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Abstract—Modern digital IC designs have a critical operating point,
or “wall of slack”, that limits voltage scaling. Even with an error-
tolerance mechanism, scaling voltage below a critical voltage - so-called
overscaling - results in more timing errors than can be effectively
detected or corrected. This limits the effectiveness of voltage scaling
in trading off system reliability and power. We propose a design-
level approach to trading off reliability and voltage (power) in, e.g.,
microprocessor designs. We increase the range of voltage values at
which the (timing) error rate is acceptable; we achieve this through
techniques for power-aware slack redistribution that shift the timing
slack of frequently-exercised, near-critical timing paths in a power- and
area-efficient manner. The resulting designs heuristically minimize the
voltage at which the maximum allowable error rate is encountered, thus
minimizing power consumption for a prescribed maximum error rate
and allowing the design to fail more gracefully. Compared with baseline
designs, we achieve a maximum of 32.8% and an average of 12.5% power
reduction at an error rate of 2%. The area overhead of our techniques,
as evaluated through physical implementation (synthesis, placement and
routing), is no more than 2.7%.

I. INTRODUCTION

The traditional goal of IC design is for the product to always

operate correctly, even under worst-case combinations of (pro-

cess, voltage, temperature, wear-out, etc.) non-idealities. It is well-

recognized that designing for worst-case operating conditions incurs

considerable area, power and performance overheads [5], and that

these overheads worsen with increased manufacturing or runtime

variations in advanced technology nodes [24]. Better-than-worst-case

(BTWC) design [1] allows reliability (in the sense of timing and

hence functional correctness) to be traded off against performance

and power. The central idea, as exemplified by the shadow-latch

technique in Razor [5], is to design for average-case conditions

(thus saving area and power) while adding an error detection and

correction mechanism to handle errors that occur with worst-case

variabilities. System-level techniques, as exemplified by Algorithmic

Noise Tolerance [13], allow timing errors to proliferate into the

system or application, but then exploit algorithmic and/or cognitive

noise tolerance in mitigating errors at the application level. The use

of such application- or system-level error detection and correction is

assumed in proposed probabilistic SOCs [3] and stochastic processor

architectures [18], which are recent classes of BTWC designs.

Our work focuses on the optimized application of voltage over-

scaling for power reduction in the context of BTWC design. Fig-

ure 1 illustrates power consumption under voltage scaling in BTWC

designs. In the left plot, functional errors begin to occur below the

voltage vb, but we can reduce power consumption until we reach the

voltage vc, given the use of error correction. The right plot shows

that below the voltage vc, power consumption is increased because

of recovery overhead.

The impact of BTWC design techniques is often limited in high-

performance digital designs by a critical operating point or “wall

of slack” phenomenon that limits voltage overscaling and, more

importantly, is a direct consequence of today’s standard approach to

power optimization. The Critical Operating Point (COP) hypothesis

[19] (cf. Figure 1(a)), in the context of voltage scaling, states that a
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Fig. 1. Error rate (a) and power consumption (b) versus voltage scaling in
BTWC designs.

modern digital design will have a critical operating voltage Vc above

which zero timing errors occur, and below which massive timing

errors occur. The COP hypothesis is natural in light of how modern

designs are optimized for power and area, subject to a frequency

constraint: negative timing slack (on a combinational path) is cured

by upsizing and buffering, while positive timing slack is traded off

for area and power reductions. Thus, in the final design, many timing

paths are critical, and there is a “wall of (critical) slack”. The COP

hypothesis states that overscaling beyond the critical voltage can

abruptly cause error rates beyond what an error-tolerance mechanism

can handle. According to [19], this has been confirmed in general-

purpose microprocessors. A key motivation for our work is that COP

behavior limits the applicability of voltage scaling in trading off

reliability for power - even in the context of BTWC design.

Our work seeks to improve the effectiveness of BTWC design

techniques through power-aware slack redistribution, a novel design

approach that enables extended voltage-reliability tradeoffs. Power-

aware slack redistribution reapportions timing slack of frequently oc-

curring, near-critical timing paths to increase the level of overscaling

(i.e., reduce the minimum voltage) at which a given error-tolerance

mechanism can maintain an acceptable timing error rate. The result

is a design that fails more gracefully, and achieves significantly

improved power savings with only small degradation of application

performance.

