
Slack-Based Techniques for Robust Schedules
Andrew J. Davenport1 and Christophe Gefflot2 and J. Christopher Beck2

1IBM T J Watson Research Center
PO Box 218, Yorktown Heights

New York 10598 USA
davenport@us.ibm.com

2ILOG, S.A.
9, rue de Verdun, B.P. 85

F-94523 Gentilly Cedex France
{cgefflot, cbeck}@ilog.fr

See Acknowledgements for current author affiliations.

Abstract
Many scheduling systems assume a static environment within
which a schedule will be executed. The real world is not so
stable: machines break down, operations take longer to ex-
ecute than expected, and orders may be added or canceled.
One approach to dealing with such disruptions is to generate
robust schedules: schedules that are able to absorb some level
of unexpected events without rescheduling. In this paper we
investigate three techniques for generating robust schedules
based on the insertion of temporal slack. Simulation-based
results indicate that the two novel techniques out-perform the
existing temporal protection technique both in terms of pro-
ducing schedules with low simulated tardiness and in produc-
ing schedules that better predict the level of simulated tardi-
ness.
Keywords: Robustness, Uncertainty, Scheduling, Heuristics

1 Introduction
Based on a field study of a number of job shops, McKay
et al. (McKay, Safayeni, and Buzacott 1988) comment that
“the [static job shop] problem definition is so far removed
from job-shop reality that perhaps a different name for the
research should be considered”. In particular, they found that
modern scheduling technology failed to adequately address
scheduling in uncertain, dynamic environments.

There are two general approaches to dealing with uncer-
tainty in scheduling. Whereas reactive techniques address
the problem of how to recover from a disruption once it has
occurred, pro-active scheduling constructs schedules that
account for statistical knowledge of uncertainty. One way
of achieving this is by generating robust schedules, that is,
a schedule with “the ability to satisfy performance require-
ments predictably in an uncertain environment” (Le Pape
1991).

In this paper, we explore slack-based techniques for ro-
bust scheduling. The central idea behind slack-based tech-
niques is to provide each activity with extra time to execute
so that some level of uncertainty can be absorbed without
rescheduling. We define the amount slack for an activity, A,
as follows:

slackA = lftA − estA − durA (1)

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Where estA and lftA are respectively the earliest start time
and latest finish time of activity A and durA is the duration
of activity A.

Three slack-based techniques are examined in this pa-
per. The first, temporal protection (Gao 1995), adds slack
to an activity before scheduling. The original duration of
each activity is extended and then this protected duration
is used during scheduling. Two novel techniques are intro-
duced here:

• Time window slack (TWS): Rather than extending the du-
rations of activities, this technique modifies the problem
definition to ensure that each activity will have at least a
specified amount of slack. The advantage of this approach
over temporal protection is that the amount of slack for
each activity can be reasoned about during the problem
solving rather than being “hidden” inside the protected
duration.

• Focused time window slack (FTWS): TWS and temporal
protection specify the amount of slack required for each
activity before problem solving. In FTWS, the amount of
slack for each activity depends on where along the tempo-
ral horizon an activity is scheduled. The intuition is that
the later in the schedule an activity is executed, the more
likely it is to have a disruptive event occur before its exe-
cution and, therefore, the more slack is needed.

2 Problem Definition
The problem addressed here is the job shop scheduling prob-
lem with release and due dates, machine breakdowns, and
the optimization criteria of minimization of the sum of job
tardiness.

Each job is composed of a set of totally ordered activi-
ties. Each job, j, has a release date, rd(j), and a due date,
dd(j). The former is the earliest time an activity in the job
can execute and the latter is the latest time that the last activ-
ity in the job should finish execution. Each activity requires
a single resource (also referred to as a machine) and has a
predefined duration during which it must be the only activ-
ity executing on its required resource. Once an activity has
begun execution it cannot be pre-empted by another activity.

