Figure 6: The simple version of a slack tree in the
SLA-tree, with 1/0 profit model.

Figure 6 shows an example of slack tree. We will use
this as a running example in the rest of the paper. In this
example, we assume there are 16 queries q1 to q16. Without
loss of generality, we assume the query execution order is
q1 ≺ q2 ≺ · · · ≺ q16. In addition, for illustration purposes,
in this example we assume queries with odd ids have positive
slack values and queries with even ids have negative slack
values (positive tardiness values). As a consequence, the
slack tree in Figure 6 is constructed by queries q1, q3, . . . , q15.
In the figure, for each node d in the slack tree, its slack value
dτ is given by a number on top of a line segment and its
descendant list is shown as an array in a square box. For
example, look at node D: it is an internal node with a slack
value of dτ=15 and a list of two descendants with ids 5 and
11, respectively.

3.3.3 Querying the Slack Tree S+

After S+ has been built, we now show how to efficiently
answer postpone(m,n,τ) by using S+. We first start with
a special case where m=1, i.e., postpone(1,n,τ). To an-
swer postpone(1,n,τ), we traverse S+ starting from visit-
ing the root in the following way. An accumulator c is used
and its initial value is set to zero. For an internal node d, τ
is compared with dτ . There can be two cases:

τ ≤ dτ If this happens, then we know none of (the queries
corresponding to) the descendants of d’s right child has
slack less than τ and so they can be safely ignored,
because their profit will not be affected if they are
postponed by τ . If this happens, we simply visit the
left child of d and ignore the right child of d.

τ > dτ If this happens, then we know all of (the queries
corresponding to) the descendants of d’s left child have
slacks less than τ , and so each of them will lose a profit
of 1. The only unknown is how many of them have
id’s less than or equal to n. This can be answered by
a binary search for n in the descendant list of the left
child of d. Assuming this number of queries is k, then
we increase c by k and visit the right child of d.

The traversal will finally arrives at a leaf node d. When
this happens, we increment c by 1 if the query id in the leaf
node d is less than or equal to n and τ > dτ . Finally, the
result c represents the number of queries that (1) have id’s
less than or equal to n and (2) have slacks less than τ . This
number c is exactly the profit loss that will be introduced in
q1 through qn if they are postponed by a time interval of τ .

The arrows in bold in Figure 6 show the traversal path
for answering the question postpone(1,n=9,τ = 32). (1)
Starting at root node A, because τ < dA = 45, we ignore
the right subtree of A and visit node B; (2) τ > dB = 25
and so we move to node E and increase c by 1, which is the
number of ids in the descendant list of node D that are less
than n; (3) τ < dE = 35 and so we ignore E’s right subtree
and move to J ; (4) J is a leaf node with id 3, which is less
than n, and τ > dJ = 30, so c is increased by 1 again. The
final answer is therefore postpone(1,9,32) = 2.

Next, to generalize to arbitrary m and n, it can be eas-
ily shown that for a fixed τ , postpone() has the following
additive property:

postpone(m,n,τ) = postpone(1,n,τ)

− postpone(1,m-1,τ).

Querying S+ can be handled in time O((log N)2) in this
naive implementation of SLA-tree: (log N) steps of traver-
sal and each step involves at most one binary search in the
descendant list (of the left child). However, in Section 5 we
show a more sophisticated implementation of SLA-tree using
auxiliary information that reduces the query time complex-
ity to O(log N).

3.3.4 Building and Querying the Tardiness Tree S−

The tardiness tree S− is built in the same way as the
slack tree S+, except that S− is built for those queries with
negative slacks (and hence positive tardiness values) and
the slack value dτ is replaced by tardiness values, which are
again positive. Then we can easily show that expedite(m,n,τ)
can be answered by traversing S− in exactly the same way
we previously traversed S+.

4. SLA-TREE FOR GENERAL PROFIT MODEL
In this section, we describe how SLA-tree can handle the

general profit model, as illustrated in Figure 3(a). We start
with an intermediate step, the g/0 profit model, as illus-
trated in Figure 3(b).

4.1 g/0 Profit Model
Recall that when moving to a right child, we ask its left

sibling “in your descendant list, how many of them have ids
less than or equal to n”. Actually, what we really cared
about is not “how many” but “how much profit loss”. These
two happen to be identical in the case of 1/0 profit. So if we
have gi/0 profit, where gi is the profit loss because of miss-
ing qi’s deadline, what we really care about is “among the
queries with id’s less than or equal to n in your descendant
list, what the total profit loss is”. Therefore, if we have this
total profit loss for each entry in each descendant list, then
we can handle arbitrary profit loss. This can be achieved by
accumulating and recording these total losses while merging
the descendant lists. It can be shown (detailed in the next
section) obtaining such losses can be done in an incremental
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way and so will not change the time complexity of building
the SLA-tree.
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Figure 7: The simple version of a slack tree in the
SLA-tree, with g/0 profit model.