In the following, Section II reviews previous work, and Section III

formalizes the problem of achieving “gradual slope” in the timing

slack distribution, and hence graceful degradation of correctness with

voltage overscaling. Section IV describes our power-aware slack re-

distribution techniques, and Section V discusses implementation and

experimental methodology. Section VI presents results and analysis,

and Section VII concludes.

II. RELATED WORK

A. BTWC Designs

Better-than-worst-case (BTWC) design approaches allow circuits

to save power by optimizing for normal operating conditions rather

than worst-case conditions. One class of BTWC techniques allows

adaptation to runtime conditions by specifying multiple safe voltage

and frequency levels at which a design may operate, and allows for
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switching between these states. Examples in this class are Correlating

VCO [2], [12] and Design-Time DVS [23]. Another class of BTWC

designs uses “canary” circuits, including delay-line speed detectors

[4] and triple-latch monitors [16], to detect when critical timing

(failure) is imminent and thus avoid any unsafe voltage scaling.

Finally, Razor [5] and ANT techniques [13] provide error tolerance

at the circuit- and algorithm-level, respectively. Their benefits under

voltage scaling are limited not only by COP behavior but by the

overhead of error correction that is increasingly required as voltage

is scaled.

B. Design-level Optimizations

Design-level optimizations for timing speculation architectures

([8], [20], [7]) identify and optimize frequently-exercised timing

paths, while other (infrequently-exercised) paths are allowed to have

timing errors. EVAL [20] trades error rate for processor frequency

by using system-level configurations to shift or otherwise reshape

path delay distributions of various functional units. BlueShift [8]

is an application of EVAL that identifies most frequently violated

timing constraints and optimizes the corresponding timing paths using

forward body biasing and path constraint tuning (PCT) (essentially,

setup timing over-constraints). CRISTA [7] also addresses variation-

tolerant circuit design by using Shannon expansion-based partitioning

to isolate critical paths. Critical paths with low activity are separated

and de-optimized.

C. Cell Sizing

Many previous works use cell sizing for power or area recovery

subject to timing constraints. Generally, positive (setup) timing slack

on non-timing critical cell instances can be flexibly ‘traded’ for power

and area objectives (gate-length increase or Vth swap to reduce

leakage, or gate-width decrease to reduce area and total power).

Fishburn and Dunlop propose a fast iterative method to meet delay

constraints called TILOS [6]. TILOS uses the Elmore delay model

for transistor delays, and proposes a heuristic that sizes transistors

iteratively, according to the sensitivity of the critical path delay to

the transistor sizes, i.e., finding a greedy (maximum delay reduction

/ transistor width increase) “move” at each iteration. The method

of Duet [21] performs simultaneous assignment of threshold voltage

(Vth) and transistor width using a merit (sensitivity) function. Gupta

et al. propose small biases of transistor gate length to further minimize

leakage power [10]. They also present a sensitivity-based downsizing

approach for transistor-level Vth assignment [9], and a post-layout,

post-signoff gate length biasing technique for parametric yield (leak-

age and leakage variability) optimization [11]. Jeong et al. revisit a

general linear programming (LP) formulation that can concurrently

exploit multiple knobs ranging from multi-Lgate footprint-compatible

libraries to post-layout Lgate biasing [14].

Our work, detailed below, uses post-layout cell resizing to re-

distribute timing slack so as to achieve a switching activity-aware

‘gradual slope’ distribution of timing slack. We believe that ours is

the first to do so specifically in the BTWC context; moreover, our

proposed methodology can find frequently exercised paths rapidly

(without repeated gate-level simulation as in BlueShift).

III. THE GOAL OF DESIGN OPTIMIZATION

We minimize power consumption for a given error rate by min-

imizing the voltage at which that error rate can still be observed.

Traditional designs exhibit a critical wall of slack in which the path

slacks for the majority of paths are similar and close to the critical

path slack of the circuit (observe the red curve in Figure 2).

For traditional designs, our goal of aggressively reducing the

operating voltage to save power is thwarted by the critical wall of

slack, because scaling past the wall results in a catastrophic number

of timing violations. To alleviate this restraint, we seek to reshape

the slack distribution of a circuit to have a gradual slope rather than

the steep slope that characterizes the critical wall (observe the blue

curve in Figure 2).
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Fig. 2. The goal of the ‘gradual slope’ slack optimization is to transform a
slack distribution having a critical ‘wall’ into one with a more gradual failure
characteristic.