The goal is to sequence the activities on each resource
such that the order within each job is respected and that the
sum of the job tardiness is minimized. More formally, given

43

Proceedings of the Sixth European Conference on Planning

C(j), the completion time for the last activity in job j, we
seek to minimize

∑
max(0, C(j) − dd(j)) over all jobs in

a problem.
To represent uncertainty, some machines are subject to

breakdowns. During a breakdown, a machine cannot pro-
cess any activities and any activity which was executing on
the machine at the time of breakdown is stopped and then
resumed from the point where it was stopped after the ma-
chine has been repaired. Statistical characteristics of ma-
chine breakdowns are known.1 We assume normal distribu-
tions parametrized by:

• µtbf (R): the mean time between failure of resource R

• σtbf (R): the standard deviation in time between failure
on R

• µdt(R): the mean down time (or duration of breakdown)
on R

• σdt(R): the standard deviation in down time on R

3 Temporal Protection
Temporal protection (Gao 1995) is a preprocessing tech-
nique which extends the duration of each activity based on
the uncertainty statistics of the resource on which it exe-
cutes.2

Resources that have a non-zero probability of breakdown
are designated as breakable resources. The durations of ac-
tivities requiring breakable resources is extended to pro-
vide extra time with which to cope with a breakdown. The
scheduling problem with protected durations is then solved
with standard scheduling techniques.

The intuition behind the extension of durations is that
during schedule execution, the protected durations provide
slack time which can be used in the event of machine break-
down. For instance, in Figure 1, activities A and B are se-
quenced to execute consecutively on a breakable resource.
The length of the white box represents the original duration
of the activities while the shaded box represents the exten-
sion due to temporal protection. If the machine breaks down
while activity A is executing, the extra time within the pro-
tected duration can be used to absorb the breakdown. If the
breakdown lasts no longer than the available protection, its
effect will not be felt in the rest of the schedule. If the break-
down lasts longer, some reactive approach must be taken to
restore consistency to the schedule. If no breakdown occurs
during the execution of activity A, then activity B can start
earlier: the slack provided by the temporal protection for A
is available for use by activity B.

A key issue is the amount of temporal protection added to
each activity. Too much protection will result in a poor qual-
ity but highly robust schedule. Too little protection will also
result in a poor quality schedule execution if a breakdown

1In a production scheduling domain, such characteristics may
be supplied by the manufacturer and/or may be based on shop floor
operational history.

2We present a simplified description of temporal protection in
the case that each activity requires only one resource. For a formu-
lation for multiple resource requirements see (Gao 1995).

Activity A Activity B

time

Figure 1: Example of a temporally protected schedule, with
white boxes representing the original duration and grey
boxes representing the extended durations.

occurs. The approach taken by Gao extends the duration so
as to amortize the breakdown over a number of activities.

More formally, given an activity, A, that requires a break-
able resource,R, temporal protection defines a protected du-
ration for A, durA,tp, where tp denotes temporal protection,
as follows:

durA,tp = durA +
durA
µtbf (R)

× µdt(R) (2)

The equation specifies that the protected duration of an
activity A is its original duration plus the duration of break-
downs that are expected to occur during the execution of A.

4 Time Window Slack
By extending activity durations in a preprocessing step, tem-
poral protection transforms the original problem to a new
problem that can be solved with any scheduling technique.
We conjecture, however, that the preprocessing has a disad-
vantage in that during scheduling the amount of slack added
to each activity cannot be directly reasoned about. This can
lead to situations where it is impossible to share slack be-
tween activities even when no resource breakdowns have
occurred. Indeed, the claim that activity B in Figure 1 can
start execution early if there is no breakdown during or be-
fore activityA is an over-simplification. For example, in Fig-
ure 2 we introduce a third activity, C, which executes on a
non-breakable resource and so has no temporal protection.
Activity B must execute after activity C, and since activity
C finishes execution later than activity A, the earliest start
time of B is the end time of C. The temporal protection rep-
resented by the extension of the duration of activity A is not
available for use by activity B as B cannot start earlier than
the end time of C.

Activity A Activity B

Activity C

time

Figure 2: A situation where the temporal protection cannot
be shared between activities A and B.

