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ABSTRACT 
 

This paper presents the results of augmenting a GPS/INS navigation system 
with a Simultaneous Localisation and Mapping (SLAM). SLAM algorithm 
is a landmark based terrain aided navigation system that has the capability 
for online map building, and simultaneously utilising the generated map to 
bound the errors in the Inertial Navigation System (INS). Due to the low 
quality of the inertial sensors used, even a short-term GPS dropout can 
degrade the inertial navigation performance significantly, which can affect 
the vehicle safety as well. In addition, in GPS denied environments, most 
navigation systems need a separate aiding source in order to increase the 
reliability and availability. In this paper, SLAM is augmented to GPS/INS 
system, which can provide information about the states of a vehicle without 
the need for a priori infrastructure such as GPS, ground beacons, or a 
preloaded map. If GPS information is available, the SLAM integrated 
system builds a landmark-based map using a GPS/INS solution. If GPS is 
not available, the previously and/or newly generated map is used to constrain 
the INS errors. Simulation results will be presented which shows that the 
system can provide reliable and accurate navigation/landmark-map solutions 
even in a GPS denied and/or unknown environments. 
 
KEYWORDS: Simultaneous Localisation and Mapping (SLAM), GPS/INS 
navigation, mapping and tracking, UAV.  

 
 
1. INTRODUCTION 
 
The Global Navigation Satellite System (GNSS) is a space-borne, radio navigation system. Its 
world-wide coverage, availability, and high accuracy make it one of history's most 
revolutionary developments. In airborne navigation, its complementary characteristics to the 
Inertial Navigation System (INS) make it an excellent aiding source and lead to extensive 
theoretical and practical research activities focussing on the fusion of Global Positioning 



 

 

 

System (GPS) and INS to improve the accuracy and reduce the cost of navigation systems. 
The synergistic effects in the GPS/INS integrated system are well reported in many studies of 
Greenspan, 1996, Phillips and Schmidt, 1996, Kim and Sukkarieh, 2002, and etc. The current 
trends are incorporating a lower cost, or equivalently lower quality, inertial sensor with a 
higher performance GNSS sensor with deeply-coupled integration structures (Phillips and 
Schmidt, 1996). The low-cost, light, and compact-sized GPS/INS system is an ideal 
navigation system for the UAV platform, which has only a limited payload capacity and also 
requires high manoeuvrability to meet specific missions as well as precise navigation for 
autonomous operation. 
 
The main drawback in the cost-effective GPS/INS system is that the integrated system 
becomes more dependent on the availability and quality of GNSS information. However 
GNSS information which relies on external satellite signals can be easily blocked or jammed 
by intentional/unintentional interference. Even a short duration of satellite signal blockage can 
cause signification deviation in navigation solution. Hence, research into Terrain Aided 
Navigation System (TANS) which can relieve the dependency on GNSS has been an active 
area (Baker and Clem, 1977, Hostetler and Andreas, 1983, Pritchett and Pue, 2000, Williams 
and et al, 2001). This type of navigation system typically makes use of onboard sensors and a 
preloaded terrain database. Terrain Contour Matching (TERCOM) system has been 
successfully applied in cruise missile navigation (Baker and Clem, 1977). In TANS, the DTE 
is the key element. However it usually requires some sort of space-borne or air-borne 
mapping infrastructure as it is typically built from high resolution satellite radar images 
around the mission area. Furthermore, it has a constrained degree of autonomy since the 
mission is bound to the knowledge of the terrain database. 
 
In this paper, a new concept of terrain-aided navigation, known as Simultaneous Localisation 
and Mapping (SLAM) is augmented into the existing GPS/INS system. It was firstly 
addressed in the paper by Smith and Cheeseman, 1987 and has evolved from the indoor 
robotics research community to explore unknown environments, where absolute information 
is not available (Dissanayake and et al, 2001, Guivant and Nebot, 2001). Contrary to TANS, 
SLAM does not require any pre-surveyed map database. It builds the map incrementally by 
sensing environment and uses the map to localise the vehicle simultaneously, which results in 
a truly self-contained autonomous system.  