To achieve the desired slack distribution that permits aggressive

voltage scaling, we must alter the slack of some paths to break

down the critical wall. In our optimization approach, we increase

the slack of frequently executed critical paths to reduce the onset of

errors when voltage is scaled. Likewise, we can reduce the slack of

rarely exercised paths, since these paths will not have a significant

impact on error rate when voltage is scaled. Together, these path

slack adjustments will reshape the slack distribution of a circuit and

extend the range of voltage scaling. The goals of our optimization

are expressed in Figure 2.

IV. SLACK REDISTRIBUTION AND POWER REDUCTION

We now present our cell swapping approach to achieve a gradual,

activity- (and hence power-) aware timing slack distribution for a

given circuit design.

A. Power-aware Slack Redistribution Using Cell Swap Method

Our slack distribution optimizer is implemented in C++ and per-

forms cell swapping (gate sizing only, with no logic resynthesis) using

the Synopsys PrimeTime vB-2008.12-SP2 [27] tool and its built-in Tcl

socket interface. Traditional optimization tools treat all paths equally:

all negative-slack paths must be brought up to zero or positive slack.

By contrast, to improve the performance-power profile of the design,

we spend our optimization efforts on frequently-exercised paths in

order to minimize error rates under voltage overscaling.

Our heuristic determines a target voltage corresponding to a

specific error rate, and then ‘over-optimizes’ frequently-exercised

paths using upsizing (i.e., increase of transistor width and hence drive

strength) cell swaps. Figure 3 illustrates the challenges inherent in

setting the target voltage. The figure shows path delay changes after

slack optimization for a fixed target voltage, where the optimizer

swaps cells in Paths A, B and C to reduce the slack of those paths

with respect to the fixed target voltage. However, if the voltage at

which the maximum acceptable error rate is observed is larger than

the target voltage as specified by the red-dotted line, Paths A and

C are optimized unnecessarily beyond the actual scaled voltage, and

power is wasted.

Our slack optimization approach finds a target voltage after esti-

mating error rates at each operating voltage, and iteratively optimizes

paths while scaling voltage. At the initially selected voltage, the opti-

mizer performs cell swaps to improve timing slack. After performing

this timing optimization at the initially selected voltage, the voltage

is scaled until the target error rate is reached. Figure 4 illustrates the

optimization heuristic. Path A is optimized until the target voltage is

reached, but Path C is not optimized, since Path C does not have

negative slack at the target voltage.
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Fig. 3. Path delay before and after slack optimization with a fixed target
voltage.
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Fig. 4. Target voltage and path slack before and after slack optimization
using the heuristic.

To enable proper voltage selection, we must accurately forecast

error rates without resorting to time-consuming functional simulation.

Accurate error rate estimation ensures that we do not over-optimize,

resulting in too much area overhead, or under-optimize, thus limiting

the possible extent of voltage scaling. For this purpose, we use toggle

information of flip-flops that have negative timing slack. The toggle

information consists of toggles from both negative-slack paths and

positive-slack paths; in the error rate calculation, only toggles from

negative-slack paths are considered. Hence, the error rate in a single

flip-flop, ER f f , can be estimated by Equation (1).

ER f f = T G f f ×
∑T Gp neg

∑T Gp all

(1)

In Equation (1), T G f f is the toggle rate of flip-flop f f , T Gp neg

and T Gp all are the toggle rates of a negative slack path p neg and

all paths p all to flip-flop f f . We obtain an aggregate error rate as

the summation of error rates in all flip-flops. However, this value

will be significantly larger than the actual error rate observed during

functional simulation, it does not account for errors that occur in the

same clock cycle. Moreover, the existence of false paths also imparts

pessimism to the estimated error rate. We therefore use a parameter

α, obtained from experimental investigations, to compensate for this

pessimism. The estimated error rate of a target design D is defined in

Equation (2), with the compensation parameter α. In the experiments

reported below, a value of α = 0.5 is used.

ERD = α× ∑
f f∈D

ER f f (2)

Figure 6 compares estimated error rates and actual error rates at

each operating voltage. The estimated error behavior roughly matches

the actual error behavior, and we can find an appropriate target

voltage based on the estimated error rate.

After finding a target voltage, the slack optimizer finds negative-

slack paths by tracing backward from flip-flop cells using a depth-first

search (DFS) algorithm. We optimize by swapping (i.e., resizing)

cells with other library cells that have identical functionality. We

determine priority according to the switching activity of a path,

defined as the minimum toggle rate over all cells in the path. Cell

swapping is performed on all cells in a given target path, and only

swaps that improve timing slack of the path are accepted. 1 There

is significant order-dependence - and hence impact of prioritization

1We consider only setup timing slack, since hold violations can typically
be fixed by inserting hold buffers in a later step.