44

To avoid such situations, we propose the time window
slack (TWS) approach which reasons directly about the
slack time available for an activity during problem solving.
Rather than including this slack as part of the activity dura-
tion, we explicitly reason about it by adding a relation to the
problem definition that specifies that schedules must have
sufficient slack time for each activity.

The advantage of this approach is that there is more infor-
mation about activity slack during the problem solving. In a
situation such as the one in Figure 2, we are able to detect
that the slack of activity A cannot be shared with activity B.
If there is still sufficient slack in the schedule after activity
B, we still may be able to generate a valid schedule. If not,
we must backtrack and continue search.

The amount of slack for each activity is still critical for
the generation of a robust schedule. Using actsR to denote
the set of all activities executing on resource R, the required
slack for activity A ∈ actsR is:

slackA ≥
∑

B∈actsR durB
µtbf (R)

× µdt(R) (3)

The required slack for an activity under TWS is consid-
erably larger than the duration extension in temporal protec-
tion. Indeed, the amount of slack on each activity is equal
to the sum of the durations of all the expected breakdowns
on R. This difference is because we expect the slack on all
activities on a resource to be shared. If the slack is com-
pletely shared then the total slack on a breakable resource is
approximately equal (given integer rounding) to the sum of
the durations extensions in temporal protection.

The relation in inequality 3 is somewhat problematic for
standard scheduling approaches: no solution which assigns
start times to activities can satisfy it unless the left-hand side
evaluates to 0. The very act of assigning a start time forces
the slack (as defined in equation 1) to be 0. Therefore, rather
than being able to use arbitrary scheduling techniques, we
must use scheduling techniques that reason about the order
of activities on resources. Fortunately, such techniques are
not uncommon (e.g., (Smith and Cheng 1993; Beck and Fox
2000)).

5 Focused Time Window Slack
Neither temporal protection nor TWS take into account the
placement of activities on the scheduling horizon. For ex-
ample, consider scheduling a newly repaired machine whose
µtbf (R) is 1000 days and whose σtbf (R) is 50 days. Given
the negligible probability of a breakdown before day 800,
it does not seem worthwhile to focus on making the sched-
ule more robust before this time. Focused time window slack
(FTWS) uses the uncertainty statistics to focus the slack on
areas of the horizon that are more likely to need it to deal
with a breakdown.

The probability distribution, P (N(µtbf (R), σtbf (R)) ≤
t), allows us to compute the probability that a breakdown
event will occur at or before time t. An approximation of this
curve can be efficiently computed using standard statistical
techniques. This curve is used to determine the amount of
slack an activity should have given the basic intuition that

the higher the probability of a breakdown occurring before
the execution an activity, the greater the amount of slack.

The slack for an activity is computed as a function of the
probability that a breakdown will occur before or during the
execution of the activity and of the expected breakdown du-
ration. If the µtbf (R) for a machine is much less than the
scheduling horizon, the possibility of multiple breakdowns
must be considered. We do this by considering the cases for
each breakdown, nb, separately. First, we assume that at time
0 the machine has just been maintained. For each value of
nb = 1..M , where M is a large number, we compute the
expected time that the nb-th breakdown will occur as:

µ(nb) = (nb× µtbf (R)) + ((nb− 1)× µdt(R)) (4)

We calculate the standard deviation of the time for nb
breakdowns as:

σ(nb) = ((nb× σ2
tbf (R)) + ((nb− 1)× σ2

dt(R)))
1
2 (5)

These calculations constitute an abuse of the central limit
theorem: the random variables representing the breakdown
events are not independent. This calculation is an approxi-
mation and future work will examine a more sophisticated
statistical analysis.

We use the statistics for nb breakdowns to calculate the
P (N(µ(nb), σ(nb)) ≤ t) curve estimating the probability
that nb breakdowns will occur before a particular time t. The
amount of slack time required for an activity executing at a
particular time point t on resource R is:

slackA(t, R) ≥
M∑

nb=1

P (N(µ(nb), σ(nb)) ≤ t)× µdt(R)

(6)
As with TWS, we add relation 6 to the problem model as

a pruning rule.