In Figure 7, we extend our running example by adding
a profit loss to each query (shown at the bottom of the
descendant lists) and showing the corresponding SLA-tree
with accumulated profit losses. For example, from node D,
we can see that among the descendants of D, the total profit
loss for queries with ids of 5 or lower is 200, and that for
queries with ids of 11 or lower is 300. It can be shown that if
we ask postpone(1,9,32) again, the answer will be a profit
loss of 300.

4.2 General Profit Model
Now we show how SLA-tree can be extended to handle the

general profit model as described in Figure 3(a). The key
idea here is to decompose a general profit model SLA into
the sum of several g/0 profit model SLAs. This is illustrated
in Figure 8. If the query execution is completed before t1, a
profit gain g1 is obtained; otherwise if it is completed before
t2, a smaller profit gain g2 is obtained; otherwise, a penalty
p is incurred. There is an equivalent profit model: for each
query, the service provider starts by paying the penalty p
upfront; then if the query execution is completed before t2,
a profit gain g′

2 = g2 + p is made; if in addition, the query is
completed before t1, an additional profit gain g′

1 = g1 − g2

is made. (It is worth noting that in this equivalent model, p
can be excluded from future consideration, for its net effect
has been absorbed by g′

2.) With such a decomposition of
SLAs, we can extend SLA-tree in the following way to handle
SLAs with the general profit model.
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Figure 8: (a) SLA with multiple levels of profits, and
(b) the profit decomposition into three g/0 profits.

We start by decomposing the general SLA into the sum
of several g/0 profit models, as shown in Figure 8(b). As-
suming each SLA-tree has exactly K steps, we can duplicate
each query id by K-1 times (obviously with different slack
or tardiness values). Then we can build and query SLA-tree
the same way as before. However, there are two changes
here: when merging two descendant lists, if two copies of
the same query meet, then their accumulative profits are
added and they are combined as a single query in the cur-
rent descendant list. The details are given the next section.
Second, because the number of nodes in SLA-tree is now
NK (because each of the N queries corresponds to K − 1
leaf nodes in the SLA-tree), the time and space complex-
ity become O(NK log(NK)), and the time complexity for
querying SLA-tree becomes O(log(NK)).

In Figure 9, we show 4 queries with different general SLAs
and in Figure 10, we show the corresponding SLA-tree3.
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Figure 9: Profits for the 4 queries in the example.
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5. DETAILS OF SLA-TREE
In this section, we first provide the implementation de-

tail for a sophisticated version of SLA-tree that achieves
the O(NK log(NK)) time complexity, and then provide the
formal proofs for the space and time complexities of the im-
plementation.

5.1 SLA-Tree Implementation
Figure 11 illustrates the information stored in the sophisti-

cated version of SLA-tree (we only show the slack tree here).
We discuss this information in detail.

First, as mentioned before, SLA-tree is a complete binary
search tree. That is, a node either is a leaf (and so corre-
sponds to a query) or has exactly two children. Therefore,
the tree size is 2M -1 where M is the total number of leaf

3Note that the SLA of each of the 4 queries in Figure 9 are
obtained by joining those of two queries in Figure 7, and
hence the two SLA-trees happen to be very similar.
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Figure 11: The complete version of SLA-tree.

nodes, i.e., the number of queries (and their duplications
generated by the decomposition of SLAs) that have posi-
tive slacks. So M is bounded by NK, where N is the total
number of queries in the query buffer (where a query can
be in the slack tree, or the tardiness tree, or both) and K
is the maximal number of “steps” in the stepwise SLA. In
Figure 11, nodes A through G are internal nodes, and nodes
H through O are leaf nodes.

Second, for each SLA-tree node d, its slack value dτ is
the average between the maximum slack in its left subtree
and the minimum slack value in its right subtree. This slack
value is the search key for the binary search tree. In ad-
dition, the descendant list of d records the ids of all the
queries who are decedents of d, and the ids in the list are in
an increasing order. Such an order can be automatically ob-
tained during the SLA-tree construction, as shown in detail
in Figure 13. For each query id i in d’s descendant list, there
is a number (indicated by the numbers below the boxes in
Figure 11) records the information about among all queries
with ids ≤ i in the descendants of d, the total profit loss if
they are all postponed by dτ . Again as shown in Figure 13,
such total profits can be easily obtained during the SLA-tree
construction.