- since we do not allow the optimizer to touch a previously-

swapped cell; the intuition here is that this helps avoid ’cycling’

of configurations and also reduces runtime. After cell swapping, the

optimizer checks the timing of fan-in and fan-out cells that have

been previously touched. When there is no timing degradation in the

connected neighboring cells, the cell change is finally accepted.

Algorithm 1 Pseudocode for the slack optimizer.

Procedure SlackOptimizer( )

1. Read netlist and initialize PrimeTime Tcl socket interface;

2. Read switching activity (toggle rate) of each cell;

3. //Scale and find target voltage

4. for Vtarget = 1.00V to 0.50V; Vtarget ←Vtarget−0.01V do

5. Load Library (.lib) for the target voltage Vtarget ;

6. ER ←ComputeErrorRate(Vtarget );

7. if ER > ERtarget then

8. P ← FindCriticalPaths();

9. OptimizePaths(P);

10. else

11. continue

12. end if

13. //Terminate algorithm after checking error rate and power

14. ER ←ComputeErrorRate(Vtarget );

15. PWR ← ReportTotalPower(Vtarget );

16. if PWR > PWRprev then

17. RestoreSwaps(); break;

18. else if ER > ERtarget then

19. break;

20. else

21. PWRprev ← PWR; continue;

22. end if

23. end for

24. Save list of swaps and perform ECO with SOCE;

Procedure OptimizePaths(P)

1. while P �= /0 do

2. Pick the critical path p with maximum switching activity;

3. P ← P− p;

4. while swap count is not zero do

5. for i = 0 to |p| do

6. if f lagc(i) then

7. continue;

8. end if

9. for all alternative LibCell for the cell instance c(i) do

10. Resize the instance c(i) with LibCell;

11. Check the path slack of p;

12. for all fanin and fanout cell c f an of c(i) do

13. if f lagc f an
then

14. Check the slack of critical path p f an of c f an;

15. end if

16. end for

17. if ∆slack(p) < 0 or ∆slack(p f an) < 0 then

18. Restore cell change;

19. end if

20. f lagc(i) ← true;

21. end for

22. end for

23. end while

24. end while

Algorithm 1 presents pseudocode of the optimizer.

ComputeErrorRate(Vtarget) estimates error rates, as defined by

Equation (2). ERtarget is a target error rate, which can be set

to the maximum allowable error rate. The FindCriticalPaths()
function finds all negative-slack paths in the design, and

ReportTotalPower(Vtarget) reports the total power consumption

from Synopsys PrimeTime. In the pseudocode, the target voltage is

iteratively scaled by an additional 0.01V until the error rate exceeds

a target error rate. Then, the heuristic optimizes critical paths at the

target voltage. If the power consumption is not reduced after the

voltage scaling, the latest swaps are restored by the RestoreSwaps()
function and the optimization is terminated.
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Algorithm 2 Pseudocode for the power reduction.

Procedure PowerReduction( )

1. SlackOptimizer( );

2. Insert all cells into set C;

3. while C �= /0 do

4. Pick the cell c and check the cell slack dc and toggle rate T gc;

5. if dc > 0 or T gc < β then

6. for all alternative LibCell for the cell instance c(i) do

7. Resize the instance c(i) with LibCell;

8. Check the total power pw of the cell c;

9. for all fanin and fanout cell c f an of c(i) do

10. if ∆slack(c f an) < 0 and T gc f an
> γ then

11. Restore cell change;

12. else if pwc(i) > pwc(i−1) then

13. Restore cell change;

14. end if

15. end for

16. end for

17. end if

18. C ←C− c;

19. end while

20. Save list of swaps and perform ECO with SOCE;

B. Power-aware Post-processing

In addition to the above slack optimization, we can also reduce

power consumption by downsizing cells on rarely-exercised paths.