6 Experimental Evaluation
To evaluate the three robustness techniques we run a
simulation-based experiment. Each problem is solved to op-
timality: an ordering of the activities on each resource is
found that minimizes the sum of the tardiness of the jobs.
A simulation of the “execution” of each schedule under un-
certainty is then performed.

The problem sets used in our experiments were con-
structed as follows. Ten 6 × 6 job shop problems with un-
correlated durations were constructed using a job shop prob-
lem generator (Watson et al. 1999). For each problem, TLB,
the lower bound on the makespan due to Taillard (Tail-
lard 1993), was calculated. The release dates for each job
were assigned by randomly choosing a time (with uniform
probability) from the interval [0, TLB

8]. Standard temporal
propagation was then performed to provide a lower-bound,
ddlb(j), on the due date of each job. For each original prob-
lem, six problems were then generated by setting the actual
due date of each job to dd(j) = ddlb(j) × L, where L rep-
resents the “looseness” of the due dates and ranges from 1.0
to 1.5 in steps of 0.1.

45

For each of these 60 problems, we then introduced nine
levels of uncertainty based on two uncertainty factors:
Umachine, the number of machines prone to failure and
Ustat, the magnitude of the uncertainty statistics. Each of the
uncertainty factors have three levels {1, 2, 3} and the over-
all level of uncertainty is, U = 3× (Umachine− 1)+Ustat.
This encoding produces nine levels of uncertainty divided
into three groups. Levels 1-3 have one breakable machine,
levels 4-6 have two breakable machines, and levels 7-9 have
3 breakable machines. Within each group the likelihood of
breakdown on each breakable machine increases as the level
increases.

The statistical values for each level of Ustat are derived as
follows for a breakable resource, R. Given the set of activ-
ities, actsR, requiring resource R, a lower-bound, lb(R) on
the latest end time of the activities is calculated:

lb(R) = max(min
A∈actsR

(estA)+
∑

A∈actsR

durA, max
A∈actsR

(lftA))

(7)
Using lb(R), we define, µtbf (R,Ustat), the mean time

between failure for resource R, and σtbf (R), the standard
deviation time between failure, as follows:

µtbf (R,Ustat) =
lb(R)

2Ustat−1
, σtbf (R) =

lb(R)

8
(8)

The standard deviation of the down time σdt(R) is simply
the mean duration of the activities in actsR while the mean
down time, µdt(R) is twice that value.

As we began with 10 problems, 6 values for L, the due
date looseness factor, and have a total of 9 combinations of
the uncertainty factors, we have a total of 540 test problems.

6.1 Evaluation Criteria
The evaluation of the schedules under uncertainty is done
using a simulator. Our optimization function, therefore, has
two forms: simulated and predicted. Given problem in-
stance, p, we use TARD(p, ∗) to denote the minimal sum
of the tardiness over all jobs in a predictive schedule. Simi-
larly, we use TARD(p, s) to denote the tardiness of problem
instance p in simulation s.

Given a set of simulations, S, and a set of problems,P , the
primary basis of comparison of our robustness techniques is
the mean simulated tardiness:

MST (P, S) =

∑
s∈S,q∈Q TARD(p, s)

|S| × |Q|
(9)

Our secondary evaluation criteria is the mean absolute dif-
ference between the predicted tardiness and the simulated
tardiness.

MATD(P, S) =

∑
s∈S,q∈Q |TARD(p, s)− TARD(p, ∗)|

|S| × |Q|
(10)

6.2 Results
For each test problem and for each robustness technique (in-
cluding the no protection where the uncertainty statistics
were ignored), each scheduling problem was solved to op-
timality using ILOG OPL Studio 3.1, ILOG Scheduler 4.4,
and ILOG Solver 4.4. Solving a single problem to optimal-
ity took approximately 10 seconds, regardless of robustness
technique, on a Pentium II, 300 MHz PC.

A simulator, written in ILOG OPL Studio 3.1, simulated
the execution of each schedule, introducing breakdowns
based on the specified uncertainty distributions. When a
breakdown occurred, the duration of the executing activ-
ity was extended by the duration of the breakdown. In the
temporal protection condition, the protected durations were
replaced with the original durations and the activities were
left-shifted (subject to their release dates) before the simula-
tion.