 
The airborne 6DoF SLAM algorithm was firstly demonstrated in the paper by Kim and 
Sukkarieh, 2004. It can be described as shown in Figure 1. The vehicle starts its navigation at 
an unknown location in an unknown environment. The vehicle navigates using its dead-
reckoning sensor or vehicle model. As the onboard sensors detect landmarks from the 
environment, the SLAM estimator augments the landmark locations to a map in some global 
reference frame and begins to estimate the vehicle and map states together with successive 
observations. The ability to estimate both the vehicle location and the map is due to the 
statistical correlations that exist within the estimator between the vehicle and landmarks, and 
between the landmarks themselves. As the vehicle proceeds through the environment and re-
observes old landmarks, the map accuracy converges to a lower limit which is a function of 
the initial vehicle uncertainty when the first landmark was observed (Dissanayake and et al, 
2001). In addition, the vehicle uncertainty is also constrained simultaneously. 



 

 

 

 

 
Figure 1. The overall structure of SLAM is about building a relative map of landmark-based 

landmarks using relative observations, defining a map, and using this map to localise the vehicle 
simultaneously. 
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Figure 2. SLAM augmented GPS/INS system 

 
 
In this paper the SLAM algorithm for a 6DoF platform is augmented to the GPS/INS 
navigation system to provide reliable INS aiding information in GNSS denied environment. 
Figure 2 presents the SLAM augmented GPS/INS architecture. The key landmark is the 
complementary fusion structure, which has high-speed INS module and low-speed and 
computationally expensive SLAM/GPS/INS filter. To achieve this, the SLAM algorithm was 
reformulated into error state form as in the work of Kim, 2004, which makes it to be easily 
augmented to GPS/INS filter.  
 
In this architecture, the INS and map is maintained outside the SLAM filter and the map is 
treated as external map database. The fusion filter works as either landmark-tracking filter or 
SLAM filter depending on the availability of GNSS observation. If GNSS provides reliable 
observations, then the on-board vision or radar observations are used to build the landmark 
map and SLAM/GPS/INS filter estimates the errors in INS and map, which results in a 



 

 

 

landmark (or target)-tracking system. However, in GNSS-denied situation, the vision or radar 
observations are solely used to estimate the errors in INS and map, which results in SLAM 
system. Although there are no global observations from GNSS, the constant re-observation 
and revisit processes can make the vehicle to navigate reliable within the map.   
 
Section 2 will present the external INS loop and map and Section 3 will formulate the error 
model of SLAM/GPS/INS algorithm and Kalman filter structure. In Section 4, simulation 
results are provided based on our Brumby UAV, then Section 5 will provide conclusions and 
suggest future work. 
 
 
2. EXTERNAL INS LOOP AND MAP  
 
In the complementary SLAM/GPS/INS structure, the SLAM filter aids the external INS loop 
in a complementary fashion. The inertial navigation algorithm is to predict the high-dynamic 
vehicle states from the Inertial Measurement Unit (IMU) measurements. In this 
implementation a quaternion-based strapdown INS algorithm formulated in earth-fixed 
tangent frame is used (Kim, 2004): 
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where ( ), ( ), ( )n n nk k kp v q represent position, velocity, and quaternion respectively at discrete 
time k, t∆ is the time for the position and velocity update interval, *( ) ( )n kq  is a quaternion 
conjugate for the vector transformation, ⊗  represents a quaternion multiplication, and 

( )n k∆q  is a delta quaternion computed from gyroscope readings during the attitude update 
interval (Kim, 2004). 
 
A stationary landmark model is used with zero input disturbances. Hence the i-th landmark 
simply becomes, 
 
 ( ) ( 1)n n

i ik k= −m m  (2) 
 
If a new landmark is observed, this external map is dynamically augmented with the new 
landmark position, and the integrated SLAM filter covariance is also augmented with an 
initial uncertainty and correlation. 
 
