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ABSTRACT In this work, two tendon tension loading distributions (fixed and moving) are designed to

prevent undesired slack and excessive loading in tendons of continuum manipulators. For any given beam

configuration, the algorithms utilize the proposed loading distributions to find a new beam configuration

as well as base displacement to control the orientation or position of the n-tendon continuum robot. The

algorithms account for the bending and axial compliance of the manipulator as well as tendon compliance.

Numerical results are provided to demonstrate the orientation and position control algorithms under fixed or

moving loading distributions. A 6-tendon continuum robot system is employed to experimentally evaluate

the effectiveness and accuracy of the proposed control algorithms. Multiple experiments are carried out and

results are reported. The results verify the performance of the proposed control algorithms in avoiding slack

and excessive loading in tendons and controlling the orientation and position of continuum structures.

INDEX TERMS Continuum robot, catheter, slack avoidance, kinematics, load analysis, tendon-driven.

I. INTRODUCTION

Continuum robots are inspired by natural continuum struc-

tures like elephant trunks [1], octopus arms [2], squid tenta-

cles [3], and snakes [4], [5]. Their continuous structure and

inherent compliance enable them to exhibit elastic deforma-

tion along their entire length and navigate safely [6]–[11].

In the medical field, catheters and catheter-like instruments

are well-known examples of continuum structures that have

gained attention in minimally invasive treatments [12], [13].

A direct approach to manipulating a continuum structure

is the use of remotely actuated tendons [14], [15]. Tendons

can only support tension (negative load) and in compression

they go slack because of their low bending stiffness [14], [16].

Actuation of a slacked tendon will first recover the slack

before producing tension in the tendon [17]. This latency

results in actuator backlash that is one of the key causes

of inefficiency and inaccuracy in the controllers of robotic

catheters [18]. Slack directly affects the stiffness of the artic-

ulating beam and the load distribution among tendons [13].

Although slack may be mitigated by increasing tension

loads in all tendons, high tendon load in continuum robots
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generates less compliance and more friction. Therefore, slack

and excessive loading are both undesirable characteristics

especially in catheters in which tendon size and materials are

constrained by the environment [13], [19].

Methods were introduced to prevent slack based on

a redundancy of control actions in redundant rigid-link

tendon-driven mechanisms [20]–[24]. A similar approach

was employed to prevent slack in redundant tendon-driven

continuum robots based on the numerical optimization tech-

niques in a closed-loop control architecture [17], [25], [26].

These studies do not promise reliable control algorithms

capable of performing the real-time computations involved

in numerical optimization process, especially for higher num-

bers of tendons. This may cause a drift in Jacobian estimation

from the true estimate and take longer to converge, leading

the robot to diverge from the desired path [25]. They also

require load cells for online measurement and feedback of

the tension loading in tendons [25]. Pretensioning tendons

was also utilized in multiple studies [27]–[31]. Excessive

pretension causesmore frictionwhich leads to faster wear and

tear and shorter lifetime [32], [33]. Not enough pretension

causes slack and deficiency in control [27].

The main contribution of this study is algorithms to con-

trol orientation or tip position of n-tendon continuum robots
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guaranteeing no slack or excessive loading in tendons. Two

loading distributions (fixed and moving) are proposed to

minimize the tension loadings to a certain level that causes

tension in all tendons (no slack). For any given beam config-

uration within workspace, the algorithms utilize the proposed

loading distributions to find a new beam configuration as well

as base displacement to control the orientation or position of

the continuum robot.

In the following section, the tension loading model

in n-tendon continuum robots used throughout this paper

is explained. Slack and excessive loading problems are

described and their effects are demonstrated using numerical

analysis in Section III. Fixed and moving loading distribu-

tions and how they are utilized in orientation and position

control algorithms are explained and numerical results are

provided in Sections IV and V. Section VI presents details

about experimental setup, procedure and results followed by

discussion and concluding remarks in Section VIII.

II. LOADING MODEL

Figure 1 shows the schematic description of the articulating

beam of a single segment cable-driven continuum robot with

n equidistant tendons (n = 6 in this case) in an arbitrary

beam configuration defined with bending angle (θ), pending

plane angle (φ), and beam length along its centerline (L).

As previously developed [34], the tension load model for i-th

tendon in n-tendon continuum robots can be expressed as a

function of beam configuration parameters as

Fi(θ, φ,L) =
EI (k − 1)

nL0Ra
θ cos(φ − αi)

− (L0 − L)
EA

nL0
i = 1, . . . , n] (1)

FIGURE 1. Schematic description of the articulating beam of a
tendon-driven catheter with n equidistant tendons (n = 6 in this
description) at a beam configuration ([θ, φ, L]).

where i is tendon number (i = 1, . . . , n), E , I and A are

the Young’s modulus, area moment of inertia, and cross

section area of the beam, Ra and αi are radial and angular

location of tendons, L0 is the initial length of the continuum

structure, and k is representative of number of degrees of

freedom (DOF) of the continuum robot and is defined as

k =

{

n if n = 1, 2

3 if n ≥ 3
(2)

The angular location of i-th tendon (αi) of n equidistant

tendons can be represented by 2π/n(i − 1). In Figure 1,

a virtual tendon is defined that is located at the back of the

continuum structure on the bending plane at the distance Ra
from the centerline.

Figure 2 schematically presents different loading distribu-

tions in a n-tendon continuum robot (n = 3 in this example).