Third, the last piece of information in SLA-tree is the
left/right pointers for each item in a descendant list. For
an internal node d, for each query id i in d’s descendant
list, i’s left pointer records the index, in the descendant list
of d’s left child, of the largest query id that is ≤ i. The
right pointer of i is defined similarly but based on d’s right
child. A moment of thought will reveal that such a pointer

Algorithm buildSlackTree(Q)
� input: Q, the list of queries with SLAs
� output: T , the slack tree
1: Q1 ← decompose Q according to SLAs;
2: Q2 ← {q ∈ Q1 : q.slack ≥ 0};
3: Q3 ← Q2.sortBySlack();
� construct T by bottom-up merge
4: s ← Q3.size();
5: T ← a complete binary tree with size 2s-1;
6: insert Q3, in order, into T as leaf nodes;
7: i← T.size()− 1;
8: while (i+1) 6= T .root do
9: merge(T [i], T [i+1], T [i/2]);

10: i ← i-2;
11: return T ;

Figure 12: Implementation of buildSlackTree().

records exactly the location that will be resulted by the bi-
nary search in the naive version of SLA-tree (as described
in previous sections). Therefore such pointers, because their
construction cost does not increase the overall time complex-
ity, are the key to reduce the SLA-tree question answering
time from O(log2(NK)) to O(log(NK)).

In Figures 12 and 13, we show the pseudo code for oper-
ations buildSlackTree() and merge(), the two key steps
in SLA-tree construction. In Figure 14, we show the pseudo
code for postpone(), the key step in question answering by
using SLA-tree.

Algorithm merge(l,r,p)
� input: left child node l, right child node r
� updated: parent node p
1: p.lBound ← l.lBound; p.uBound ← r.uBound;
2: p.slack ← (l.uBound + r.lBound)/2;
3: lPtr, rPtr, lIdx, rIdx ← 0’s;
� merge
4: while lPtr < l.desc.size() or rPtr < r.desc.size() do
5: if l.desc[lPtr] < r.desc[rPtr]
6: p.desc.append(l.desc[lPtr])
7: p.profit.append(l.profit[lPtr])
8: p.lPtr.append(lIdx); p.rPtr.append(rIdx);
9: lIdx ← lPtr; lPtr ← lPtr+1;

10: else if l.desc[lPtr] > r.desc[rPtr]
11: p.desc.append(r.desc[rPtr])
12: p.profit.append(r.profit[rPtr])
13: p.lPtr.append(lIdx); p.rPtr.append(rIdx);
14: rIdx ← rPtr; rPtr ← rPtr+1;
15: else
16: p.desc.append(l.desc[lPtr])
17: p.profit.append(l.profit[lPtr]+r.profit[rPtr])
18: p.lPtr.append(lIdx); p.rPtr.append(rIdx);
19: lIdx ← lPtr; rIdx ← rPtr;
20: lPtr ← lPtr+1; rPtr ← rPtr+1;
21: return;

Figure 13: Implementation of merge().

Algorithm postpone(T,n,τ)
� input: SLA-tree T , id n, time interval τ
� output: c, the profit loss due to

postponing queries 1 to n by τ
1: c ← 0;
2: p ← T.root;
3: i ← position of n in p.desc;
� traverse the tree
4: while p is not a leaf node do
5: if τ ≤ p.slack
6: i← p.lPtr[i];
7: p← p.leftChild;
8: else
9: c← c + p.leftChild.profit[p.lPtr[i]];

10: i← p.rPtr[i];
11: p← p.rightChild;
12: return c;

Figure 14: Implementation of postpone().
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5.2 Space and Time Complexity
We formally prove the space and time complexity of the

above implementation. In the following, by SLA-tree we
mean slack tree, because tardiness tree has the same com-
plexities.

Theorem 1 (space complexity). SLA-tree has a space
complexity of O(NK log(NK)), where N is the number of
queries in the query buffer and K is the maximal number of
steps in the stepwise SLAs.

Proof. The number of leaf nodes in SLA-tree is bounded
by NK and so the height of the SLA-tree is bounded by
log(NK) and the total number of nodes bounded by 2NK.
The space that each node d requires is linear in the size of d’s
descendant list. Because each query id occurs at most K−1
times at a given tree level, the total size among all descen-
dant lists at each level of the SLA-tree is bounded by NK.
So the space complexity for SLA-tree is O(NK log(NK)).

Theorem 2 (time complexity). The time complexity
for building SLA-tree is O(NK log(NK)) and for querying
SLA-tree is O(log(NK)).