 
3. COMPLEMENTARY SLAM/GPS/INS ALGORITHM  
 
The mathematical framework of the SLAM algorithm is based on an estimation process 
which, when given a kinematic/dynamic model of the vehicle and relative observations 
between the vehicle and landmarks, estimates the structure of the map and the vehicle’s 
position, velocity and orientation within that map. In this work, the Kalman Filter (KF) is 
used as the state estimator. 
 
 



 

 

 

 3.1 Augmented Error State 
 
In complementary SLAM, the state is now defined as the error state of vehicle and map: 
 
 ( ) [ ( ), ( )]T

v mk k k=δx δx δx  (3) 
 
The error state of the vehicle ( )v kδx  comprises the errors in the INS indicated position, 
velocity and attitude expressed in the navigation frame: 
 
 ( ) [ ( ), ( ), ( )]n n n T

v k k k k=δx δp δv δψ  (4) 
 
The error state of the map ( )m kδx  also comprises the errors in 3D landmark positions in the 
navigation frame. The size of state is also dynamically augmented with the new landmark 
error after the initialisation process, 
 
 1 2( ) [ ( ), ( ), , ( )]n n n T

m Nk k k k=δx δm δm δm , (5) 
 
where N is the current number of registered landmarks in the filter and each state consists of a 
3D position error. 
 
 
3.2 SLAM Error Model 
 
The linearised SLAM system in discrete time can be written as 
 
 ( 1) ( ) ( ) ( ) ( )k k k k k+ = +δx F δx G w  (6) 
 
where ( )kδx is the error state vector, ( )kF  is the system transition matrix, ( )kG  is the system 
noise input matrix and ( )kw  is the system noise vector which represents the instrument noise 
with any un-modelled errors with noise strength ( )kQ . 
 
The continuous time SLAM/Inertial error model is based on misalignment angle dynamics 
and stationary landmark model which is a random constant (Kim, 2004): 
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where bf  and bω  are acceleration and rotation rates measured from IMU, bδf  and bδω  are 
the associated errors in IMU measurement, n

bC  is the direction cosine matrix formed from the 
quaternion. The discrete-time model can now be obtained by expanding the exponential state 
transition function and approximating it to the first-order term, and integrating the noise input 
during discrete sample time ( t∆ ), which result in, 
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with fδσ and δωσ  representing noise strengths of acceleration and rotation rate respectively. 
 
 
3.3 Observation model 
 
The linearised observation model can be obtained in terms of the observation residual, or 
measurement differences, ( )kδz  and the error states, ( )kδx , 
 
 ( ) ( ) ( ) ( )z k k k k= +δ H δx v  (9) 
 
with ( )kH  being the linearised observation Jacobian and ( )kv  being the observation noise 
with noise strength matrix ( )kR . The error observations are generated by subtracting the 
measured quantity, ( )kz , from the INS predicted quantity ˆ( )kz : 
 
 ˆ( ) ( ) ( )z k z k z k= −δ δ δ . (10) 
 
As there are two different types of observation in this system, that is a range/bearing/elevation 
observation and a GNSS position/velocity observation, they should be formulated separately. 
  
 
3.3.1 Range/Bearing/Elevation observation 
 
In range/bearing/elevation observation, the onboard sensor provides relative observations 
between vehicle and landmarks. The non-linear observation equation relates these 
observations to the state as 

 
 ( ) ( ( ), ( ))k k k=z h x v , (11) 
 
where ⋅h( )  is the non-linear observation model at time k , and kv( )  is the observation noise 
vector. Since the observation model predicts the range, bearing, and elevation for the i-th 
landmark, it is only a function of the i-th landmark and the vehicle state. Therefore Equation 8 
can be further expressed as 
 
 ( ) ( ( ), ( ), ( ))i v mi ik k k k=z h x x v , (12) 
 
with ( )i kz  and ( )i kv  being the i-th observation and its associated additive noise in range, 
bearing and elevation with zero mean and variance of ( )kR . The landmark position in the 
navigation frame is initialised from the sensor observation in the sensor frame and vehicle 
state as shown in Figure 3.  
 



