UC Irvine
ICS Technical Reports

Title
SLAM : an automated structure to layout synthesis system

Permalink
https://escholarship.org/uc/item/4ct357tZ

Authors

Wu, Allen C.H.
Gajski, Daniel

Publication Date
1989-11-07

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/4ct357tz
https://escholarship.org
http://www.cdlib.org/

LI VES

-z
644
C3 |
g & ?—t;é:?

"SLAM: An Automated Structure to Layout
Synthesis System

by

Allen C. H. Wu
Da.nielrbGajs(ki)

Technical Report 89-40

Information and Computer Science Department
University of California, Irvine
Irvine, CA. 92717

| Abstract

SLAM is a structure to layout synthesis system. It incorporates
parameterisable bit-sliced and glue-logic generators to produce high density
layout. In this paper, we describe a sliced layout architecture and SLAM system.
In' addition, we present partitioning algorithms for generating the floorplan for
such an architecture. The algorithms partition the netlist into component sets’
best suited for different layout styles such as bit-sliced or strip-oriented logic.
- Each group is partitioned further into clusters to achieve better area utilization.
Several experiments demonstrate that highly dense layouts can be achieved by
using these algorithms with the sliced layout architecture.

TABLE OF CONTENTS

1. Introduction e e 1
2. Layout architecture] B e N - 5
é. S | 12
4. Partitioning et e oo R 15
4.1 Component partitioning .. 16
4.2 Stack partitioning by foldingcocooeeveooeeeeoooooo 90
5. Sliced stack generation e e e e e s 27
6. Floorplanning and layout generationcoocooovoveoooooooooooo 30
T RESULES oo 34
8. CONCIUSIONS ... 41
9. Acknowledgementcocoviuimiieieiiiteieeeeeee e 41
10. References e e e e 42

November 7, 1989 ; . : Page i

LIST OF FIGURES

Figure 1. Bit-sliced layout architecturecooeoiiiiiiiivvcncnn e, 2
Figure 2. Standard cells and bit-sliced cells with routmg channel layout

ATCHILECEUTE . vevveeeee e ee oo et e 3
Figure 3. Sliced-cell StTUCtUTeccoeeviiririiiiiieei e, 6
Figure 4. (a) Five connection modes, (b) Multi-bit connection, point to

point connection, and input/output connectioncoecovevevueeeenneinnnn. 7
Figure 5. Layout of a 4-bit ALUccccoovviviiniiniiiicin e, e 9
-Figure 6. Three "switch box" modes for wire- ahgnment 10
Figure 7. Folded sliced-stack architectureccovveeerevevsmesesrosesessee, 11
Figure 8. SLAM system block diagram ererersesiseesie e e et raenee e .13
Figure 9. Graph representation for the structural netlistccccovvvenenn.n.. 17.
Figure 10. Stack folding DTOCESS «.vevveververerensarsaceseessseeseeeeseeseeseeseesesseneenns 21
Figure 11. Two area cost functions for area evaluationcocoeeeveverennnn. - 25
Figure 12. Switch box insertion for wire-alignmentcccooveireeeenennn.. 29
Figure 13. Two ﬂoorplan styles W1th one sliced stack a.nd one glue-logic

UNIE i, et r—— e e e te s e e ae e 31
Figure 14. Three floorplan styles for two sliced stacks and one glue-logic :

unit e et e et e e e ta et e et aatnta e ba b aerartaneans 32
Figure 15. Wire ordering for the sliced stack and the glue-logic unit 34
Figure 16. Layout of a controlled countercccceccvniinuninnrieeiecicrie e, 36
Figure 17. (a) SLAM without stack folding, (b) SLAM with stack fold-

ing, and (c) macrocells placement /TOUtingc..cccevveeevrecureceerrennenn. 37
Figure 18. Layout of MARKIL computercccccevvvrmviviniieeeeereecne e 38
Figure 19. The layouts of a simple computer with 1:1 and 2:1 aspect ra-

D108 ittt ettt ettt reeeta e e e reer i as eerrerereeneees 39
November 7, 1989 Page ii

'LIST OF TABLES

Table 1. Layout comparison of the controlled counterccooveuveeeennnnn. 40

Table 2. Layout comparison for stack folding implementation 40
| Table 3. Layout comparison of the MARK1 computerccccoeeeevveenvennn... .40

- Novermber 7, 1989 : : o Page iii

1. Introduction

Surveys of VLSI proaucts reveal that most of the fabricated chips can be
'descrik;ed by register-transfer schematies or netlists. In addition to gates, latéhes,
and flip-flops, schematiés include register-transfer cofnponents such as registers,
counters, adder.s,' glué, shifters, multi'ple;cers, and register files. The product:s in
fhis category include DMA controllers, bus cont_rbllers, disc controllers, and
programmable I/O interfaces; that is, basically all chipé f01; computer design

with the exception of CPUs and memories.