Proof. The initial sorting of slacks takes time O(NK log(NK)).
During SLA-tree construction, a merge is called on each in-
ternal node d where the time for merge is linear in the size of
the descendant list of d’s left child and that of d’s right child.
Because each item in a descendant list at level l of the SLA-
tree is visited exactly once during the merge at level l-1, the
total amortized time for merges at each level of SLA-tree
is O(NK) and so the time complexity for constructing the
whole SLA-tree is O(NK log(NK)).

The time for a traversal of SLA-tree (i.e., answering one
postpone question) is the time spent at each node multiplied
by the number of nodes visited during the traversal: the
former is a constant and the latter is O(log(NK)). So the
time complexity for querying SLA-tree is O(log(NK)).

6. APPLICATIONS OF SLA-TREE IN PROFIT-

ORIENTED DECISION SUPPORT
Now by exploiting the two primitives in the SLA-tree

framework, i.e., postpone(m,n,τ) and expedite(m,n,τ),
we are able to efficiently ask a variety of “what if” questions,
whose answers can be of great value for supporting profit-
oriented optimization of database management tasks. In this
section we show three application examples for SLA-tree,
namely scheduling, dispatching, and capacity planning4.

6.1 SLA-Tree for Scheduling
In this subsection, we demonstrate how to use SLA-tree

for supporting profit-oriented decisions on query scheduling.
We study two cases. In the first case, queries are simply
buffered and executed according to their arrival time. In
other words, we can consider this case as a first-come-first-
serve (FCFS) scheduling policy, whereas it is obvious that
such a policy is cost-unaware. In the second case, we assume
there already exists a baseline SLA-aware scheduling policy,
such as the cost-base-scheduling (CBS [15]). However, even
in this case, maximizing the total SLA-based profit, a spe-
cial case of which is the knapsack problem [8], is an NP-
hard problem. So most SLA-aware scheduling policies used
4Due to the space limitations, we could not include other
applications that make use of expedite().

certain heuristics (e.g., CBS assumes a distribution of the
waiting time for each query, independent of other queries)
and further improvement by using SLA-tree is possible.

Based on SLA-tree, we propose a very simple scheduling
algorithm by directly looking at the profit change in the
following way. For each query qi in the query buffer, we ask
“what will the profit gain be if we rush qi, instead of q1,
to be executed next, with all other conditions unchanged.”
Then instead of picking q1, which was in the front of the
buffer, we select qi, whose immediate execution brings in the
maximum profit gain, to be executed next. Such a simple
SLA-tree based method is expected to make SLA-unaware
baseline policies to become SLA-aware, and improve already
SLA-aware baseline policies by taking all the queries in the
buffer into consideration.

Now the problem boils down to how to efficiently compute
the profit gain of rushing each qi to the front of the buffer.
By expediting qi, we change the total profit in two ways.
First, there will be a potential profit gain because qi is exe-
cuted earlier than it was originally scheduled (e.g., originally
qi was not supposed to be completed on time, but it can be
completed on time if it is rushed to be executed first). Sec-
ond, there will be a potential profit loss because queries q1

through qi−1 will be postponed by τi, the execution time of
qi, from their original schedule. That is, the potential profit
gain of rushing qi is

pi = pgain(qi)− ploss(q1, . . . , qi−1).

The first part can be easily obtained by looking at qi and
the second part is exactly postpone(1,i-1,τi), where τi is
the execution time of qi.

Our SLA-tree scheduling policy will pick qj to be executed
next where

j = arg max
i

(pgain(qi)− ploss(q1, . . . , qi−1)) .

This scheduling policy takes O(NK log(NK)) time by using
SLA-tree: building the SLA-tree from scratch takes time
O(NK log(NK)); for each i such that 1 < i ≤ N , we call
postpone() once for query qi to answer“what if qi is rushed
to be executed first”, and each question takes O(log(NK))
time to answer.

6.2 SLA-Tree for Dispatching
So far we have focused on the single buffer/single server

case. As long as in the system each database server has its
own query buffer and the scheduling decision is made locally
(i.e., independent of other servers), the SLA-tree framework
can be applied to each database servers individually. How-
ever, there do exist issues that cannot be handled indepen-
dently, where dispatching is such an example.