 

 

 

 
Figure 3.  The range, bearing and elevation observations from the onboard sensor can be related to the 

location of the landmark in the navigation frame through the platform's position and attitude. 
 
The initial landmark position in the navigation frame is then computed 
 
 ( ) ( ) ( ) ( ) ( )n n n b n b s

i b bs b s smk k k k k= + +m p C p C C p  (13) 
 
where ( )b

bs kp  is the lever-arm offset of the sensor from the vehicle’s centre of gravity in the 
body frame, b

sC  is a direction cosine matrix which transforms the vector in the sensor frame 
(such as camera instalment axes) to the body frame, and ( )s

sm kp  is the relative position of the 
landmark from the sensor expressed in the sensor frame which is computed from the 
observation: 
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with ρ , ϕ  and ϑ  being the range, bearing and elevation angle respectively, measured from 
the onboard sensor. Hence the predicted range, bearing and elevation between the vehicle and 
the i-th landmark in Equation 8 can now be obtained by rearranging Equation 10, 
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The observation model is non-linear and has two composite functions; a coordinate 
transformation from the navigation frame to sensor frame, and transformation from Cartesian 
coordinates to polar coordinates. By calculating Jacobian of this equation, linearised discrete 
model is obtained: 
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If vision or radar information is available, ( )kδz  is formed by subtracting the range, bearing 
and elevation of the sensor from the INS indicated range, bearing and elevation, then it is fed 
to the integrated fusion filter to estimate the errors in vehicle and map. 
 
 
3.3.2 GPS observation 
 
GPS can provide several observables such as position/velocity, pseudorange/pseudorange-rate, 
or integrated carrier phase. If the position/velocity observation is used the observation model 
simply becomes a linear form with, 
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If GPS information is available, ( )kδz  is formed by subtracting the position and velocity of 
the GPS from the INS indicated position and velocity, then they are fed to the fusion filter to 
estimate the errors in vehicle and map. 
 
 
3.4 K/F Prediction 
 
With the state transition and observation models defined in Equations 6 and 9, the estimation 
procedure can proceed. The state and its covariance are predicted using the process noise 
input. The state covariance is propagated using the state transition model and process noise 
matrix by, 
 
 ( | 1) ( ) ( 1| 1)k k k k kδ− = − − =δx F x 0  (19) 
 ( | 1) ( ) ( 1| 1) ( ) ( ) ( ) ( )T Tk k k k k k k k k− = − − +P F P F G Q G  (20) 
 
Not only is the linear prediction much simpler and computationally more efficient than in the 
direct SLAM approach, but furthermore the predicted error estimate, ( | 1)k k −δx , is zero. 
This is because if one assumes that the only error in the vehicle and map states is zero mean 
Gaussian noise, then there is no error to propagate in the state prediction cycle, and the 
uncertainty in this assumption is provided in the covariance matrix propagation. 
 
 
3.5 K/F Estimation 
 
When an observation occurs, the state vector and its covariance are updated according to 
 



 

 

 

 ( | ) ( | 1) ( ) ( ) ( ) ( )k k k k k k k k= − + =δx δx W ν W ν  (21) 
 ( | ) ( | 1) ( ) ( ) ( )Tk k k k k k k= − −P P W S W  (22) 
 
where the innovation vector, Kalman weight, and innovation covariance are computed as, 
 
 ( ) ( ) ( ) ( | 1) ( )k k k k k kδ= − − =ν z H x z     (23) 
 1( ) ( | 1) ( ) ( )Tk k k k k−= −W P H S  (24) 
 ( ) ( ) ( | 1) ( ) ( )Tk k k k k k= − +S H P H R  (25) 
 
where, for the same reason as in the prediction cycle, ( ) ( | 1)k k k −H δx  is zero and hence is 
not explicitly computed. 
 