As demonstrated in this figure, applying actuator displace-

ments obtained from the inverse kinematics solution for a

given configuration results in unique set of tendons tensions

in a continuum robot that are linearly distributed among the

tendons [34]. The conceptual axis on the cross section of the

continuum structure, perpendicular to the bending plane, with

zero tension in tendons lying on it is called zero-load axis.

The location of this axis from the centerline of the continuum

structure is denoted by Dzl and can be derived as [34]

Dzl =
AR2a

2Iθ
(L0 − L) (3)

This axis is different from the neutral axis with zero dis-

placement in tendons lying on it. The location of the neutral

FIGURE 2. Schematic presentation of different loading distributions with
(a) slack (b) and excessive loading as well as (c) fixed and (d) moving
loading distribution in a n-tendon continuum robot (n = 3 in this
description).
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axis from the centerline of the continuum structure can be

derived as Dzd = (L0 − L)/θ .

In order to illustrate the behavior of the tendon loading

for different beam configurations and demonstrate the effects

of slack and excessive loadings in tendons, numerical sim-

ulations are performed and the results are provided in the

following section. Similar simulations are also utilized to

evaluate the performance of the developed control algorithms

for slack and excessive loading avoidance and the results are

also described in the following sections.

III. SLACK AND EXCESSIVE LOADING

Figure 3 presents results for the numerical simulations for

the estimated tendon tension loads in a 6-tendon continuum

robot at different sets of beam configurations. The mechan-

ical specification of the continuum structure used in the

simulation are chosen identical to those from the experi-

mental setup (Table 1). The beam configurations [θ, φ,LSS ]

and [θ, φ,LE ] (Table 2) served as inputs to estimate tendon

tension loads using Equation (1) for the first and second

simulations, respectively. These configurations are selected

to respectively demonstrate slack (in some of the ten-

dons) and excessive loading in tendons as presented in

Figures 2a and 2b. Table 3 includes parametric results of the

numerical analysis.

FIGURE 3. Numerical simulation results for the tendon tension loads in a
6-tendon continuum robot at the beam configurations (a) [θ, φ, LSS ] and
(b) [θ, φ, LE ]. Parameters are listed in Tables 1 and 2.

As shown in Figure 3a, in every configuration, there

are tendons with positive tension values (peak values of

+2.63 and −4.66 N). This means that in order to reach

these configurations, some of the tendons must act like a

solid rod and push (positive loading as shown in Figure 2a).

TABLE 1. Mechanical specification of the continuum robot.

TABLE 2. Beam configurations used in numerical analysis and
experiments.

However, tendons can only support tension (negative load)

and in compression they tend to buckle (go slack) because

of their low bending stiffness. Actuation of a slacked tendon

results in inefficiency and inaccuracy in the control of robotic

catheters [13], [34].

It should be noted that slack may be produced in tendons

even when the beam structure is under compression. For

example, there is 1 mm compression across all beam configu-

rations in the first simulation. This is because of the zero-load

axis located inside the beam structure; Dzl < Ra (Figure 2a

and Table 3, #1). This generates different loading directions in

tendons located on opposite sides of this axis [34] and results

in the summation of the tension loads to be as low as−6.10 N

(Table 3, #1).

The second simulation is an example of excessive loading

in tendons (Figures 2b and 3b). Although θ and φ used in

both simulations have similar values, the beam structure in

the second simulation is under 5 mm additional compres-

sion which causes more loading in tendons (peak values

of −2.45 and −9.77 N as listed in Table 3, #2). In this

simulation, the zero-load axis is located outside of the beam

structure; Dzl > Ra (Figure 2b and Table 3, #2). This

generates similar loading directions in all tendons. As shown

in Figure 3b, there is no slack in any of the tendons across

all configurations; however, tendons are always under tension

even at their minimum contribution (Figure 2b). This results

in the large value of −36.60 N for the summation of tension

loads. High tendon tension in continuum robots generates less

compliance and more friction [29], [33].

Therefore, slack and excessive loading are both undesir-

able characteristics especially in catheters in which tendon

size and materials are constrained by the environment [17].

Given the above examples, the question is how can slack in

continuum robots be avoided without producing excessive

138732 VOLUME 8, 2020
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TABLE 3. Results of the numerical simulations.

loading in tendons? The proposed solution is to determine,

based on fixed and moving loading distributions, new beam

configuration as well as base displacement to satisfy no-slack

and excessive loading conditions for orientation and position

controls.

IV. FIXED LOADING DISTRIBUTION

To prevent slack in a continuum robot, target beam configu-

rations requiring tendon tensions larger than zero should be

prevented. As shown in Figure 2c, this can be achieved by

pushing the location of the zero-load axis at or behind the

virtual tendon (Dzl ≥ Ra). The bigger |Dzl − Ra|, the more

tension loading in tendons. To minimize the loading distribu-

tion and still have no slack in any of the tendons, the zero-load

axis can be located right at the location of the virtual tendon

(Dzl = Ra). In order to also control the stiffness of the

continuum manipulator, as shown in Figure 2c, the tension

loadingF0 (instead of zero) is considered at the location of the

virtual tendon (see Discussion). In this approach, the location

of the zero-load axis is independent of beam configuration

and same minimum F0 loading condition can be satisfied for

all configurations. This results in a loading distribution with

fixed zero-load axis location that is referred to as the fixed

loading distribution in this paper (Figure 2c).