The'préférred layout strétégy for such designs-is- thlel use of standard cells.
- Standard cell méthodology does not take into a;:count th¢ regular nature (bit-
slice property) of register-transfer corﬁpénents, sixice they are décomposed into
basic gates, latches, and flip-flops before layout; Standz;rd cells have two major
.disadva_ntages: (i) They ;‘equire excessive rou.ting,.a,nd-(ii) They do not group the
bits of register-transfer units into a bit-sliéed layout. Thi.s lowers the
performance. of sta.ndardlcell designs.
Other approaches[Joha;YQ, JaJe85, PeWh86,. VaCo86, RoWa87, ScWeS87,

: ihKo87, Hsdr87, LuDe89] have been reported that use datapathé with standard
cells or macrocellls:. There are two common layout styles for datapaths: bit—sliceci
stacks and standard cells. Using a bit-sliced layout style,'the datapath generator

abuts the bits horizontally and register-transfer units vertically with no routing

November 7, 1989 o ’ Page 1

l‘— bit-widths _’|

unit gl bit-slice
1Isb msb
(a)
o1 2 3 4. 5 67

unit!

unit2 ‘ . . - empty
unit3 ‘

7 bit-
unit4 :
alignment

(b)
Figure 1. Bit-sliced layout architecture

channels between the un_ité (Figure 1(a)). Data connections run ove.r the bit-
§1ices in the vertical direcﬁon. This approach can produce a high density layout
if units are of tile same bit-width and the interéonnections between units are
within the same Bit—sli@e. This style, hdwev’er, wastes areé. if units with different
bit—vﬁdths are in the same dafapath .'or if bits in different bit-slices must ‘be

connected. As shown in Aﬁgure 1(b), the datapath has 4 units with bit-widths 8,

November 7, 1989 - : | Page 2

8, 5, and 4. The bit-slices(0-3) of unit 3 connect to the bit-slices(2-5) of unit 1
and the bit-slices(0-4) of unit 4 connect to the bit_slices(1-5) of unit 2. After

placing and aligning the units 3 and 4, several bit-slices are left empty.

"The second layout style uses standard cells or bit;sliced cells with routing

channels (Figure 2(a)), producing a flexible datapath layout even with units of

e Dit-widths |

wire
alignment
routing
channel

(a)

| uniti
—
unit2 '
unit3
" empty spaces (0)

Figure 2. Standard cells and bit-sliced cells with routing channels
o layout architecture

November 7, 1989 _ - Page3

P

,different bit-widths. In .thivs layout s;cglle, the bit-slices are abuttéd horiii;ntally
and bit-sliced units a;re placed Veréical.ly,v‘“;ith‘routing‘cha.nnels betweén units.
Sevéral units with smaller bit;width; ca'n‘ be placed: in the same row in order to
reduce empty space (Figure 2(b)). This meﬁhod still generates soyme\v?résted afea.
because of mismatching of the he.,ight. of adjacent units as shown iﬁ Figuré 2(b).
Furthe:more, this’a,pproa.ch needs to use a)r<.)uting channel] for Wire connecti‘ons »
betweeﬁ | the | units | contributing , to> low area utilization. 4R.ece’nt1y,

LASSIE([TrDi89] has used an approach that selects different llayout‘ styles (bit-

slices or standard cells) for different designs.

In this paper, we first describe a “sliced" layout architecture which

 combines over-the-cell routing, switch box alignment, and layout folding to

allev;iate the proble'ms that previbus aﬁproaéhes _encdunter with the layout of
register-transfer schematics. Furthermore, we descr'ibeb an agtomafed structure
to layout synthésis s‘y_stem> SﬁA_M that uses ‘parameterizable bi'g—sliccd cell
generator and a ﬁéxible custom layout system to prOduée hAig'hi density layquts. -
SLAM trie‘sijto fully utilize high vdensity bit—Slicéd cgllé and determines | which
layout style, glue;logic or‘bit-‘sllicés, is bést suited for each compénerit to achieve
Better area utilization. In addition, we describe partitioning valgoritl.lms uéed iq
the layout synthesié system, SLAM, th#t uses the new layout ar’chifecture. Two_
algorithms aré used to obtain the final floorplan. The‘i.:irst algvorithmApartitions

components into two groups for possible layout using-a strip or bit-sliced layout

"November 7, 1989 L ’ ' - Page4

architecture based on the connect_ivities, type of components, and possible
overall area utilization. The othér algorithm partitioné those two groups further
to achieve bgtter area utilization. Bit-sliced components are partitioned by a
folding algorithm’ into several folded "stacks" while striped components are
partitioned into seve-ral striped modules with flexible aspect ratiés to fit the

overall floorplan.

‘In the remainder of this paper we describe the layout architecture (section
2), give the‘ system overx}ie.w '(section 3l), present the partitioning algorithms
(section 4), describe the sliced-stack generation (section 5), and describe the
floorplan aﬁd layout generation (section 6). Finally, we present the results of
running several examples lthrough the 4system (section. 7). and conclusions

(section 8).