 
3.6 Feedback Error Correction 
 
Once the observation estimation has been processed successfully, the estimated errors are 
now fed to the external INS loop and the map for correction. The corrected position, ( )n

c kp , 
and velocity, ( )n

c kv , are obtained by subtracting the estimated errors, and The corrected 
attitude quaternion, ( )n

c kq , is obtained by pre-multiplying the error quaternion to the current 
quaternion: 
 
 ( ) ( ) ( | )n n n

c k k k k= −p p δp  (26) 
 ( ) ( ) ( | )n n n

c k k k k= −v v δv  (27) 

 ( ) ( ) ( )n n n
c k k k= ⊗q δq q , (28) 

 
where the error quaternion ( )n

c kδq  is computed from the estimated misalignment angle:  
 
 ( ) 1 2 2 2

Tn
x y zk δψ δψ δψ⎡ ⎤≅ ⎣ ⎦δq  (29) 

 
The corrected map positions are directly obtained by subtracting the estimated map position 
errors from the current positions:  
 
 ( ) ( ) ( ) ( | )n n n

N c N Nk k k k= −m m δm  (30) 
 
Using these equations the complementary SLAM/GPS/INS Kalman filter can recursively 
fulfil its cycle of prediction and estimation with the external INS loop and the map. 
 
 
3.6. Data Association and New landmark Augmentation 
 
Data association is a process that finds out the correspondence between observations at time 
k  and landmarks registered. Correct correspondence of the sensed landmark observations to 
mapped landmarks is essential for consistent map construction, and a single false match can 
invalidate the entire SLAM estimation process. Association validation is performed in 
observation space. As a statistical validation gate, the Normalised Innovation Square (NIS) is 



 

 

 

used to associate observations. The NIS ( γ ) is computed by 
 
 1( ) ( ) ( )T k k kγ −= ν S ν  (31) 
 
Given an innovation and its covariance with the assumption of Gaussian distribution, γ  forms 
a 2χ  (chi-square) distribution. If γ  is less than a predefined threshold, then the observation 
and the landmark that were used to form the innovation are associated. The threshold value is 
obtained from the standard 2χ  tables and is chosen based on the confidence level required. 
Thus for example, a 99.5% confidence level, and for a state vector which includes three states 
of range, bearing, and elevation, then the threshold is 12.8. The associated innovation is now 
used to update the state and covariance. If the landmark is re-observed then the estimation 
cycle proceeds, otherwise it is a new landmark and must be augmented into both the external 
map and the covariance matrix (Kim, 2004).  
 
 
4. RESULTS 
 
A simulation analysis is performed to verify the proposed algorithm for the Brumby UAV, 
developed in University of Sydney, under GPS enabled and disabled scenarios. 
 
4.1 Simulation Environment 
 
A low-cost (or equivalently low quality) IMU is simulated with a vision as the range, bearing, 
and elevation sensor. The vision sensor used in the real system provides range information 
based on knowledge of target size; hence its range is simulated with large uncertainty. The 
simulation parameters obtained from the implemented actual sensor specifications are listed 
in Table I.  
 

Sensor Specification Parameter 
Sampling rate ( Hz) 50  
Accel noise ( 2/ /m s Hz ) 0.5 IMU 
Gyro noise ( / /s Hz° ) 0.5 
Frame rate (Hz) 25 
Field-Of-View ( ° ) ±15 
Estimated range error (m) ≥5 
Bearing noise ( ° ) 0.16 

Vision 

Elevation noise ( ° ) 0.12 
Position noise (m) 2.0 GPS Velocity noise (m/s) 0.5 

Table 1. The parameters used in simulation 
 
The flight vehicle undergoes three race-horse trajectories approximately 100m above the 
ground. The flight time is 460 seconds and the average flight speed is 40m/s. There are 80 
landmarks placed on the ground. The vision observation is expressed in a camera frame which 
is transformed to navigation frame to be processed in the SLAM node. The biases of the IMU 
are calibrated precisely using onboard inclinometers in the real implementation thus the biases 
are not explicitly modelled and studied in the simulation analysis and only white noise is 
modelled as in Table 1.  