The location of the bending plane at which the peak tension

loads in the i-th tendon happen may be determined by differ-

entiatingFi fromEquation (1) with respect toφ (dFi/dφ = 0)

as

φif = αi + mπ

{

i = 1, . . . , n

m ∈ N
(4)

As implied from this equation, the peak tension loads in

each tendon happen when it lies on the bending plane. Even

and odd values of parameter m result in the angular location

of the maximum and minimum magnitude of the tension

loadings in the i-th tendon. Substituting odd values of m

in Equation 4 determines the bending plane at which the

i-th tendon is on the virtual tendon. To satisfy the minimum

tension loading F0 in the i-th tendon at the bending plane

angle of φif , Equation (4) can be substituted in Equation (1)

as

Fi(θ, φif ,L) = F0

{

i = 1, . . . , n

m = 1
(5)

By solving this equation with respect to L, the new

length of the continuum structure (Lf ) guaranteeingminimum

tension loading F0 is derived as a function of θ as

Lf (θ ) = C1 − C2θ k ≥ 2 (6)

where constant parameters C1 and C2 are

C1 = L0(
nF0

AE
+ 1)

C2 =
I (k − 1)

ARa

The constraint k ≥ 2 in this equation is because slack is

meaningless in case of single tendon robot. It is worth noting

that Lf is independent of parameters i, L, and φ and is a func-

tion of only θ . In the following sections, control algorithms

are developed based on the fixed loading distribution in order

to enable orientation and position control of continuum robot

while satisfying minimum F0 tension constraint (no slack).

A. ORIENTATION CONTROL

Figure 4 illustrates the beam structure at different configura-

tions and under various control scenarios. The beam structure

illustrated with solid line represents a target beam configura-

tion in which tendons are under excessive loading or slack.

FIGURE 4. Schematic description the beam structure at different
configurations and under various control scenarios (solid lines: target
configuration causing slack or excessive loading in tendons, dashed line:
orientation control under fixed or moving loading distribution, dash-dot

lines: position control under fixed or moving loading distribution for slack
and excessive loading cases).
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In some applications, the orientation of the tip of the con-

tinuum robot or catheter is more important than its position,

e.g. pointing an ultrasound imaging catheter [35]. In order

to manipulate a continuum structure to the given bending

angle θ under the fixed loading distribution, Equation (6)

may be used to find the length of the continuum structure Lfo
satisfying minimum F0 loading in tendons as

Lfo = Lf (θ ) k ≥ 2 (7)

The dashed line in Figure 4 illustrates the beam structure

under orientation control with similar θ as of the solid line.

Based on the Equation (7), for orientation control under fixed

loading distribution, only parameters θ and φ are required

and the algorithm determines the maximum possible length

of the continuum structure (Lfo) at which there is mini-

mum F0 loading in tendons (no slack or excessive loading).

Substituting Equation (7) into the Equation (1), the tendon

tensions for orientation control of a n-tendon continuum robot

under fixed loading distribution is derived as

Fifo (θ, φ) = F0 −
EI (k − 1)

nL0 Ra
θ

×

(

cos(φ − αi) + 1
)

{

i = 1, . . . , n

k ≥ 2
(8)

A characteristic feature of fixed loading distribution is the

minimum F0 loading in the virtual tendon (Figure 2c). This

can be demonstrated using Equation (8) by calculating the

tension load in the 4-th tendon (F4fo ) of a 6-tendon robot at

φ = 0 (φ − α4 = −π) which makes it lay on the virtual

tendon (F4fo = F0). Using Equation (8), the summation of

the tension loads of all tendons for orientation control of

a continuum robot under fixed loading distribution for any

given configuration [θ, φ,L] can be derived as a function of

θ as
n

∑

i=1

Fifo = nF0 −
EI (k − 1)

L0Ra
θ k ≥ 2 (9)

Based on the beam configuration and tendon tension, ten-

don displacements 1Li, tendon stretches δi, and actuator

displacements (1Lai ) can be determined using

1Li = (L0 − L) + Raθ cos (αi − φ) i = 1, . . . , n (10)

δi =
FiLt0

EtAt
i = 1, . . . , n (11)

1Lai = 1Li + δi i = 1, . . . , n (12)

To control orientation of a continuum robot under fixed

loading distribution, target θ and φ are used in Equation (7) to

determine the desired length of the continuum structure (Lfo).

The new beam configuration [θ, φ,Lfo] can then be used to

determine 1Lai to reach orientation θ and satisfy no-slack

and minimum F0 loading conditions (Algorithm 1).

To demonstrate the effectiveness of the orientation control

algorithm under fixed loading distribution in satisfying F0
loading constraint (no slack), the numerical simulation pro-

cess for the beam configurations [θ, φ,LSS ] and [θ, φ,LE ]

are repeated based on this control algorithm. The minimum

loading is set to zero (F0 = 0). The results are presented

in Figure 5a. The orientation control algorithm is independent

of the given L as it determines the required beam length (Lfo)

to satisfy the desired conditions. Therefore, the results for

both configurations [θ, φ,LSS ] and [θ, φ,LE ] are similar.

FIGURE 5. Simulation examples for the estimated tendon tension loads
in a 6-tendon continuum robot at the beam configuration [θ, φ, LSS ] for
orientation control under (a) fixed and (b) moving loading distributions.
Parameters are defined in Table 2.

As shown in Figure 5a compared to Figure 3, the peak

values are changed to 0 and−7.3N (Table 3, #3) whichmeans

that tendons are never under positive tension for any configu-

ration. Tendon tension summation (Equation (9)) is a function

of only θ that results in a constant value of −21.90 N in this

simulation. As expected, this value is decreased significantly

compared to the summation of tensions in the simulation for

the excessive loading in tendons (Figure 3b and Table 3, #3).