2. Layout architecture

Sliced layout architecture combines over-the-cell routing, switch box
alignment, and folding rﬁethods toA ‘produce high density layout. The sliced
layqut is a stack of register—transfer.units. Each bit-slice has safne width, but
unit heights vary with the unit functionality.-_.The stack grows horiz'ovntally-
when the bit-width increases, and grows vertically when the nﬁmber of units
increases. The sliced stack uses an over-the-cell routing strategy with data

signals running vertically in 2nd metal over the bit-slices. Power, ground, carry,

November 7, 1989 - | Page 5

and control lines are routed horizontally in the 1st metal or poly between the
bit-slices. When connections cross over several bit-slices are needed, a routing
channel called "switch box" is inserted in the stack. This allows folding of the

stack when several units of different bit-width are presented in the netlist.

T T N T O Y Y IO CONTROL
T T T T T T T T T T T T %N

VDD.

| Ll L L ! 1 1 1 [1 113 N
N —————————f—

v v Ly

IIIIIIII_IIIII\

VSS R 13 MET AL

TRACKS
(DATA)

Figure 3. Sliced cell structure

Novernber 7, 1989 | | ~ Page6 .

metal2

empty track

.»4

CONNECTION RULES
(a).

MULTI-BIT PT TO PT
CONNECT ION CONN;CTION

unit!

unit2 -

unit3

)

EXIT ON TOP
WITH
FEEDTHROUGH

i ~— TULTIBITEXIT

ON BOTTOM

Figufe 4 (a) Five connection rrndds, (b) Multi-bit connection,
point to point connection, and input/output connection

* Novermber 7, 1989

Page 7 |

,The bit-sliced cell ,str.ucture is shown in Figure 3. Each cell has a ﬁ.xed
horizontal pitch (130;1'11-1 in our implementation), and a fixed number of metal2
routing tracks over the cell (13 in our implementation). There'aré five modes fér
connecting external wires: (i) Feedthrough, (ii) Feedthrough with connection, (iii)
Up connection, (ivy Down connection, and (v) No connection(empty track)
(Figure 4(a)) All the routing is accomplished -by aésigning tracks to the slices -
using these five rules. An example of multi-bit connection, point to point, and
input/output connection is shown in Figure 4(b). Each unit, such as an ALU,
multiplexer, register, adder, and register, is generated by a parameterizable

generator. A layout for a 4-bit ALU is shown in Figure 5.

In the sliced layout, units are. stacked verﬁica.lly_ and aligned at the least
significant bit. In order to connect different bit-slices of different units, a wire-
alignment cell calle;i a "switch box" is used for passing signals between bit-slices
(Figure 6(a)). The switch box also rearranges the wire connections between two

'adjacent. units as shown in Figure 6(b). Furthermore, the switch box can get

external data from the right or the left (Figure 6(c)).

Units often have varying bit-widths. Because of these bit-width mismatches,
there is a lot of émpty space within the sliced stack’s bounding box. A stack
folding algorithm folds small units into this empty space. Units are fitted

together as in a jigsaw puzzle. The folding is a two dimensional area filling

November 7, 1989 : L ’ Page 8

wa,r

~ U R W S
I.’.!”IL"II..""E“I:" o

ﬁsm&r
¥ 1

L]
I "Q NETRY PEN i(\\b:: V:
"_" TS 'l"".... "L"“"'L"s

November 7, 1989

Figure 5. Layout'of a 4-bit ALU

process that considers both the bit-widths and the heights of the units. Thus, it

can alleviate the height mismatching problem that results from abutting two

different units horizontally. The final stack structure is shown in Figure 7. The

‘sliced stack is divided into two parts: folded and unfolded ‘sections, which are

connected by a switch box. The control signals exit on the left or the right. The

oy 1213 415 |- 617
;

ot 213 415 e17
(a) Bit aligment

ofi. | 213 312 1§0

-(b) Adjacent units connections

0

|

2

S

6

7

L]

Figure 6. Threé “switch box™ modes for wire-alignment

November 7, 1989

(c) Exit on left or right

switch box

switch box

switch box

Page 10

input/output data signals exit on the top or bottom. After fofrning the sliced
stacks, the rest of the components are placed around them under constraints

such as input/output port positions, aspect ratio, and total area.

~1/0 ports

control

»COI’\U‘O]

/0 ports

' . folded units

;unfolded units

. : empty spaces -

Figure 7. Folded sliced-stack structure

Nbverrber 7, 1989 \ Page 11

3. System overview

_SLAI\«(SIiced Layout Methodology) is a reéistér-transfer layout system that
. combineé high ,deﬁéity bit-sliced cells and flexible sf_rip oriented modules to
produce high density layouts. It uses the "sliced" stack and stfip oriented layout
architecture and combines partitioning and ﬁoorplanning techniques to
transform a register-transfer netlisf into a layout. The system block diagram is
shown in Figure 8. The SLAM system consists of three main parts: (i) partitioning

and component binding, (ii) floorplanning, and (iii) layout generation.