Algorithm 2 shows this post-processing heuristic. The power re-

duction procedure downsizes cells logical equivalents with smaller

power consumption. Two parameters govern cell selection and swap

acceptance. First, a cell is selected that has positive slack or is in

a rarely-exercised path. The cell’s toggle rate should be less than

β, where the parameter β is set small enough for us to expect an

insignificant effect on error rate. Downsizing cell swaps are accepted

as long as they do not increase error rate; to this end, a second variable

γ characterizes the cell’s effect on neighboring cells. If the timing

slack of the neighboring cells which have larger toggle rate than γ,

the downsizing is restored. Within these constraints, the optimizer

selects the best candidate cells to reduce power without affecting

error rate.

V. METHODOLOGY

Figure 5 illustrates our overall flow for gradual-slope slack op-

timization. The switching activity interchange format (SAIF) file

provides toggling frequency for each net and cell in the gate-level

netlist; it is derived from a value change dump (VCD) file from

gate-level simulation using in-built functionality of the Synopsys

PrimeTime-Px [27] tool. To find timing slack and power values at

the specific voltages, we prepare Synopsys Liberty (.lib) files for each

voltage value – from 1.00V to 0.50V in 0.01V increments – using

Cadence SignalStorm TSI61 [28].

Initial design

(OpenSPARC T1)

PrimeTime

Design information (.v .spef)

Slack Optimizer
Tcl Socket 

I/F

Library characterization

(SignalStorm)

Functional simulation

(NC Verilog)

Benchmark generation

(Simics)

Input vector

Switching activity 

(.saif) ECO P&R

(SOCEncounter)
Final design

List of swaps

Synopsys

Liberty

(.lib)

Fig. 5. CAD flow incorporating our slack optimizer to create a design with
gradual-slope slack distribution.

We use the OpenSPARC T1 processor [25] to test our optimization

framework. Table I describes the selected modules and provides

characterization in terms of cell count and area.

TABLE I
TARGET MODULES FOR EXPERIMENTS.

Module Stage Description Cell # Area (um2)

lsu dctl MEM L1 Dcache Control 4537 13850

lsu qctl1 MEM LDST Queue Control 2485 7964

lsu stb ctl MEM ST Buffer Control 854 2453

sparc exu div EX Integer Division 4809 14189

sparc exu ecl EX Execution Unit Control Logic 2302 7089

sparc ifu dec FD Instruction Decode 802 1737

sparc ifu errdp FD Error Datapath 4184 12972

sparc ifu fcl FD L1 Icache and PC Control 2431 6457

spu ctl SPU Stream Processing Control 3341 9853

tlu mmu ctl MEM MMU Control 1701 5113

Gate-level simulation is performed using test vectors obtained from

full-system RTL simulation of a benchmark suite consisting of bzip2,

equake and a sorting test program. These benchmarks are each fast-

forwarded by 1 billion instructions using the OpenSPARC T1 system

simulator, Simics [17] Niagara. After fast-forwarding in Simics, the

architectural state is transferred to the OpenSPARC RTL using CMU

Transplant [22]. More details of our architecture-level methodology

are available in [15].

Switching activity data gathered from gate-level simulation is

fed to Synopsys PrimeTime (PT) static timing tool through its Tcl

socket interface. Timing slack and switching activity information

is continually available from PT, through the Tcl socket interface,

during the optimization process. After our optimization, all netlist

changes are realized using Cadence SoC Encounter v7.1 [29] in ECO

(engineering change order) mode.

Module designs are implemented in TSMC 65GP technology using

a standard flow of synthesis with Synopsys Design Compiler vY-

2006.06-SP5 [26] and place-and-route with Cadence SoC Encounter.

As noted above, voltage scaling effects are captured by characterizing

Synopsys Liberty libraries (using Cadence SignalStorm TSI61) at a

number of operating voltages. Runtime is reduced by adopting a

restricted library of 63 commonly-used cells (62 combinational and

1 sequential); the total characterization time for 51 voltage points is

around two days, but this is a one-time cost.

Using our slack optimizer, we optimize the module implementa-

tions listed in Table I, and then estimate error rates by counting cycles

with timing failures during gate-level simulation. We use a SCAN-

like test wherein the test vectors specify the value of each primary

input and internal flip-flop at each cycle. This prevents pessimistic

error rates due to erroneous signals propagating to other registers.

We emulate the SCAN test by connecting all register output ports to

the primary input ports, allowing full control of module state.