On the other hand, there is no excessive loading in tendons

as their tensions reach the minimum absolute values of zero

(F0 = 0 in this case) when they meet the virtual tendon

(Figure 2c). In all other configurations, the absolute values

of the tensions in all tendons are always bigger than |F0|, e.g.

at φ = 90◦ in Figure 5a. In other words, in case of fixed load-

ing distribution, the magnitude of the tensions in all tendons

are always greater than F0 except that of the tendon laid on

the virtual tendon with tension equal to F0. This is another

characteristic feature of the fixed loading distribution that

exists for both orientation and position control algorithms.

B. POSITION CONTROL

To control the tip position of a continuum robot and sat-

isfy no-slack and minimum F0 loading conditions, the fixed

138734 VOLUME 8, 2020
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Algorithm 1 Orientation Control Algorithm Under Fixed (or Moving) Loading Distribution

input : Bending angle (θ), bending plane angle (φ), minimum loading (F0), and geometry and mechanical properties of

beam and tendons ([p])

output: Tendon actuator displacements [1Lai ]

1 Algorithm ControlOrientation(θ , φ, F0, [p])

2

3 Determine Lf o using Equation (7) (or Lmo using Equation (21));

4 Determine tendon displacements [1Li] using Equation (10) ;

5 Determine tendon tensions [Fif o ] using Equation (8) (or [Fimo] using Equation (22));

6 Determine tendon stretches [δi] based on the tendon tensions [Fif o ] (or [Fimo]) using Equation (11);

7 Determine tendon actuator displacements [1Lai ] using Equation (12);

8 return [1Lai ];

loading distribution can be utilized in combination with an

axial actuated DOF of the base of the continuum structure,

i.e. insertion/retraction of the catheter shaft. The dash-dot

line in Figure 4 illustrates the beam structure under posi-

tion control. As shown in this figure, a continuum robot

commanded to [x, y, z] coordinates (point p in the figure)

can instead be manipulated to a new coordinates [x, y, zfp]

(point pfp in the figure) while the axial actuated DOF of the

base compensates for z and zfp differences (1Zfp). To meet

minimum F0 loading condition as well as x and y coordinates

condition, two constraints are defined. The first constraint is

to guaranteeminimumF0 loading in tendons (no slack) which

is defined based on the Equation (6) as

Lfp = Rfpθfp = C1 − C2θfp k ≥ 2 (13)

where Lfp in the new length of the continuum structure

that can be represented by multiplying the radius of the

beam structure (Rfp) by the new beam bending angle (θfp).

Lfp and θfp are the unknown beam parameters satisfying the

desired conditions. As shown in Figure 4, the tip position of

the dash-dot line (point pfp) have similar x and y coordinates

as of those of the solid lines (point p). Therefore, both tip

points p and pfp (Figure 4) projected upon xy plane should be

equidistant from the origin. The second constraint is defined

as

Rfp =
1 − cos(θ )

1 − cos(θfp)
×
L

θ
(14)

To find the two unknown variables Rfp and θfp,

Equation (14) is substituted into Equation (13):

(

C2 +
1 − cos(θ)

1 − cos(θfp)
×
L

θ

)

θfp = C1 (15)

By finding θfp from this equation and substituting it back

into Equation (14) and then in Equation (13), both configura-

tion variables Lfp and θfp are determined. The required base

displacement to compensate for the changes in z coordinates

of points p and pfp (Figure 4) can be derived as

1Zfp =
L

θ

(

sin(θ ) −
1 − cos(θ )

1 − cos(θfp)
× sin(θfp)

)

(16)

As described in Algorithm 2, to manipulate a continuum

robot to a given tip position [x, y, z] (corresponding to the

configuration [θ, φ,L]) and also satisfy no-slack condition

under fixed loading distribution, the robot can be commanded

to the beam configuration [θfp, φ, Lfp] while the displacement

1Zfp is simultaneously commanded to the axial base DOF.

Numerical simulations are performed for the configurations

[θ, φ,LSS ] and [θ, φ,LE ] and F0 = 0 based on the posi-

tion control algorithm under fixed loading distribution. The

results have similar patterns to those presented in Figure 5a

but different peak values (Table 3, #4 and #5). As implied

from numerical results, position control algorithm satisfies

no-slack condition. However, it requires extra DOF of the

base to compensate for 1Zfp.

V. MOVING LOADING DISTRIBUTION

To prevent slack in a continuum robot, zero-load axis can

be pushed at or behind the location of the virtual tendon at

the back of the continuum structure (Dzl ≥ Ra). In case of

fixed loading distribution, the minimum loading in tendons

guaranteeing no slack in tendons happens when the zero-load

axis is located right at the location of the virtual tendon

(Dzl = Ra). The magnitude of this loading distribution can

be further decreased whenever the bending plane does not

coincide with a tendon location (Figure 2). To minimize the

loading distribution magnitude to the lowest possible value

and still satisfy the no-slack condition, the zero-load axis can

be located at the location of the farthest tendon at the back of

the continuum structure.