Input to SLAM is a register-transfer VHDL. netlist which contains the
description of a design[Lis89]. The connection binder first builds up a connected
graph from the netlist. Then, the component partitioner separates cOmf)onent
instances .into sliceable or non-sliceable types based-oxl1 .the.connectivities. of
components_ and their- functionalities. The component binder obtains
information for each component, such as type, area, and delay, by quer‘.ying the
Component Database[Chen89]. The component binder.then assigns component
types to the component instances based on the compqnént partitioning
algorithxﬁ. "To achieve better area. utilization, the stack partifioner folds the

small units to ﬁll_empty space in the stack.

The unit placer permutes the bit-sliced units to minimize the routing track

density, and the stack router assigns the routing tracks between the connected

November 7, 1989 : | Page 12

Register-Transfer
' netlist

¥
Connection
binder

> » ’ ’
Component
Partitioner

— — — — —— —

Component

. Binder e N
CDB

Stack Folding

~ >

Component
Library

~ Stack Glue-Logic | “Component
Placement & B - Generator
Routing Inder ‘

Area
Estimator

Floorplanner 1

AN

Sliced Stack Striped Logic
Generator - ' Generator

Global Router

Y

Layout

Figure 8. SLAM system block diagram

November 7, 1989 ' ' : Page 13

ports. After forming the sliced stack, the glue-logic component binder first

estimates the loads for each wire giving to the siiced stack. The loads are
calculated by summing the input capacitances of driveh bit-sliced units and the.
routing wire .capacitances. In the .binding stbep, the binder forwards the glue-
logic netlist, ogtput loads, z;nd delay constraints to the database, and retrieves‘a
netlist of gates with pin information from the database. This netlist also contains _
the transistor sizes for each component. These transistor sizes are generated by a
logic ‘optimization phase[VaGa88] to meet a set of design’s constrajnts.. Finally,
the binder maps the glue-logic unit into a gate level module by reconnecting the

gate netlists of glue-logic components retrieved from the database.

The floorplanner uses a constructive method to place the glue-logic around
the stack module. It also assigns the global routing channel and determines the
aspect ratio of the glue-logic module. Furthermbre, the flooplanner determines
. the ordering of input‘/'ou,tput pins for the glué-iogic that will minimize the wire
érossi;lg between stack.and. glue-logic modules.

In the final phase, the glué-iogic module is generated by the striped layout
generator[LiGa87], and the stack module is generateci by generators using
GDT[BuMa85]. A globél ;outer[SCSSQ] theﬁ finishes the detailed' routing

between modules to generate the final layout.

November 7, 1989 R Page 14

4. Partitioning

The ’prim‘a.ry purpose of pa.ftitioning is to define the layout style fof each
co'rhponent in the design. Bs{ fully utiliziﬁg high density bit-slicéd gellé and using‘~
the ‘best suited layoﬁt sﬁyle fqr e.ach compo;lgnt, better area utﬂization can be
achieved. The ovevra:l‘l: objective is to ﬁﬁnir.rﬁze the totai layout .area and the
iﬂtérconnectiqns bétwéen th.e sliced stack and glue-logic r_nodulé's. Since routing
' arﬁong units- uée 1st and 2nd metal, the performance will sit;ay the same .o,r be

slightly improved because of the smaller area.

The partitioning"algbrithm consists of three phases: (i) Component

partitioning into bit-slices and glue-logic, (ii) Stack folding and partitioning, and

b

(i) Layout. balancing. In phase one, the algorithm-. partitions the structural |

'iﬁstances into sliceable and non-sliceable components based on 'cpméon'er_lts’
characterisficlsv and vcohvnectivities. In.‘ phas¢ fwo,~the‘algorithm partitions t_hé
sliceable components into several staci;s using a folding méthbd fc"o vreduée-layout
area. ‘Af’cer‘ folding, the layouf balancing algorithm reassigns small compbnénts

that do not fit in the stack ‘module to the glue-logic to improve area utilization.

Thr}bughout th_é p@per, we will use SS for the bit-sliced units in the sliced

v -

stack, and GL for the glue-logic components.

November 7, 1989 - ' o | - Page 15

4.1 Component partitioning

A weightedAa.nd labeled undirectéd graph G is formed by a s>et‘ U of ﬁodes, a
set V of.ports, /a.nd a set E of edges. There are m nodes ian where m is the
number of components in the design, and there are n ports in each node whére n
is the nuvmber of ports in each corriponenﬁ The attribute fype .of a port i, ptype(i),
indicates that port i is a contrél port or a data port. Let i, j) be the edge
between port i of u, and port j of w, where u, ,ﬁ, E U and i, j € V. The weight of
an edge e € ﬁ), wie(i,,j;)], 15 the number of Wires between these two porté. The
graph generated from the schematic in Figure 9(a) is shown in Figure 9(b).
There are two components SS1 and SS2 with bit-widths 4 in the netlist. Ssi and
SS2 form two nodes, Ul and Ué, in the graph, with three ports each, one control
~port and two data ports. The edges correspond to connecfions betweeh ports,
while weights are equal to the multiplicity of connections. For example, W,=4

because there are 4 wires connect between port ¢ and port d.