VI. RESULTS AND ANALYSIS

Our experimental results compare the performance of our slack op-

timization flow against several alternatives for 10 component modules

of the OpenSPARC T1 processor [25]. In addition to traditional CAD

flows targeting loose (0.8GHz) and tight (1.2GHz) timing constraints

we also compare against an implementation of BlueShift [8] that

optimizes paths in decreasing order of the product of negative slack

(magnitude) and switching activity. When voltage is scaled, such

paths cause the most timing violations, and we reduce errors by

assigning tighter timing constraints during P&R with Cadence SoC

Encounter. We perform gate-level simulation of modules to estimate

error rates and power consumption at different voltages. For all

experiments, we use a compensation factor of α = 0.5 (Equation (2)),

and set β = γ = 10−4 in Algorithm 2.

Table II demonstrates the impact of slack optimization in reducing

power consumption for our test modules. Benefits estimated at
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Fig. 6. Actual error rates vs. estimated error rates for various modules in Table I.

optimization time are compared to actual simulated results, showing

the power reduction afforded for an error rate of 2%. Discrepancies

between the actual and estimated results are primarily due to the

inaccuracy of the error rate estimation technique. The slack optimizer

achieves up to 25.8% power reduction by redistributing slack and

extending the range of voltage scaling. The power reduction stage

provides additional benefits, up to 3.6%, by downsizing cells on

infrequently exercised paths.

We note that not all modules achieve substantial benefits. Power

reduction from baseline is limited for sparc exu div, sparc ifu errdp

and tlu mmu ctl. These modules have low switching activity, and

their error rates remain below 2% even for when voltage is scaled

down to 0.5V. Consequently, both the baseline and slack-optimized

implementations achieve the same benefits for these modules. Sig-

nificant benefits can be achieved when the original slack distribution

of the module dictates that errors increase rapidly. In that case, the

slack optimizer is able to redistribute slack and extend the range of

voltage scaling.

Figure 7 shows how error rate varies as voltage is scaled for each of

the OpenSPARC T1 modules. The slack optimizer redistributes timing

slack so that the error rate for a module increases more gradually as

voltage is scaled down. Aggressive optimization can in some cases

result in a lower error rate for tightly constrained P&R or BlueShift,

but our goal is ultimately not to reduce error rate but rather to reduce

power consumption.

Figure 8 shows the power consumption of the modules at each

operating voltage, demonstrating that although aggressive optimiza-

tion can result in a lower error rate, this comes at considerable

power expense due to increased area from cell upsizing. The area

overhead of the slack optimizer is significantly lower than with the

other approaches, since it targets the specific cells for which upsizing

produces the most benefit. The additional power reduction stage even

reclaims some of this area overhead, reducing power almost to that

of the baseline at the same voltage. Table III shows the average area

overhead of each design approach.

TABLE III
AREA OVERHEAD OF DESIGN APPRAOCHES.

Tight P&R BlueShift Slack Optimizer SlackOpt +PowerReduce

20.3% 6.5% 2.7% 2.7%

The slack optimizer maximizes the benefits gained per each

increase area cost. This efficient slack redistribution approach results

in lower power for a given error rate, as shown in Figure 9. Benefits

are chiefly due to the ability to scale voltage to a lower level for the

same error rate. Even though aggressive approaches can sometimes

increase the range of voltage scaling further than the slack optimizer,

the power overhead of these approaches outweighs the power savings

of voltage scaling, and total power is even higher than that of the

baseline in many cases. Power-aware slack redistribution, on the other

hand, does well to reduce power consumption at the target error rates

for the diverse set of modules, in spite of its slight area overhead

(2.7%).

Figure 10 shows the slack distribution of each design tech-

nique – traditional SP&R (tightly constrained), BlueShift PCT, and

slack optimizer for lsu dctl. We note that power-aware slack re-

distribution results in a more gradual slack distribution. Thus, the

slack-optimized design will have fewer failing paths as voltage

is scaled down. Figure 11 compares the slack distribution for all

modules before and after slack optimization. For some modules

(tlu mmu ctl,sparc i f u errd p), the slack distribution is relatively

unchanged after slack optimization (again, because the error rates of

these modules are low), and optimization is not performed unless an

error rate of 2% is exceeded. For sparc exu div, the slack distribution

remains unchanged because the optimization heuristic is unable to

reduce the delay on critical paths through cell swapping.
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Fig. 10. Slack distribution of each design technique (target module :
lsu dctl).