To avoid slack and unnecessary loading in tendons under

moving loading distribution and also be able to potentially

adjust stiffness in continuum structure, the location of the

zero-load axis can be moved behind the farthest tendon at

the back of the continuum structure such that there is a

minimum tension loading of F0 in the farthest tendon at the

back. An illustration of this loading distribution is presented

in Figure 2d. As φ changes, the location of the farthest tendon

and consequently the zero-load axis location and the loading

distribution magnitude changes. This results in a loading dis-

tribution that is referred to as the moving loading distribution

VOLUME 8, 2020 138735
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Algorithm 2 Position Control Algorithm Under Fixed (or Moving) Loading Distribution

input : Tip position ([x, y, z]), minimum loading (F0), and geometry and mechanical properties of beam and tendons

([p])

output: Tendon actuator displacements [1Lai ], base actuator displacement 1Zfp (or 1Zmp)

1 Algorithm ControlPosition([x, y, z], F0, [p])

2

3 Determine beam configuration parameters [θ, φ,L] of the tip position [x, y, z] [36];

4 Determine θfp using Equation (15) (or θmp using Equation (28));

5 Determine Lfp using Equation (13) (or Lmp using Equation (26));

6 Determine tendon displacements [1Li] using Equation (10) ;

7 Determine tendon tensions [Fi] using Equation (1);

8 Determine tendon stretches [δi] Equation (11);

9 Determine tendon actuator displacements [1Lai ] using Equation (12);

10 Determine base actuator displacement 1Zfp using Equation (16) (or 1Zmp);

11 return [1Lai ], 1Zfp (or 1Zmp);

in this paper. Equation (1) can be used to equate tension in

the farthest tendon at the back of the continuum structure

(tendon im) to F0 as

Fi(θ, φ,Lc) = F0 i = im (17)

where im is determined as

im = arg min
{i:i=1,...,n}

(

Ra cos
(

φ − αi
)

)

Using Equation (17), the new length of continuum struc-

ture satisfying minimum F0 loading condition is derived as

Lm(θ ) = C1 + C2θ cos
(

φ − αim
)

(18)

The differences between Lm and Lf (Equation 6) is

Lm − Lf

{

= 0, if αim − φ = π

> 0, otherwise
(19)

As implied, the length of the beam structure under moving

loading distribution is always bigger than its length under

fixed loading distribution, unless the im-th tendon is laid on

the bending plane (αim − φ = π). This is because (αim − φ)

is always larger than π/2 which means that Lf and Lm only

equate when the later has its minimum value

Lf = min(Lm) (20)

This produces less compression in the continuum structure

and consequently less tension in tendons. Both orientation

and tip position of a continuum robot can be controlled

under moving loading distribution that are explained in the

following sections.

A. ORIENTATION CONTROL

To control the pointing angle of a continuum robot under

moving loading distribution, Equation (18) may be used to

find the length of the continuum structure (Lmo in Figure 4)

satisfying the minimum F0 loading condition as

Lmo = Lm(θ ) k ≥ 2 (21)

Similar to orientation control under fixed loading distri-

bution, to control orientation angle under moving loading

distribution, parameters θ and φ are needed for the algo-

rithm to obtain the maximum length of the continuum struc-

ture (Lmo) satisfying F0 loading condition (Algorithm 1).

Substituting Equation (21) into the Equation (1), the required

tendon tensions for orientation control of a n-tendon contin-

uum robot under moving loading distribution is

Fimo (θ, φ) = F0 −
EI (k − 1)

nL0 Ra
θ

×

(

cos(φ − αi) − cos(φ − αim )
)

×

{

i = 1, . . . , n

k ≥ 2
(22)

The behavior of the orientation control algorithm under

moving loading distribution is studied using the numerical

simulation for similar beam configurations and F0 as in pre-

vious simulations. The results are presented in Figure 5b.

This orientation control algorithm is also independent of the

given L and, therefore, for both given LSS and LE , the results

are similar. The peak values of the tendon tensions in this

simulation (Table 3, #6) are identical to those of the orienta-

tion control under fixed loading distribution (Table 3, #3 and

Figure 5b) which demonstrates the effectiveness of this algo-

rithm in avoiding slack and excessive loading the tendons.

The summation of the tension loadings in all tendons for

orientation control of a continuum robot under moving load-

ing distribution can be derived from (Equation 22) as

n
∑

i=1

Fimo =nF0+
EI (k − 1)

L0Ra
θ×cos(φ−αim ) k ≥ 2 (23)

Comparing this equation with Equation (9) results in
∣

∣

∣

∣

∣

n
∑

i=1

Fimo

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

n
∑

i=1

Fifo

∣

∣

∣

∣

∣

{

= 0, if αim − φ = π

< 0, otherwise
(24)

which means that manipulating a continuum robot under

moving loading distribution always produces less tendon
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tensions than those produced under fixed loading distribu-

tion unless the im-th tendon is laid on the bending plane

(αim − φ = π ). This can be expressed as

∣

∣

∣

∣

∣

n
∑

i=1

Fifo

∣

∣

∣

∣

∣

= max(

∣

∣

∣

∣

∣

n
∑

i=1

Fimo

∣

∣

∣

∣

∣

) (25)

Figure 6 shows the simulation results for summation of

the tension loads for orientation control under fixed and

moving average distributions with respect to φ. As shown

in this figure and also implied from (Equation 23), unlike

the summation of tensions in orientation control under fixed

loading distribution (Equation (9)) that is a function of only

θ , this summation under moving distribution is a function

of both θ and φ. Therefore, it has variable values ranging

from -18.97 N to -21.9 N (Table 3, #6). The results verify

Equation (25). The moving loading distribution also causes

movements in both locations of zero-load and neutral axes

(Table 3, #6).

FIGURE 6. Summation of the tension loads in all tendons calculated in
the simulation for orientation control under both fixed and moving
loading distributions with respect to the bending plane angle φ.

There is no excessive loading in tendons as their tensions

reach the minimum absolute values of zero (F0 = 0 in

this case) when they meet the virtual tendon (Figure 2d).