The component partitioning algorithm initially determines the component
tyi)eé of each nOdé by querying the database. The component type can be GL
only, such as single gates or DECODERS, SS only if is specified by user, or both
GL and SS, such as a MUX or ALU'.A The algorithm assigns th‘er component type
to the node if it is a SS only or GL only component. If a éomponent can be used

as SS or GL and the bit-widths are larger than a user specified threshold(i.e. the

November 7, 1989 S ' Page 16

. November 7 , 1989 . ‘ - A. | | - Page 17

. input

14 | “ |
. Ut

o @ (SS1)
b o .

ck ™™ 7 ssi :
' : (c)

¥4

2 : ()

_(f)
=

output
(a)

portsa,c,d, and r: dataport)
~ports b and e : control port , A (b)

Figure 9. Graph representation of the structural netlist

minimum bit-width requirement of components that can be 1aid out by bit-sliced.

units), the Ss 'i.s initially a,ssig"nvecvl to _'th‘e component; otherwise, an undegided_
component type(UN) will be a.ssigned' to the co‘rﬁ'pAonent..

After fh'e ini>tialq component _typg aésigﬁmenté, the algo'rithm ’eva,luatels and

. assigns fhe component ty'pes Qf the nodes basea én a linking.’c»ost function. The.

linking cost functions are

W)=Y we,)ifu isaGL

con

W)=Y we,)ifu isaSs

where W__ (1) is the number of wires connected t6 u, from other GL nodes, and

w0 is the number of wires connected to uy, from other SS nodes. If W (1) >

W_ ..(D) then u is a SS; otherwise, u, is a GL.

-Assuming there is an edge e(i,, j;), the component type of u, can be determined

as follows:

(1) I the node u is a component of undecided type, the é,lgorithm simply

" assigns a SS component type to the node u, if ptype(i,) is a data port;

otherwise, a GL component type will be assigned to u,.

(2) ¥ the node u, has an initial SS or GL component type, there are two possible
cases: (i) If ptyi)e(i,J is a data port and 1;, is a SS, or ptype(i,) is a control port
~and u, is.a GL, the u,’; éqmponent type is uncha;nged. (i) If bltype(ik). is a data.
port and u, is a GL, or’ pt&i)e(ik) is a control port ahd u; is a ‘SS,:the linicing
cost function, W, (1) and W ta(l)., are used to det-ermine the u’s éqnponent

type.

November 7, 1989 : Co 'Page 18

ALGORITHM 1 Component Partitioning

PROCEDURE Component_partitioning()
/**Let Ct(u) be the component type of u.**/
G = build_graph(); '
/**initial compAonent type assignments by querying database**/
forallu € U o
Ct(u) = init _type _assignment(u);

/**Let p':y'pe(I,c) € {data or control} where i € V and k € u. Let ¥ = U and a551gns Y €

¥ into four groups Ct(v) € {IO, SS, GL, or UN} where ¥ is in the sorting order according
to the bit-widths and group orders**/
~ while ¥ # qS ' \
¥, = head of ;
fori € VandiCy,
begin
fore(i,,j) €E
if (Ct(y,) == UN and ptype(i,) == data) then
Ct(y,) = 8S; :
else 1f(Ct(1,b,) == UN and ptype(i,) == control) then
Ct{w,) =
begin . ' . \
if ((ptypeli,)==data and Ct(s})==GL) - '
or (ptype(i,)==control and Ct(¢,)==SS))
and Ct(v,) # {SSonly, GLonly, or IO}) then
begin - -
calculate Wmtrd(l) and W, (1);
if W I > data(l) then

control
CH(,) = GL -
- Ct(y,) = SS; ‘ ‘

end;
‘end;
T="-qy

end;
end;

end;

‘November 7,1989 | S " Pagel9

4.2 Stack partitioning by folding
Using the sliced architecture, the bit-sliced units need to be aligned so that
signals can pé,ss through all of the units. Often units have different bit-widths.

Because of this bit-width mismatch, there is some empty space within the stack

“bounding box. The folding algorithm tries to fold small units to ﬁll these empty

space. The stack will also be partitioned into multiple stacks if a smaller layout
area can be achieved. The main objective of folding is to minimize the total

layout area.

Definition 1

The bounding box of the unit u, is defined By' the upper-left point (x

i Yal.i) a.nd
the lower-right point (x,;y,,) of unit u’ h, and w, are the height and width of

unit u,.