VII. SUMMARY AND CONCLUSION

Our work enables an extended power-reliability tradeoff in digital

designs by optimizing the slack distribution for ‘gradual-slope’ in

a toggle rate-aware manner. Our power-aware slack redistribution

lowers the minimum voltage with acceptable timing error rate, and

leads to designs that not only can be run with lower power, but that

also fail more gracefully. We demonstrate the impacts of ‘gradual-

slope’ design on voltage overscaling and total system power, using

modules from the OpenSPARC T1 benchmark and 65nm SP&R

implementation. Our experiments show a maximum of 32.8% and

an average of 12.5% total power savings over the baseline design at

an error rate of 2% (cf. Table II). The area overhead of our technique

is no more than 2.7%.

Our ongoing research seeks CAD techniques for similar extended

reliability-power tradeoffs for embedded memories, as well as the

exploitation of heterogeneity in multi-core architectures to reduce

average-case overhead of our gradual-slack optimization (with het-

erogeneously reliable and gracefully-degrading cores). Additionally,

our present techniques can be augmented to consider metrics of

‘architecture-level criticality’ in addition to path timing slack, so as

to further reduce overhead of increased resilience and more graceful

system degradation with voltage overscaling.
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Fig. 7. The response of error rate to voltage overscaling for each of the OpenSPARC T1 modules.
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Fig. 8. Power consumption at each operating voltage of the OpenSPARC T1 modules.
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Fig. 9. Power consumption at each target error rate of the OpenSPARC T1 modules.
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TABLE II
EXPERIMENTAL RESULTS - POWER REDUCTION AFTER OPTIMIZATION

Estimated results (slack optimizer) Actual results (after ECO and simulation)

Design Before optimization After optimization Before optimization After slack optimizer After power reduction

Voltage Power Voltage Power Reduction Voltage Power Voltage Power Reduction Voltage Power Reduction

(V) (W) (V) (W) (%) (V) (W) (V) (W) (%) (V) (W) (%)

lsu dctl 0.92 4.25E-4 0.74 2.70E-4 36.39 0.76 3.10E-4 0.66 2.41E-4 22.26 0.66 2.30E-4 25.81

lsu qctl1 1.00 2.96E-4 0.85 2.07E-4 30.24 0.86 2.36E-4 0.82 2.14E-4 9.32 0.82 2.11E-4 10.59

lsu stb ctl 0.96 8.11E-5 0.92 7.55E-5 7.00 0.71 4.61E-5 0.66 4.04E-5 12.36 0.66 3.99E-5 13.45

sparc exu div 0.84 3.04E-4 0.84 3.04E-4 0.00 0.5 1.06E-4 0.5 1.06E-4 0.00 0.5 1.05E-4 0.94

sparc exu ecl 0.88 1.99E-4 0.73 1.43E-4 28.53 0.91 2.41E-4 0.74 1.63E-4 32.37 0.74 1.62E-4 32.78

sparc ifu dec 1.00 5.73E-5 0.81 3.98E-5 30.55 0.66 2.46E-5 0.63 2.38E-5 3.25 0.63 2.37E-5 3.66

sparc ifu errdp 0.56 1.22E-4 0.55 1.17E-4 3.78 0.51 1.11E-4 0.51 1.12E-4 -0.90 0.51 1.10E-4 0.90

sparc ifu fcl 0.98 2.21E-4 0.85 1.69E-4 23.34 0.85 1.77E-4 0.74 1.38E-4 22.03 0.74 1.35E-4 23.73

spu ctl 0.69 1.43E-4 0.65 1.26E-4 11.75 0.59 1.13E-4 0.56 1.02E-4 9.73 0.56 9.99E-5 11.59

tlu mmu ctl 0.74 9.60E-5 0.73 9.37E-5 2.35 0.5 4.62E-5 0.5 4.62E-5 0.00 0.5 4.56E-5 1.30
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Fig. 11. Slack distribution of various modules in Table I (before and after slack optimization
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[4] S. Dhar, D. Maksimović and B. Kranzen, “Closed-Loop Adaptive Voltage Scaling

Controller for Standard-Cell ASICs”, IEEE/ACM Proc. International Symposium

on Low Power Electronics and Design, 2002, pp.103–107.

[5] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw,

T. Austin, K. Flautner and T. Mudge, “Razor: A Low-Power Pipeline Based on

Circuit-Level Timing Speculation”, IEEE/ACM Proc. International Symposium on

Microarchitecture, 2003, pp. 7–18.

[6] J. P. Fishburn and A. E. Dunlop, “Tilos: A Polynomial Programming Approach to

Transistor Sizing”, Proc. ACM/IEEE International Conference on Computer-Aided

Design, 1985, pp. 326–328.