Figure 3 presents the graph of, MST (P, S), the mean
simulated tardiness for 100 simulations of each problem un-
der each robustness technique and each combination of un-
certainty factors. Except for the highest level of uncertainty,
temporal protection results in a higher mean tardiness than
is observed even if the uncertainty information is ignored.
This is consistent with previous experiments with temporal
protection (Gao 1995). In contrast, both TWS and FTWS
achieve a lower mean tardiness than no protection across all
uncertainty levels with FTWS achieving slightly lower mean
tardiness than TWS.

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9

M
ea

n
Si

m
ul

at
ed

 T
ar

di
ne

ss

Uncertainty Level

temporal protection
no protection

ftws
tws

Figure 3: The mean simulated tardiness for each uncertainty
level

Figure 4 presents, MATD(P, S) the mean difference
in the absolute value between the simulated tardiness and
the predicted tardiness for each robustness technique. Here
we observe that for low levels of uncertainty, the predic-
tions of the TWS, FTWS, and no protection techniques are
quite similar. In contrast, the temporal protection results vary
widely: the mean absolute difference is four times greater
than that of the other techniques at uncertainty level 3. As the
level of uncertainty increases however, we see the mean ab-
solute difference for no protection increasing quickly while
TWS and FTWS results increase more slowly. Interestingly,

46

the relative results of temporal protection improve signifi-
cantly with increased uncertainty, achieving the lowest mean
absolute difference of all techniques at uncertainty levels 7
through 9.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9

M
ea

n
Ab

so
lu

te
 D

iff
er

en
ce

 in
 S

im
ul

at
ed

 a
nd

 P
re

di
ct

ed
 T

ar
di

ne
ss

Uncertainty Level

temporal protection
no protection

ftws
tws

Figure 4: The mean absolute difference between simulated
and predicted tardiness for each uncertainty level

7 Discussion
There are two goals for robustness techniques in schedul-
ing. The first is that though in building robust schedules, the
overall schedule quality may be diminished, the accuracy of
the predictive schedules is increased. The ability to better
predict the actual completion time of a job, even if this com-
pletion time is tardy is valuable in real world scheduling.
The second goal is that by taking uncertainty into account,
the predictive schedule will not only provide more accu-
rate performance information but will actually result in bet-
ter overall schedule performance. This better performance
comes from the fact that the predictive schedule can actually
be constructed using the uncertainty information.

In comparing the robustness techniques with ignoring un-
certainty information, we see that all techniques achieve the
first goal with the exception of temporal protection at low
levels of uncertainty. At uncertainly levels above level 3, the
absolute difference between the simulated and predicted tar-
diness (Figure 4) is approximately two times smaller when
the uncertainty is taken into account. These differences are
not apparent at lower levels of uncertainty and, indeed, tem-
poral protection performs very badly at level 3.

TWS and FTWS also achieve the second goal: Figure 3
shows that the simulated tardiness for the TWS and FTWS
solutions is less than that for the solutions with no protec-
tion. Except for high level of uncertainty, temporal protec-
tion does not result in better overall schedules.

Looking more deeply at the experimental results, we see
two interesting phenomenon. First, when only one machine
is breakable (i.e., levels 1-3) the no protection condition per-
forms almost as well (and in some cases better) than TWS
and FTWS on both mean simulated tardiness and mean ab-
solute difference measures. This is not terribly surprising as,

at low levels of tardiness, breakdowns are less disruptive:
unless the breakdown occurs during an activity that is on a
critical path3 some of the breakdown will be absorbed by
the naturally occurring slack. Furthermore, with low levels
of uncertainty, the level of slack required in the TWS and
FTWS conditions is small. The activity sequences in the op-
timal solutions in the no protection condition will therefore
be quite similar to those of TWS and FTWS. Similar se-
quences will lead to similar simulated tardiness results.