Definition 2 -
The sliced-stack area, A ,,is determined by the minimum bounding box enclosing.

all units, where H, and W,, are the height and the width of this bounding box. -

Definition 3

Let fold, be the stack containing all of the folded unifs, and H, g and W, be

the height and width of folda;’s bounding box. Let unfold, be the datapath

~ containing all of the unfolded units, and H,, jaa and W, be the height and

November 7, 1989 o - | Page 20

r s

width of wnfold,,’s. bounding box. Let H

“cutline

be the cutline that separates the

unfolded units with maximum bit-widths and the rest of unfolded. units.

|<_ max bit-width _.'

cutline

baseline

LSB LS8

‘ 0
shift to the right and rotate 180
(a)

overiap

" push up |

cunfolded units

(b)

L empty spaces

n
. folded units

12
A

'shift to the‘r1ght

(c)

Figure 10. Stack folding process

November 7, 1989 : : | . Page 21

The folding algorithm includes three stepé: unit folding; overlap checking,
and area cost function evaluation. Theré are two main constraints for the stack
folding: (i) the units must be aligned with the least significant bit and (ii) the
units mﬁst not overl‘ap.r The algorithm first sorts the units based on the units’
bit-widths. One unit is folded. at a time. The folding process has two steps: (i)
move the unit u, to the right edge of stack’s bounding box and rotate it around
the center (Figure 10(a)) and (ii) push all of the folded units up based on a step
function, y,,,, until reaching the base-line (Figure 10(b)). The step function Y tep

1s defined as follows: .

Yoep = Min{ ¥Y;» ¥, and ys} and Yotep > 0
where
v, is the height between the H_,, and the top of fold ,.

y, is the height of first folded unit below the H

cutline”

Y, is the height between the base-line and the bottom of fold,,.

After unit folding, an overlap checking procedure is implemented to chéck
_ Whéther the units in the folded part and. the unfolded part overlap. The
boundiij.g box of unit u, is defined by the upper-left point (x“,'i,yu,.‘.) and the

- lower-right point (x_;y, ;) of unit u,. The overlapping conditions are

~ Novernber 7, 1989 _ Page 22

(1) There exists a (x,;y,,) where u, € unfolded bit-sliced units.

(2) There exisﬁs‘a (x,;¥u,) Where u; € folded bit-sliced units.

(3) And Kyj < Ky and Yuj < Yirir

If an overlap occurred, the algorithm will shift the folded units to the right

by X, to avoid the overlap (Figure 10(c)). X,,,,, is defined as follows:

X

shift max{xlr'l. - xul.j}

ifFx, . < x., and Yuj < Vi

1

where
u, € unfold,; and u, € fold,,

‘After folding a unit u,, we have

8

W, =W, + X, if overlap
Hu = maX{Hs;_foId’ Haa_unfold}

where

Hss_jold = Hu_jold + b

Haa_unfo(d = Hu_unfold - b‘i

The »algérithm then evaluates a cost function to select the best stack

partition. The area cost function A, evaluation has two conditions as follows:

November 7, 1989 ' ’ Page 23

(1) ¥H,, >H

tline ve_saa» t1€ cost function of A, is

C_ *
Au - Wu Hu_unfold + A’routc'ng_fdd_unfdd

. where o
A outing_fold_umfold is the routing channel area for connecting unfold, and

fold,,

(2) fH

ss_fold > H

cutline’?

some units in .fold” overshoot thé cutline of unfold, and
overlap with some units in: unfold, . Thére are two area cost functions A
and A _ . They are defined as followé:
(i) The A,, cost function is the minimum bounding box enclosing all of
the units and the routing area for connecting the unfolded unins and
the folded units Figure 11(&).
(iiy Using the éécond cost functiom, FA”ew, the algorifhm moves the
unfitted units(overshoot units) from the first stack module to form a

. new stack module Figure 11(b). The cost function is -

A=A, .+ A,

new 38 a_netn + Arouting_dd_new
A”_;;z& is the first stack module area without the unfitted units, and A is

ss_new

the new stack module area that contains the units that do not fit in the

first stack module. A_,.. .. . is the routing area between two stack

November 7, 1989 . Page 24

modules. If A < A, then the algorithm moves the unfitted units to the

new stack group for further partitioning. The stack folding algorithm is

shown as follows:

(a)

(b)

s bit-sliced unit

ft‘igure 11. Two area cost functions for area evaluation

November 7, 1989

Page 25

ALGORITHM 2 Stack Partitioning

Let D be a set of SS components.
PROCEDURE Stack_partitioning(D)
beein :
D/old =¢;
D, =4;

* ’ .
ss_minimum Hu_unfold Waa‘_unfold’