 

 

 

 
4.2 GPS Active Region 
 
Figure 4 shows the SLAM/GPS/INS estimated vehicle trajectory with the map built during 
the flight. The map uncertainty ellipsoids are also plotted with 10σ boundaries for the 
clarification. The vehicle takes off and flies over circuit-1 two rounds. It then transits to 
circuit-2 and circuit-3. To simulate GPS denied scenario, GPS signal is disabled between 130 
to 420 seconds from the start. 
 
After the vehicle taking off, GPS signal is available until 130 seconds. The SLAM/GPS/INS 
system behaves as a landmark-tracking/mapping system in this mode. The error covariance of 
landmarks around circuit-1 has relatively small value than landmarks around other circuits. 
Figure 7 presents the evolution of uncertainties of the vehicle and map. It can be clearly 
observed that the vehicle uncertainty was maintained within one metre until 130 seconds, and 
the uncertainties of observed landmarks are monotonically decreased. INS error is dominantly 
estimated from GPS information, and the GPS/INS blended navigation solution is used to 
track landmarks. Contrary to the conventional airborne mapping systems, SLAM/GPS/INS 
system maintains the cross-correlation information between the INS and map which can 
enhance the INS performance, and it is essential for the SLAM operation in GPS denied 
conditions. 
 
4.3 GPS Denied Region 
 
In this condition, the SLAM/GPS/INS system now behaves as a SLAM/INS system. INS and 
map errors are solely estimated from the landmark observation. The pre-registered landmark 
during GPS active period can be effectively used to estimate the INS and map errors as in 
Figures 5(a) and 5(c). More interesting SLAM property can be observed in Figures 5(b) and 
5(d). After GPS is disabled, INS uncertainties begin to increase which in turn increases the 
registered map uncertainties. The accumulated INS error is effectively removed from the 
closing-the-loop effect, which, in turn, eliminates the INS error embodied in the map as 
shown in Figure 7. This is due to the correlation structure between vehicle and the map in 
SLAM. The map uncertainty decreases monotonically and whenever the vehicle observes the 
landmark, the vehicle error can be constrained effectively until GPS signal is available again. 
Figures 6(c) shows the final map uncertainties built in GPS enabled and disabled conditions. 
When GPS signal is re-activated, the INS position and velocity errors are directly observed 
from the GPS measurements, which, in-turn, improves the map accuracy via the vehicle-map 
correlation structure within SLAM filter. From these plots, it is obvious that the 
SLAM/GPS/INS system can perform navigation and mapping for extended periods of time 
under GPS denied conditions 
 
 
5. CONCLUSIONS 
 
A new concept for the autonomous UAV navigation is presented based on the Simultaneous 
Localisation and Mapping (SLAM) algorithm, and applying it to a 6DoF airborne platform. 
The simulation analysis illustrates that the SLAM system with a range, bearing, and elevation 
sensor can constraint the INS errors effectively, performing on-line map building in unknown 
terrain environments. The SLAM augmented GPS/INS system shows two capabilities of 
landmark tracking and mapping using GPS information, and more importantly, aiding the INS 
under GPS denied situation. As a result, the SLAM augmented low-cost GPS/INS system can 
be effectively applied to various GPS denied situations, such as urban canyons, indoor, or  
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Figure 4. 2D position result of the SLAM augmented GPS/INS navigation. UAV takes off  at (0,0) 

and flies three different race-horse tracks (circuit-1,2,3) in counter clock-wise. GPS signal is disabled 
in circuit-1 and re-enabled at the end of in circuit-3. The vision is abaliable during whole flight time 

which is used for feature-tracking and SLAM. 
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Figure 5. Enhanced view of SLAM aided INS navigation during GPS disabled condition. 
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Figure 6. Covariance plot of the INS position (a), velocity (b), attitude (c) and final map (d).  
GPS is disabled at 130 second and re-enabled at 420 second. 
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Figure 7. Covariance plot of the map and vehicle in the north position. 



 

 

 

even underwater. The efficient map management for the large-scale SLAM and the real-time 
implementation in UAV platform using low-cost sensor are being tackled at the moment 
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