A characteristic feature of the moving loading distribution,

as shown in Figure 5b, is that in every beam configurations

one of the tendons has the minimum F0 tension loading. This

is a key difference between the fixed and moving loading

distributions as in fixed loading distribution the tension in

one of the tendons is F0 only when the tendon is laid on

the bending plane. Similar to fixed loading distribution, this

feature exists in both orientation and position control under

moving loading distribution.

B. POSITION CONTROL

It is also possible to control the tip position of a continuum

robot under moving loading distribution to avoid slack and

excessive loading in tendons. However, similar to position

control under fixed loading distribution, an axial displace-

ment of the base of the continuum structure is needed to reach

the target tip position. Two constraints are defined to satisfy

no slack and excessive loading as well as x and y coordinates

conditions. The first constraint is to have minimum F0 load-

ing on the im-th tendon which is, based on the Equation (18),

defined as

Lmp = Rmpθmp = C1 + C2θmp cos
(

φ − αim
)

(26)

where Rmp, θmp, and Lmp are the new radius, bending angle,

and length of the continuum structure satisfying the desired

conditions represented by the dash-dot line in Figure 4.

The second constraint guaranteeing similar x and y coordi-

nates for both tip points p and pmp is defined as

Rmp =
1 − cos(θ)

1 − cos(θmp)
×
L

θ
(27)

Substituting Equation (27) into Equation (26) leads to a

single-variable equation in θmp

C1

θmp
+ C2 cos(φ − αim ) =

1 − cos(θ)

1 − cos(θmp)
×
L

θ
(28)

Opposed to θfp determined from Equation (15) which is

a function of only θ , θmp derived from Equation (28) is a

function of θ , φ, and αim . This introduces dependency to

φ and αim in parameters Lmp and consequently1Zmp andFimp .

By finding θmp from Equation (28) and substituting it back

into Equation (27) and then in Equation (26), configuration

variables Lmp and θmp are determined. Similar to position

control under moving loading distribution, the required base

displacement to compensate for 1Zmp can be derived using

Equation (16) based on θmp.

As described in Algorithm 2, to manipulate a continuum

robot to the beam configuration [θ , φ, L] corresponding to

the given tip position [x, y, z] under moving loading distri-

bution, the robot and base DOF should be commanded to

the beam configuration [θmp, φ, Lmp] and 1Zmp, respectively.

This moves the tip of the continuum structure to [x, y, z]

coordinates and satisfy no-slack and minimum F0 loading

conditions.

The numerical simulations for similar beam configurations

and F0 = 0 for position control of a 6-tendon continuum

robot under moving loading distribution results in similar ten-

don tension pattern as shown in Figure 5b, but with different

peak values (Table 3, #7 and #8). As expected, these peak val-

ues are still identical with those of the position control under

fixed loading distribution. The results verify the expected

dependency of1Zmp and Fimp to φ and αim parameters as well

as their relations with 1Zfp and Fifp .

VI. EXPERIMENTS

A. EXPERIMENTAL SETUP

The 6-tendon robotic catheter system, shown in Figure 7,

is employed to experimentally evaluate the control algorithms

and validate simulation results. The system is integrated with

a real-time vision-based shape sensing system that enables

the 3D reconstruction of the catheter tube at the rate of 200Hz

with accuracy of ±0.6 mm and ±0.5 deg for the linear

and angular parameters, respectively [37]. DC geared motors

(Model EC-max 22, Maxon Motors Inc., 6072 Sachseln,

Switzerland) are utilized for the actuation of the tendons.

The base of this robotic system is fixed and not actuated.

Load-cells (Model FC22, Phidgets Inc., Calgary, Canada)

are incorporated into the actuation modules using a flexure

mechanism to measure the tension loads in tendons.
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FIGURE 7. The developed modular continuum robotic system capable of
manipulating robots with up to 6 tendons integrated with a real-time
vision-based 3D reconstruction system [34].

Mechanical parameters of the continuum structure and

tendons are listed in Table 1 which are similar to those

used in the numerical simulations. Although these parameters

are readily available for the prototype in the experimental

setup, they need to be either measured or obtained from man-

ufacturer for off-the-shelf continuum robots and catheters.

Tendons used in this setup are Spectra microfilament braided

lines (Spectra, PowerPro Inc., Irvine, CA, United States).

To decrease the friction between the tendon and pulleys,

low-friction pulleys with ball bearing are employed in the

system. The 6-lumen catheter was molded of urethane rubber

(PMC 780, Smooth-On Inc., Macungie, PA, United States).

The Young’s modulus of the tubes and tendons are measured

using an Instron 5566 universal testing machine. Tendons

are passed through the lumens and knotted to the actuator

spools from one end and to a cap part from the other end

at termination point at distal end of the catheter. The system

was operated by a PC with Intel Core i7 processors running

at 3.00 GHz with 16 Gb of memory.

B. EXPERIMENT PROCEDURE AND RESULTS

To evaluate the effectiveness of the proposed methods,

the cases presented in Figure 3, namely beam configura-

tions [θ, φ,LSS ] and [θ, φ,LE ] respectively causing slack and

excessive loading using inverse kinematics solution, as well

as the beam configurations modified by the proposed algo-

rithms to avoid slack and excessive loadings are experimen-

tally examined and the results are presented here. F0 is con-

sidered zero in experiments. Before commanding the robot

to a configuration, the catheter was commanded to its home

configuration (at rest in vertical position with zero tension in

tendons) as shown in Figure 7.