Assume we have a centralized dispatcher that assigns a
query q to one of the several database servers that can exe-
cute the query. A naive dispatching policy, such as Round-
Robbin or least-work-left (LWL), will dispatch queries re-
gardless of the current profit conditions of the database
servers. A more profit-aware dispatching policy can ask the
“what if” question to each database server Si, i.e., “What
will be Si’s expected profit change if q is dispatched to Si?”
The profit change here depends on the profit brought by q
itself as well as the potential profit loss brought by inserting
q to the query buffer of Si, which affects other queries in the
buffer. After obtaining the answers to these “what if” ques-
tions, a profit-aware dispatcher can then dispatch the query
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q to the server that results in the maximal profit gain, or
drop q if profit impacts for all the servers are negative and
if admission control is activated.

Such profit change turns out to be answerable by SLA-tree
in the following way. We first build an SLA-tree for queries
in Si’s query buffer without inserting q and from the SLA-
tree and read the total profit. And then we ask SLA-tree the
potential impact on the profit of Si if q is inserted in the mid-
dle of Si’s buffer (according to the scheduler) in O(log(NK))
time. However, building an SLA-trees from scratch just to
answer such a “what if” question is inefficient. Actually, it
can be shown that as long as the scheduling policy satis-
fies a very minor condition, constructing a new SLA-tree is
not needed. Instead, we can derive from the most recent
SLA-tree, assuming it has been saved, in Si to answer the
dispatching related “what if” question in O(log(NK)) time.
Details are skipped due to the space limitations.

It is worth noting that in our SLA-tree based dispatching,
the servers can be heterogeneous (e.g., in terms of process-
ing power), because each server has its own SLA-tree. That
is, the potential impact on the profit of Si, if q is inserted
in the middle of Si’s buffer, is computed based on the ex-
ecution time of q on Si, where such an execution time can
be different for different servers. In addition, our SLA-tree
based dispatching is scalable to the number of servers—the
“what if” questions can be computed in parallel among the
servers by using the SLA-trees at the servers.

6.3 SLA-Tree for Capacity Planning
Capacity planning is crucial for the success of a cloud

database service provider. In this section, we show a case
how SLA-tree can help online resource allocation. We focus
on the following fundamental question “what is the profit
margin of adding an additional database server?” An accu-
rate answer to this question, or even a good approximation,
is very valuable for a service provider.

Assuming currently there are m database servers, in total
making a profit of $a per day. A naive estimation is that
adding another server will bring in additional $a/m profit
per day. Obviously, such an estimation may not be accu-
rate. Consider two extreme cases. First, the system is over-
provisioned, hence most of the time the database servers are
idle. In such a case, adding another server may not improve
profit proportionally, because the current capacity achieves
the best profit already. In the second case, the system is
heavily loaded. In such a case, adding another server, in ad-
dition to handling more queries, may help reduce the waiting
time of queries in existing servers and therefore improve the
profit in a super-linear rate.

Here we describe a way to use SLA-tree to get an approx-
imation of the profit margin of an additional server. When
an incoming query q arrives, the dispatcher asks the poten-
tial profit gain (or loss) of inserting q to each server and then
picks the server Si that reports the largest potential gain (or
smallest loss), which we indicate by gi. At the same time,
the dispatcher asks the same “what if” question to a ficti-
tious idling server and gets an answer g0. Then g0 − gi is
the current profit margin of an additional server, and such
a profit margin will be achieved by an execution time τ (of
q) at the fictitious new server. Accumulating such potential
margins over time, we can get an approximate answer to the
profit margin of adding one additional server to the system.

7. EXPERIMENTAL STUDIES
In this section, we conduct experimental studies. We first

focus on the effectiveness of SLA-tree in terms of supporting
decisions on scheduling, dispatching, and capacity planning.
Then, we investigate the efficiency and robustness of the
SLA-tree framework.

7.1 Experiment Setting
In the experiments, we use three data sets that cover dif-

ferent data statistics. The first data set is a synthetic data
set with query execution times following an exponential dis-
tribution, which has been commonly used and analyzed in
previous studies [16], with a mean execution time of 20ms.
For the second set of experiments, we used job traces de-
rived from the published parameters of real-life systems [9],
where query execution times follow a Pareto (i.e., long tail)
distribution. Such a distribution represents a typical mixed
workloads in real systems. Following [9], we set the mini-
mum value of the Pareto to be 1ms and the Pareto index
to be 1. The resulting workloads have mean values around
25ms. The histograms of query execution time for these two
data sets are given in Figure 15 (note the logarithm scale
for Pareto).
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Figure 15: The histograms of query execution time
for the first and the second data sets.