Dmin = Dunfold;

d = head of Du"fdd;
{fold d}
while (bit_width(d) < max_bit_width)
begin ' ‘
D,, soid = Dyn fdd ~
Dy = Dyyq + 45
if (D, ;4 Overlaps D,,;) then
shift Dfdd;
if (H, e > H“_fdd) then
calculate A ;
else
begin
calculate A, and A _ ;
if (A,, > A) then
begin
D, =D + 4y
D = D - dunfit;
. A“ = Anew;

end;

d;

tline

end,;
if (A, > A,,) then

sa_minimum
ss_minimum = Au;
D in =Dy, sad T Dpaas
end; - -

d = head of D'mfdd;

end;
if (D,,, # ¢) then
Stack_partitioning(D,_,,);
end;

November 7, 1989

D fold = SOTtS d € D according to bit_widths in descending order;

Page 26

The stack partitioning algorithm is executed recursively. until’- no more
stacks can be formed. The layout balancing algorithm first moves the small units
. that do not fit in the stack to the glue-logic. If there is more than one stack
module, the algorithm estimates two area costs: (i) The layout of the small stacl\c
module using striped logic and (ii) The layout of the small stack module using
sliced units. If the total area of (1) is less than that of (ii), the algorithm méves

all of the components in the small stack to the glue-logic.

5. Sliced-stack generation

Stack generation maps the bit-sliced compbnents into a sliced stack module.

Stack generation includes three steps: (i) placement,i (i) folding, and (iii) routing.

The connection binding step maps the-register-transfer structural netlist -
into connected gréph as described' iﬁ section 41. In our implementation, there
A:ax;e three wiring modules, SELECTOR, CONCAT, and PORT[Li;SQ], that offer
the wiring information among units. The binder will delete the wiring modules
after specifying all the wire connections. The componént partitioning step

partitions the modules into bit-slice and glue-logic as described in section 4.1.

The main goal of placement is to determine the optimal placement of units
that minimizes the total number of routing tracks and wire length. The
placement algorithm includes three steps: (i) initial placement, (i) routing track

alignment, and (iii) routing track minimization. The algorithm first sorts the

November 7, 1989 | Page 27

units based o_ri bit-widths, and- placeé uﬁits, in lé descending order aligned with
the ieas,t s'igr.liﬁc’ant bit. The algorithrh then determines the 'rn.iszixligned. wire
copnegtion_s between 'units by trax‘/ersing the connected graﬁh_, If there are wire
c_ongeCtiOns between the dif‘ferent bit-slices in the units, a switch box will be
_inserted to align the routing tracks. An example of wire Conne‘éti‘on misa.lignment

and switch box insertion is shown in Figure 12. There are three SS units with

-bit-widths 8,5,'a.nd 4 Because the dnit.s are abutted and aligned. with the least

-

sign’iﬁca.nfv.bit (Figufe 12(b)), the wire 'coﬁnect'ions between'Regl.(bits 4-7) a,_nd'
Rn.eg2. t,i)its 0-3) are not routeable. Therefore, a routing box is inserted to connéct :
Regl and Reé:i (Figure—v142((";))._

The routing track ﬁlinimiza.tion step permutes the order ,6:f the units of the '
same bit-widths to nﬁn’iniize tl}e tfack density; The éom_pléxity of the exhaustive
orderiﬁg searclvlv algorithm is O(n!) where n is the maximﬁm number of units in
the same bit_width gfoup. vTherefore, the exhaustive seafch method is sui'table
' for small unit sizes, but is impractical to implement for_lafgé probléms. The
Vrout'ing track nﬁninﬁiation a,lgofithm implementé a heu»risvti-c By. cémbining'~~;nin-
cut a_nd exhaustive se’a.rch methéds. Because units are placed in a sortéd order,
the a,lgori’_chﬁl’onIy needs to permute the units ibn the same bit—width group. Thé
.'allgorithm first pértitipné the units intq ‘groups based- on bit-widtl‘l. If the -
| numbef of uﬁits in a group is less thén a threshold, then it permutes the units
exhaustively to ﬁnd the. Iﬁjnimal track deﬁsity. ‘Otherwise, a min-cut |

‘November 7; 1989 ' - - v Page 28

Figure 12. Switch box insertion for wire-alignment -

Regl |
Reg2

Reg3

Reg1

- Sw BOX

Reg2
Reg3

Reg1[0~7]

—

SEL! SEL2

‘{5(0—4) -f - 4(4-7)

Reg2 | | Reg3

(@) structural netlist

01 23 4 5586 7
Ll s
LN |
| ' /ot routable

(b} initial placement’

0 | 2 3 45 6 7

L1 d1hl]

(¢) switch box insertion -

algorithm[KeLi70] is 'implémenfed recursively until the sub-group sizes are less

than a threshold, at which time it applies exhaustive permutation on each sub-

group.

Novernber 7 , 1989

’ Page 29

After the placement step, the stack folding algorithm as described

| | previously. is applied to reduce the layout area. _Finally, the routing tracks are

- assigned to the units using a left-edge algorithm[Ha.S_Wl].