The second phenomenon is that while temporal protection
performs very poorly in terms of absolute difference with
one breakable machine, when three machines are break-
able it has a lower mean absolute difference than TWS and
FTWS. The poor behavior, especially at level 3, arises from
the fact that extending the durations of the activities on the
breakable resource leads to a scheduling problem where the
breakable resource is essentially a bottleneck. The optimal-
ity of a solution depends almost wholly on the sequence of
activities on that resource while the sequences on the rest
of the resources are irrelevant. An optimal solution, there-
fore, has an almost random sequencing of activities on the
non-breakable resources. When the duration extensions are
removed in the simulation, the sub-optimal sequences on
the non-breakable resources leads to high tardiness. In con-
trast, with multiple breakable machines, optimality depends
on more than one resource, leading to a better sequence of
activities over more of the resources. The TWS and FTWS
methods do not lead to a single bottleneck resource when
there is only one breakable machine. This is because the
slack that is added to the activities on the breakable resource
affects upstream and downstream activities as well. Since by
construction all jobs have one activity on the breakable re-
source, all activities in the problem are constrained to have
some level of slack. Even though there is only one breakable
resource, all resources are required to have an equal amount
of slack and therefore there is no bottleneck resource that
completely defines optimality. During problem solving, the
activity sequences on the non-breakable resources are just as
important as those on the breakable resource in terms of op-
timality. The fact that the slack is “propagated” to activities
that are not on a breakable resource is, in retrospect, obvi-
ous. Based on our results, however, it may have a significant
impact on the performance of robustness techniques. An in-
teresting question arises as to the relative contribution of
reasoning about slack during problem solving and of “slack
propagation” toward dealing with uncertainty.

We do not as yet have an explanation of the good perfor-
mance of temporal protection with high levels of uncertainty.

7.1 Relation to Previous Work
Slack-based techniques involve the addition of extra time
in order to recover from unexpected events. Similar ap-
proaches, called temporal redundancy, are common in real-
time fault tolerant scheduling (Ghosh, Melhem, and Mossé
1995). Such scheduling problems differ from those typically
investigated in the AI community both in the scope (i.e., of-

3See (Kreipl 2000) for a definition of critical path on tardiness
minimization problems.

47

ten only one machine) and in the definition of a solution
(e.g., a guarantee that the system is schedulable). Nonethe-
less, real-time fault tolerant scheduling research represents
an important source of ideas for further investigations.

Overall, there has been little work in the research liter-
ature that specifically addresses uncertainty in the context
of the types of scheduling problems that are typically of
interest in AI (e.g., problems with multiple resources and
activities). A variety of techniques, including resource re-
dundancy (Ghosh, Melhem, and Mossé 1995), probabilistic
reasoning (Burns et al. 1997; Daniels and Carrillo 1997),
and a variety of off-line/on-line approaches (Berry 1993;
Goldman and Boddy 1997; Hildum 1994; Meuleau et al.
1998) have been investigated, usually in the context of sim-
pler scheduling problems. There does not yet appear to be
a broader understanding of either the role that uncertainty
plays in real scheduling problems or a comparison of differ-
ent approaches.

8 Conclusion
In this paper, we examined three techniques for taking into
account uncertainty in scheduling by adding slack to the
scheduling problem. Our experiments demonstrate that an
existing technique, temporal protection, results in a reduced
overall schedule performance but more accurate schedules
than not taking uncertainty information into account. The
sole exception is at low levels of uncertainty, when tempo-
ral protection produces schedules that are significantly less
accurate than no protection.

Two novel techniques, time window slack and focused
time window slack, were developed to account for the fact
that temporal protection reasons about uncertainty as a pre-
processing step, before actual scheduling. Time window
slack and focused time window slack both incorporate rea-
soning about uncertainty into the problem solving as well as
resulting in a propagation of slack time from activities on
breakable resources to temporally connected activities. Our
experiments indicate that both the novel techniques are able
to produce better, more accurate schedules than either tem-
poral protection or no protection.

We view the work reported in this paper as preliminary.
As noted above, there are a number of approaches to un-
certainty that have been tried in various types of scheduling
problems, however there is not, as yet, any broader under-
standing of uncertainty as it applies to scheduling problems
typically investigated in the AI literature. This paper demon-
strates that for a simple, but interesting, class of scheduling
problems, slack-based techniques can provide higher qual-
ity, more accurate schedules.