The third data set is the Star Schema Benchmark (SSBM)
[1], which is a data warehousing benchmark derived from
TPC-H. There are 13 queries in SSBM benchmark and we
generate workloads by uniformly sampling among them. For
the query execution time, we exactly followed the figures
reported by Abadi et al. [1]. The query execution time
is given in Table 1. For query arrival rate, we adopt the
Poisson distribution. For convenience we refer the three data
sets as Exp, Pareto, SSBM, respectively.

Table 1: Query execution time for queries in SSBM
benchmark, as reported by Abadi et al. in [1].

query q1 q2 q3 q4 q5 q6 q7

time (ms) 1.0 1.0 0.2 15.5 13.5 11.8 16.1

query q8 q9 q10 q11 q10 q13 Average
time (ms) 6.9 6.4 3.0 29.2 22.4 6.4 10.2

In terms of SLAs, for obvious business reasons, there are
not many publicly available numbers. Therefore, we choose
to use several case studies to illustrate the potential profit
benefits of the SLA-tree framework. The first case, which we
refer to as SLA-A, is a 1/0 profit SLA as given in Figure16(a).
Results for case SLA-A offer some intuitive interpretation—
the profit loss is the same as the fraction of customers who
missed their (sole) deadline. The second case, which we
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Table 2: Scheduling: average profit loss per query for different algorithms.
SLA Type SLA-A SLA-B

Workload Exp Pareto SSBM Exp Pareto SSBM

System Load 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

FCFS .332 .454 .601 .280 .404 .540 .368 .494 .634 .865 1.08 1.36 .713 1.04 1.41 .714 .950 1.22

FCFS+SLA-tree .274 .341 .416 .258 .371 .492 .307 .370 .437 .755 .896 1.04 .662 .959 1.28 .615 .753 .908

CBS .275 .347 .425 .259 .371 .495 .308 .374 .445 .752 .897 1.03 .662 .956 1.27 .616 .752 .897

CBS+SLA-tree .273 .342 .418 .258 .370 .491 .306 .370 .439 .750 .890 1.02 .660 .952 1.27 .614 .742 .893

Table 3: Dispatching: average profit loss per query for different algorithms.
SLA Type SLA-A SLA-B

Workload Exp Pareto SSBM Exp Pareto SSBM

server # 2 5 10 2 5 10 2 5 10 2 5 10 2 5 10 2 5 10

LWL/CBS .381 .300 .225 .408 .266 .218 .412 .339 .283 .964 .821 .689 1.06 .671 .527 .804 .674 .562

LWL/SLA-tree .375 .296 .223 .404 .260 .209 .408 .336 .282 .958 .817 .686 1.05 .657 .513 .794 .670 .561

SLA-tree/SLA-tree .300 .242 .208 .220 .056 .048 .341 .282 .252 .869 .743 .654 .613 .202 .168 .717 .568 .485

refer to as SLA-B, is a mixture of two SLAs as given in
Figure16(b). We use case SLA-B to simulate the case where
there are two types of customers with different profit pro-
files: regular buyers (left) and internal employees (right).
Furthermore, when applying SLA-B to data sets Exp and
Pareto, we assume the query execution time and query SLA
are uncorrelated. In addition, we assume queries from buy-
ers are 10 times more frequent than queries from internal
employees. For the SSBM data set, we make the query exe-
cution time and query SLA correlated in the following way:
if query execution time is more than 20ms, then we assume
it is from an internal employee, otherwise, it is from a reg-
ular buyer; and then we assign corresponding SLAs to the
query. For each experiment, we generate 20K queries and
use the first 10K to warm up the system and the second
10K to measure the performance. For each test, we repeat
10 times with different random seeds and report the average.
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Figure 16: The SLAs used in the experiments, where
µ is the mean query execution time for the corre-
sponding workload.

As we consider the revenue part of the profit but not the
cost (e.g., hardware cost) part, we choose to report the av-
erage profit loss for each customer with respect to the ideal
world, where all the customers’ first deadlines are met. The
lower this average profit loss number is, the better the per-
formance is. In the case of 1/0 profit SLA, this average profit
loss is the same as the fraction of customers that miss their
deadline.

7.2 Experiments on Scheduling
We first study the performance of our scheduling algo-

rithm based on SLA-tree. We study the case where the
queries are executed in a first-come-first-serve (FCFS) order
and the case where a sophisticated cost based scheduling
(we chose CBS by Peha et al. [15]) is used to determine the
original order of query execution.