[7] S. Ghosh and K. Roy, “CRISTA: A new paradigm for low-power and robust

circuit synthesis under parameter variations using critical path isolation”, TCAD,

November 2007.

[8] B. Greskamp, L. Wan, W. R. Karpuzcu, J. J. Cook, J. Torrellas, D. Chen and C.

Zilles, “BlueShift: Designing Processors for Timing Speculation from the Ground

Up”, IEEE International Symposium on High Performance Computer Architecture,

2009, pp. 213–224.

[9] P. Gupta, A. B. Kahng and P. Sharma, “A Practical Transistor-Level Dual Threshold

Voltage Assignment Methodology”, Proc. of International Symposium on Quality

Electronic Design, 2005, pp. 421–426.

[10] P. Gupta, A. B. Kahng, P. Sharma and D. Sylvester, “Selective Gate-Length

Biasing for Cost-Effective Runtime Leakage Control”, IEEE/ACM Proc. of Design

Automation Conference, 2004, pp. 327–330.

[11] P. Gupta, A. B. Kahng, P. Sharma and D. Sylvester, “Gate-Length Biasing for

Runtime-Leakage Control”, IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems, 25(8), 2006, pp. 1475–1485.

[12] V. Gutnik and A. Chandrakasan, “An Efficient Controller for Variable Supply-

Voltage Low Power Processing”, IEEE Proc. Symposium on VLSI Circuits, 1996,

pp. 158–159.

[13] R. Hegde and N. R. Shanbhag, “Energy-Efficient Signal Processing via Algorithmic

Noise-Tolerance”, Proc. International Symposium on Low Power Electronics and

Design, 1999, pp. 30–35.

[14] K. Jeong, A. B. Kahng and H. Yao, “Revisiting the Linear Programming Frame-

work for Leakage Power vs. Performance Optimization”, Proc. of International

Symposium on Quality Electronic Design, 2009, pp. 127–134.

[15] A. B. Kahng, S. Kang, R. Kumar and J. Sartori, “Designing a Processor From

the Ground Up to Allow Voltage/Reliability Tradeoffs”, to appear in IEEE

International Symposimum on High-Performance Computer Architecture, January

2010.

[16] T. Kehl, “Hardware Self-Tuning and Circuit Performance Monitoring”, IEEE

International Conference on Computer Deisgn, 1993, pp. 188–192.

[17] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg,

F. Larsson, A. Moestedt and B. Werner, “Simics: A Full System Simulation

Platform”, Computer, 35(2), 2002, pp. 50–58.

[18] S. Narayanan, G. Lyle, R. Kumar and D. Jones, “Testing the Critical Operating

Point (COP) Hypothesis using FPGA Emulation of Timing Errors in Over-Scaled

Soft-Processors”, IEEE Workshop on Silicon Errors in Logic, 2009.

[19] J. Patel, “CMOS Process Variations: A Critical Operation Point Hypothesis”,

Online Presentation, 2008.

[20] S. Sarangi, B. Greskamp, A. Tiwari and J. Torrellas, “EVAL: Utilizing Processors

with Variation-Induced Timing Errors”, IEEE/ACM International Symposium on

Microarchitecture, 2008, pp. 423–434.

[21] S. Sirichotiyakul, T. Edwards, C. Oh, R. Panda, and D. Blaauw, “Duet: An Accurate

Leakage Estimation and Optimization Tool for Dual-Vt Circuits”, IEEE Trans. on

Very Large Scale Integration (VLSI) Systems, 10(2), 2002, pp. 79–90.

[22] E. Chung and Jared Smolens, OpenSPARC T1: Architectural Transplants.

http://transplant.sunsource.net/.

[23] Intel Corporation, “Enhanced Intel Speed Step Technology for the Intel Pentium

M Processor”, Microproceesors White Papers, 2004.

[24] International Technology Roadmap for Semiconductors 2008 Update.,

http://www.itrs.net/.

[25] Sun OpenSPARC Project., http://www.sun.com/processors/opensparc/.

[26] Synopsys Design Compiler User’s Manual. http://www.synopsys.com/.

[27] Synopsys PrimeTime User’s Manual. http://www.synopsys.com/.

[28] Cadence SignalStorm User’s Manual. http://www.cadence.com/.

[29] Cadence SOCEncounter User’s Manual. http://www.cadence.com/.

10A-1

831