9 Acknowledgments
Portions of this research were funded by the Materials and
Manufacturing Council of Ontario. Part of this research was
performed while the first author was a visiting researcher at
SINTEF Applied Mathematics. We would like to thank Geir
Hasle, Dag Kjenstad and Martin Stolevik for useful discus-
sions.

10 Affiliations

Andrew Davenport
Amazon.com
333 Boren Ave. N
Seattle, WA, 98109, USA
andrewda@amazon.com

Christophe Gefflot
IBM Nantes
2, rue de Michael Faraday
44800 Saint-Herblain, France
christophe.gefflot@fr.ibm.com

J. Christopher Beck
Mechanical and Industrial Engineering
University of Toronto
5 King’s College Rd.
Toronto, ON, Canada
jcb@mie.utoronto.ca

References
Beck, J. C., and Fox, M. S. 2000. Dynamic problem struc-
ture analysis as a basis for constraint-directed scheduling
heuristics. Artificial Intelligence 117(1):31–81.
Berry, P. M. 1993. Uncertainty in scheduling: Probability,
problem reduction, abstractions, and the user. In IEE Collo-
quium on Adcanced Software Technologies for Scheduling.
Digest No: 193/163.
Burns, A.; Punnekkat, S.; Littlewood, B.; and Wright, D.
1997. Probabilistic guarantees for fault-tolerant real-time
systems. Technical Report DeVa TR No. 44, Design for
Validation, Esprit Long Term Research Project No. 20072.
Available at http://www.fcul.research.ec.org/deva.
Daniels, R., and Carrillo, J. 1997. β-robust scheduling for
single-machine systems with uncertain processing times. IIE
Transactions 29:977–985.
Gao, H. 1995. Building robust schedules using temporal
protection–an empirical study of constraint based schedul-
ing under machine failure uncertainty. Master’s thesis, De-
partment of Industrial Engineering, University of Toronto.
Ghosh, S.; Melhem, R.; and Mossé, D. 1995. Enhancing
real-time schedules to tolerate transient faults. In Real-Time
Systems Symposium.
Goldman, R., and Boddy, M. 1997. A constraint-based
scheduler for batch manufacturing. IEEE Expert 12(1):49–
56.
Hildum, D. W. 1994. Flexibility in a knowledge-based
system for solving dynamic resource-constrained schedul-
ing problems. Ph.D. Dissertation, Department of Computer
Science, University of Massachusetts, Amherst, MA. 01003-
4610. UMass CMPSCI TR 94-77.
Kreipl, S. 2000. A large step random walk for minimizing
total weighted tardiness in a job shop. Journal of Scheduling
3(3).

48

Le Pape, C. 1991. Constraint propagation in planning
and scheduling. Technical report, CIFE Technical Re-
port, Robotics Laboratory, Department of Computer Sci-
ence, Stanford University.
McKay, K.; Safayeni, F.; and Buzacott, J. 1988. Job-shop
scheduling theory: What is relevant? Interfaces 18(4):84–
90.
Meuleau, N.; Hauskrecht, M.; Kim, K.; Peshkin, L.; Kael-
bling, L.; Dean, T.; and Boutilier, C. 1998. Solving very
large weakly coupled markov decision processes. In Pro-
ceedings of the Fifteenth National Conference on Artificial
Intelligence (AAAI-98).
Smith, S. F., and Cheng, C. C. 1993. Slack-based heuris-
tics for constraint satisfaction scheduling. In Proceedings of
the Eleventh National Conference on Artificial Intelligence
(AAAI-93), 139–144.
Taillard, E. 1993. Benchmarks for basic scheduling prob-
lems. European Journal of Operational Research 64:278–
285.
Watson, J.; Barbulescu, L.; Howe, A.; and Whitley, L. 1999.
Algorithms performance and problem structure for flow-
shop scheduling. In Proceedings of the Sixteenth National
Conference on Artificial Intelligence (AAAI-99), 688–695.

49