Table 2 reports the average profit loss of FCFS and CBS,
as well as our new algorithms of combining SLA-tree with
FCFS and CBS. In the table we report the performance for

different data sets under different system loads and different
SLAs. From the results we have several observations. First,
using SLA-tree always improves over the original scheduling,
whereas the improvement on FCFS is more significant. The
improvement over CBS, albeit marginal5, is due to the fact
that CBS assigns a priority score to each query independent
of the current system condition (e.g., when computing the
priority score for a query q, CBS does not care whether or
not there are other queries waiting in the buffer), whereas
SLA-tree uses all the current queries in the buffer to ana-
lyze a series of what-if scenarios. Second, using SLA-tree to
adjust the naive FCFS gives performance similar to that of
the sophisticated CBS. In addition, recall that scheduling is
only one of the application areas for SLA-tree, whereas CBS
is a scheduling policy and cannot deliver other information
management capabilities of SLA-tree.

7.3 Experiments on Dispatching
For dispatching, we compare SLA-tree dispatching with

the well-known least-work-left (LWL) algorithm, which has
shown state-of-the-art performance [12]. Table 3 reports the
performance comparison (using CBS as the baseline schedul-
ing). As can be seen, the profit-aware SLA-tree dispatching
improves the profit significantly, especially for the Pareto
workload. In addition, in the table we also report the case
where LWL is used with CBS-SLA-tree scheduling, where
the profit improvement is much less significant, and this ver-
ifies that the profit gain does come from the profit-oriented
dispatching.

7.4 Experiments on Capacity Planning
For capacity planning, we conduct the experiments in the

following way. We first generate a workload of queries and
run the system with n server, and then use the same work-
load trace to run the system with n+1 servers. The profit
change between the two cases is considered as the ground
truth, namely the real profit margin of adding one server to
the current system with n servers.

Table 4 reports the performance in terms of estimation
error for n = 2, . . . , 10. As can be seen, SLA-tree provides a
practical estimation compared to ground truth.

7.5 Experiments on Robustness
One requirement for the SLA-tree framework is that the

5The relatively good performance of CBS confirms the claim
in [15] that CBS performs almost as well as the oracle algo-
rithm.
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Table 4: Profit gain estimation performance for SLA-A, with the system load set to 0.9.
Server # 2 3 4 5 6 7 8 9 10

ground truth .115 .086 .070 .063 .056 .050 .047 .045 .039
Exp SLA-tree estimation .170 .097 .066 .050 .038 .030 .026 .021 .018

ground truth .148 .063 .034 .018 .021 .009 .013 .013 .010
Pareto SLA-tree estimation .081 .032 .019 .013 .010 .008 .007 .006 .005

ground truth .126 .094 .080 .067 .056 .054 .053 .048 .047
SSBM SLA-tree estimation .184 .104 .073 .053 .042 .034 .029 .024 .020

Table 5: Robustness of scheduling: average profit loss per query for different algorithms, with the system
load set to 0.9.

SLA Type SLA-A SLA-B

Workload Exp Pareto SSBM Exp Pareto SSBM

σ
2 of error scale 0.0 0.2 1.0 0.0 0.2 1.0 0.0 0.2 1.0 0.0 0.2 1.0 0.0 0.2 1.0 0.0 0.2 1.0

CBS .425 .467 .550 .495 .529 .582 .445 .491 .581 1.04 1.07 1.21 1.26 1.35 1.51 .897 .992 1.26

CBS+SLA-tree .418 .467 .551 .491 .528 .582 .439 .488 .581 1.04 1.08 1.21 1.26 1.35 1.51 .893 1.02 1.28

exact query execution time has to be known in advance,
which may be difficult to obtain accurately. In this ex-
periment, we test the robustness of SLA-tree, assuming the
query execution time is estimated with certain errors.

Following [9], we apply SLA-tree algorithms by using the
estimated query execution time while at the running time,
we scale the estimated execution time of each query by a
random number to get the real execution time. We studied
two cases where the scaling factor follows different Gaus-
sian distributions: the scaling factor following N(1,0.2), for
a smaller error, and following N(1,1.0), for a larger error.

Table 5 compares the performance of CBS and CBS+SLA-
tree scheduling policies, under a system load of 0.9. As can
be seen, both CBS and SLA-tree suffer from the inaccurate
estimation in a similar way and this is reflected in the bigger
profit losses. As the error gets larger, i.e., from N(1,0.2)
to N(1,1.0), the profit loss for both scheduling policies gets
bigger. Table 6 compares the performance of LWL and SLA-
tree dispatching algorithms, with the number of servers set
to 5. As can be seen, again, both LWL and SLA-tree suffer
from the inaccurate estimation and this is reflected in the
bigger profit losses. However, it is interesting to observe that
the fact that SLA-tree significantly outperforms LWL still
remains valid in all the cases.