Figure 8 presents the experimental results for the beam

configurations of [θ , φ, LSS ] and [θ , φ, LE ] causing slack

and excessive loading in tendons, respectively. As implied

from Figure 8a (peak values of 0 and −5.34 N), at most of

the configurations, tendons have zero tension loads which

is an indication of slacked tendon. Slacked tendons do not

FIGURE 8. Experimental results for the tendon tension loads in a
6-tendon continuum robot for the beam configurations (a) [θ, φ, LSS ]
causing mean bending error of 19.77 deg and [θ, φ, LE ] (b) causing mean
bending angle error of 1.63 deg.

produce any load, therefore, slacked tension loads measured

by load-cells at these configurations are zero. Results shown

in Figure 8b presents excessive loadings in tendons rang-

ing from −2.56 to −10.96 N. Experimental results are in

good confirmation with simulation results (Figure 3) in terms

of trend and magnitude for both cases of slack and exces-

sive loading (Table 3). It is worth noting that the tension

loads obtained from all experiments have higher magnitudes

than corresponding loads obtained from numerical simula-

tions. This correlation that exists across all experiments may

be due to friction, nonlinearity, and viscoelasticity in the

materials [32], [33].

Experimental results for orientation control algorithm

under fixed loading distribution for beam configurations

[θ, φ,LSS ] are presented in Figure 9a. Figures 9b and 9c

display the tendon tensions measured in experiments for the

position control algorithm under fixed loading distribution for

beam configurations [θ, φ,LSS ] and [θ, φ,LE ], respectively.

Figure 10 presents the experimental results for orientation

and position control algorithms under moving loading dis-

tribution based on the beam configurations [θ, φ,LSS ] and

[θ, φ,LE ]. Both orientation and position control algorithms

under fixed and moving loading distributions satisfy no-slack

andminimumF0 (F0 = 0 in experiments) loading conditions.

They also match the simulation results listed in Figure 5 in

terms of peak values and loading distributions.

Figures 11a and 11b present errors in the bending angles

measured in experiments with respect to the desired bend-

ing angle (Table 2) for the orientation and position control
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FIGURE 9. Experimental results for the tendon tension loads in a
6-tendon continuum robot for (a) orientation control of beam
configurations [θ, φ, LSS ], (b) position control of beam configurations
[θ, φ, LSS ], and (c) position control of beam configurations [θ, φ, LE ]
under fixed loading distribution.

algorithms under fixed and moving loading distributions for

the beam configurations [θ, φ,LSS ] and [θ, φ,LE ], respec-

tively. As shown in Figure 11a, slacked tendons nega-

tively affect the control accuracy of continuum robot; mean

error of 19.77 deg in θ . On the other hand, despite its

disadvantages, excessive loading produced more accurate

manipulation; mean error of 1.63 deg in θ in Figure 11b.

Orientation and position control algorithms under fixed and

moving loading distributions decreased the errors down to

the range of 3.51 to 4.96 deg. Given the open-loop nature

of the testing and evaluation process, the results demonstrate

good accuracy and effectiveness for the proposed control

algorithms.

For both cases of [θ, φ,LSS ] and [θ, φ,LE ], the errors for

orientation control algorithm are similar as these algorithms

are independent of length. There are no significant differ-

ences between the errors for orientation and position control

algorithms for any of the cases of slack or excessive loadings.

FIGURE 10. Experimental results for the tendon tension loads in a
6-tendon continuum robot for (a) orientation control of beam
configurations [θ, φ, LSS ], (b) position control of beam configurations
[θ, φ, LSS ], and (c) position control of beam configurations [θ, φ, LE ]
under moving loading distribution.

This is because of small differences between the desired θ

for both cases of slack and excessive loading (40 deg) and θfp
(40.74 and 39.31 deg) and θmp (40.6 to 40.74 and 39.18 to

39.31 deg) determined respectively from Equations (15)

and (28) for the cases of slack and excessive loading.

To better demonstrate the capability of the algorithms in

controlling orientation and position of the continuum struc-

ture, a new set of beam configuration is chosen ([θ, φ,LAS ] -

Table 2). This configuration is chosen to produce consid-

erable differences between the given θ and L and those

determined from the orientation and position control algo-

rithms. Given the initial length of the continuum structure,

commanding the robot to this configuration causes slack in

all tendons which results in no movement in the continuum

structure. To reach this exact beam configuration, base dis-

placement is required. However, as explained in previous

sections, for position control requiring base displacements,

a new coordinates is derived to satisfy x and y coordinates
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FIGURE 11. Mean and standard deviation of orientation errors for
(a) beam configurations [θ, φ, LSS ], (b) beam configuration [θ, φ, LE ] as
well as mean orientation and position errors for (c) configurations
[θ, φ, LAS ] for the orientation and position control algorithms under fixed
(F-O and F-P) and moving (M-O and M-P) loading distributions in a
6-tendon continuum robot.

of the original target point while the axial displacement of

the base compensates for the target z coordinate. Since the

experimental setup does not allow base movements, the new

point satisfying x and y coordinates is utilized. This is not

expected to have any effects on accuracy because the required

base movement is a pure straight displacement and does not

involve any manipulations in the continuum structure.

The errors in experimental results for bending angle and tip

position for the case of traditional inverse kinematics as well

as four control algorithms are listed in Figure 11c. Although

each algorithm has different target orientation and tip posi-

tion, the errors are calculated with respect to the original tar-

get beam configurations. For the orientation angles, the given

θ (40 deg) is used as the reference. The vector sum of x

and y coordinates of the tip position (Dxy in Figure 4) corre-

sponding to [θ, φ,LAS ] (58.64 mm) is chosen as the reference

for calculating errors in tip positions for different control

algorithms. The first column of this figure shows errors as

big as the target θ and Dxy calculated from the kinematics

of the continuum structure for the target configuration. The

reason for such big errors is that commanding the actuators

displacements calculated using the inverse kinematics for the

target configuration ([θ, φ,LAS ]) simply does not cause any

movement in the robot at all and only makes all tendons go

slack.