7.6 Experiments on Running Time
Finally, we study the scalability of the SLA-tree algo-

rithm. We conduct the study by logging, during the exe-
cution of SLA-tree scheduling, the time needed for building
and querying SLA-tree under different query buffer lengths.

To analyze the time complexity, we pushed the system
into the limits as follows. First, we set the system load
to be 0.99, the borderline of saturation; second, we set the
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Figure 17: The scatter-plot for the running time
of building and querying SLA-tree under different
query buffer lengths.

threshold in SLA-A to very large values in order to force
SLA-tree algorithm to build and query very large slack trees
(because a lot of queries will have positive slacks).

In Figure 17 we show the scatter-plot of the running time
of the SLA-tree scheduling algorithm (including both build-
ing and querying the SLA-tree) versus the number of queries
waiting in the buffer. As can be seen, even up to thousands
of queries to be scheduled, the running time of SLA-tree
(again, including both the time of building the SLA-tree
from scratch and that of querying the SLA-tree) behaves
in a rather linear manner6. Such running time, e.g., less
than 1ms for scheduling 500 queries (on a Xeon PC with
3GHz CPU), demonstrates that the SLA-tree framework is
practical for real applications.

8. SOME LIMITATIONS OF SLA-TREE
In this section, we discuss some limitations of the SLA-

tree framework.

8.1 SLA-tree Requires An Existing Query Ex-
ecution Order

An underlining assumption of the SLA-tree framework
is that there exists a known order of execution among the
queries in the buffer. This is a main limitation of the SLA-
tree framework. The reason for this assumption is that in
the SLA-tree framework, we have to know what will happen
in the near future, in order to improve performance and to
answer various “what if” questions. Fortunately, however,
in real applications, such an existing order of execution is
not very uncommon. For most commonly used static prior-
itization policies, such an order can be easily derived, e.g.,
from the query arrival time (FCFS), query deadline (EDF),
query execution time (SJF), or query cost (CBS).

8.2 SLA-tree Based Scheduling is A Greedy
Algorithm

The SLA-tree based scheduling is a greedy algorithm and
cannot guarantee the schedule to be globally optimal. This
is true even in the offline case, where all the queries are
known beforehand. Table 7 shows a simple example with
three queries q1, q2, and q3, each of which has a single dead-
line and corresponding profit. From the table we can see
that starting from the original execution order (q1, q2, and
then q3), rushing either q2 or q3 to the front of the buffer

6The abnormalities in the plot are most likely due to OS
factors such as cache missing.
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Table 6: Robustness of dispatching: average profit loss per query for different algorithms, with the number
of server set to 5.

SLA Type SLA-A SLA-B

Workload Exp Pareto SSBM Exp Pareto SSBM

σ
2 of error scale 0.0 0.2 1.0 0.0 0.2 1.0 0.0 0.2 1.0 0.0 0.2 1.0 0.0 0.2 1.0 0.0 0.2 1.0

LWL/CBS .300 .330 .414 .266 .261 .344 .339 .374 .458 .821 .840 .954 .671 .640 .830 .674 .711 .858

LWL/SLA-tree .296 .294 .413 .260 .259 .340 .336 .371 .455 .817 .838 .956 .657 .634 .841 .670 .710 .865

SLA-tree/SLA-tree .242 .294 .353 .056 .097 .130 .282 .328 .380 .743 .796 .887 .202 .262 .351 .568 .685 .849

will decrease the total profit. Therefore, our SLA-tree based
scheduling will miss the schedule with higher total cost, i.e.,
rushing q2 first and then rushing q3.

Table 7: A simple example of scheduling.

execution time (sec) deadline (sec) profit ($)

q1 1 1 1
q2 0.5 1 0.6
q3 0.5 1 0.6

However, there are two points we want to make. First,
such a scheduling problem, with weighted profits and dead-
lines, is NP-complete [15]. Second, by using an induction
argument, we can easily show that in an offline setting, the
SLA-tree based scheduling always guarantees a total profit
that is higher than (or at least the same as) that of the
original schedule.

9. CONCLUSION AND FUTURE WORK
We proposed a framework that uses a novel data structure,

SLA-tree, to efficiently support various SLA-based, profit-
oriented decisions for databases in cloud computing. Both
theoretical analysis and experimental studies demonstrated
that SLA-tree could efficiently provide valuable and accu-
rate information that can be used by cloud database service
providers for profit-oriented decisions such as scheduling,
dispatching, and capacity planning. Therefore, we believe
our SLA-tree based framework has great potentials in cloud
computing.

For future work, we are investigating how to implement an
incremental version of SLA-tree to further reduce its time
complexity.
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