As implied from Figures 11c, orientation control algo-

rithms under both fixed and moving loading distributions

produced errors as low as 4.35 and 4.18 deg in the bend-

ing angle, respectively. Since the objective of these control

algorithms is not tip position control, the tip position differ-

ences with respect to the given configurations is relatively

large; 10.12 and 10.81 mm for fixed and moving loading

distributions, respectively. On the other hand, position control

algorithms produce small position errors of 3.17 and 3.21mm

under two fixed and moving loading distributions, respec-

tively. The orientation errors of position control algorithms

under the two loading distributions (1.13 and 1.32 mm,

respectively) listed in this figure are lower than those of

the orientation control algorithms. This is because the listed

errors are calculated based on the given θ which means the

orientation errors for the case of the position control algo-

rithm do not represent the actual orientation error. Computing

these errors with respect to the new bending angles calcu-

lated by the algorithms (θfp and θmp from Equations (15)

and (28), respectively produces similar orientation errors as

of those in orientation control algorithms for the two loading

distributions. These results demonstrates the capability of the

proposed control algorithms in controlling orientation and tip

position of a continuum robot.

Figure 12 presents the experimental results for the sum-

mation of the tension loads in all tendons for each bending

plane angle φ for orientation control (Figure 12a), position

control of beam configuration [θ, φ,LSS ] (Figure 12b),

FIGURE 12. Summation of the tension loads in all tendons measured in
experiments for (a) orientation control, (b) position control of beam
configuration [θ, φ, LSS ] and (c) [θ, φ, LE ] under both fixed and moving
loading distributions with respect to the bending plane angle φ.
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and [θ, φ,LE ] (Figure 12c) under both fixed and moving

loading distributions. The experimental results match the

simulation results presented in Figure 6 in terms of the mag-

nitude and overall pattern. As implied from these figures,

summation of the tension loads for orientation and position

control under fixed loading distribution are mostly around

the maximum absolute values of those of the similar control

algorithms undermoving loading distribution. In other words,

moving loading distribution always produces less tension in

tendons than the fixed loading distribution unless the im-th

tendon is laid on the bending plane (αim − φ = π ) in which

case the tensions are equal for both loading distributions.

VII. DISCUSSION

As shown in Figure 12, in a 6-tendon robot, the fixed and

moving loading distributions lead to similar tendon ten-

sion summations at the bending plane angles of [0, 60,

120, . . . , 360] deg. Interestingly, the number of maximum

peak values (Nmp) of the tension summation is directly related

to the number of tendons n in the continuum structure.

In continuum robots with even number of tendons, the peak

values are repeated at the bending plane angles of 0 and

360 deg. However, there is no peak value at the bending plane

angle 0 deg in continuum robots with odd number of tendons.

This results in no repetition of the peak values in continuum

robots with odd number of tendons. It is worth noting that

this difference is dependent of the location of the tendons.

This relationship is represented as

Nmp =

{

n when n is odd

n+ 1 when n is even
(29)

Experimental results validated the numerical simulation and

verified the performance of the proposed control algorithms

under fixed and moving loading distributions in controlling

orientation and position of a 6-tendon continuum robot. The

algorithms are proved to be capable of avoiding slack and

excessive loading in multi-tendon continuum robots even in

open-loop control architecture for a polymer-based contin-

uum manipulator. Based on the application control require-

ments, e.g. orientation or position control, computational

capabilities of the controller, e.g. analytical or numerical iter-

ative solutions, hardware specification, e.g. DOFs and robot

workspace, and manipulation features, e.g. motion smooth-

ness, the proposed control algorithms may be chosen to

manipulate a continuum robot with any number of tendons

without concern about slack deficiencies or excessive loading

damage.

Stiffness of a continuum structure may be controlled by

manipulating the tension loads in tendons. Reduction of the

stiffness of the continuum robot can enable safe navigation

inside delicate confined spaces, e.g. to avoid wall puncture.

In contrast, a high stiffness continuum structure may be

advantageous during tissue manipulation [14], [38], [39].

In order to avoid both slack and unnecessary loading in

tendons and also to adjust stiffness in the continuum structure,

the location of the zero-load axis can be moved behind virtual

tendon so that there is a minimum tension loading of F0 in the

virtual tendon. The minimum tension loading F0 in tendons

may be used to trade off between tension loading magnitudes

and beammanipulator stiffness required for any applications.

Changing F0 directly affects the stiffness of the manipulator.

The larger F0 values, the stiffer manipulator. The minimum

allowable value of F0 is zero and negative values cause slack

in some or all of the tendons.

VIII. CONCLUSION

In this work, orientation and position control algorithms

developed based on two fixed and moving loading distribu-

tions in n-tendon continuum robots. These loading distribu-

tions were designed to prevent slack and excessive loading

in tendons. The algorithms were developed to account for

the bending and axial compliance of the continuum structure

as well as tendon compliance. Numerical simulations were

performed to help describe the control algorithms and their

key characteristic features under fixed and moving load-

ing distributions. The effectiveness of the proposed con-

trol algorithms in avoiding slack and excessive loadings in

tendons and controlling the orientation and tip position of the

continuum structure for different beam configurations was

experimentally verified using a 6-tendon continuum robotic

system in open-loop control architecture. Future works may

take friction and external loading and disturbance into con-

sideration and address experimental characterization of off-

the-shelf catheters and continuum robots.
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