6 Floorplanning and layout géneration
l : — The glue-logic is placed around the staéks after formingl the sﬁa.cki mddule's.
The.ﬂoorplanner determines the aspect rat'io- and location of th_e éL ﬁodule to -
| , ,
achieve min_irr_ium total laydut area or '_as'ﬁect ratio. To obtain minimal layout
~ area, the system examines different ﬁoorpla,ﬁ styles and selects the one with t.he.
minimum area for the final floorplan. For instance, consider a floorplan style
that incorporates one stéck and éne glue-logic unit. There are two _sub-styies: '_(i)
The glué-logic module can be placed on the‘ left of the stack module or (ﬁ; Th:e
glue-logic mpdule can be placed on the bottom of theréta'ck mc;dule. (Figure 13)._

The final érea is calculated as follows: ‘ h

Atotal. = Agl + Au + A

routing
Arouting = A.u- gl + Afold- control + Aun fold~ control

The.tvotal area‘is the summation of the stack area, the glue-logic area, and -
, the total routing area. The roﬁting area ‘consists of three parts: (i) The routing
channel between the glue-logic module and the centrol ports of the folded stack,

\

November 7, 1989 ' B . o | Page 30 S

NE)

. routing channel between GL and folded-SS control ports

- o routing channel between GL and unfolded-SS control ports

1 routing channel between GL and SS data ports.

(b)

Flgure 13. Two floorplan styles for one sliced stack and one 7
glue-logic unit

November 7, 1989 | oo " o Page 31

(id) The-routing channel between the glue-logic module and the control ports of

the unfolded stack, and (iii) The routmg channel between the glue logic module
. and. the data ports of the stack. By querymg the database, the aspect ratio,
height, and- width of the glue-logic module can be det.ermined. The placer then

calculates the total area, and the style with minimal total area is selected as the .

final ﬁoofplan.

SSt

552

GL .

SS1

5S2

GL

SS1

GL

552

Figure 14. Three floorplan styles for two sliced stacks and one

November 7, 1989

glue-logic unit

Page 32

The second floorplan ‘style incorporates two stacks “and one glue-logic

module. There are eight possiBle configurations of the layout that can be

divided into three styles(figure 14). The placer treats the glué-logic module as a -

" soft block which is flexible for changing the aspect ratio. The placer first,

determines the minimum boufiding box that cdnta.ins_ both stacks. After placing

the stack modules, the placer determines the aspect ratio of the sft glue-logic

' block_ by querying the database. The style with minimal total area is selected as

thé final floorplan.

After selecting the floorplan styie, the placer determines the ordering of

inpu‘t/éutput ports for: the glut-logic module. Since' the input/output ports of

\

the stack are in the fixed positions, the placer simply assigns the port positions

of glue-logic module corresponding to the port positions of the stacks based on -

connection configurations. There are two basic connection configurations. If the

glue-logic module and the stack have adjacent connection boundary then the

placer assigns the sva.meuorderi'ng of ports to ' the glue-logic module as

stack’s(ﬁgure 15,(a)); Otherwise, the placer assigns the reverse ordering of ports
to the glue-logic module(figure 15(b-c)). Finally, the layout is ngn_erated using

the striped layout generator and the bit-sliced generators with a global router.

%

- November 7, 1989 o - o Page 33)

U OY B N)
I N N

(a)

(o,

A _ (c)
Figure 15. Wire ordering for sliced stack and glue-logic unit

7. Results

The SLAM system is iﬁiplemenﬁed in the C programming languége ‘and is
currentlyvrunniné on SUN 3/SUN 4 workstations under the UNIX operating
system.- A number of éxamples have been tested. The regist‘;er—traﬁsfér struct_urgl

netlists were generated from a VHDL synthesis system VSS[LiGa89] or mapped

November 7, 1989 | o - | | - - Page 34

from register- transfer schemat1cs The layouts were generated using a 3- rmcron :

CMOS technology

‘The ﬁrsto example is a controlled c.ounter[Arms89] that consists of
approximately 50% sliceable component_s and 50% non-sliceable components.
Three dift’erent _layouts were generated using (1) SLAlVf wlthout par‘t’itioning, (i)
SLAM with par_tit;ning, and (iii) standard cells. The results in Table 1 show
that the layout generated by SLAM with partitioning is 12% smaller than that
without part1t1on1ng, and 20% smaller than that of standard cells. The final
layout that is generated by SLAM with part1t1on1ng is shown in Figure 16
Example 2 consists of seven units W1th different. bit- w1dths F1gures 17(a) and
17(b) show the layouts generated us1ng the SLAM system without and with .
implementing stack fold1ng Flgure 17(c) shows the layout generated usmg the -
same units with a global router.. To generate the layout of F igure 17(c) we used
GDT 1nteract1ve floorplanner to place the units. The results in Table 2 show
that the total area using stack folding is 40% less than that of the other two
approaches Example 3 is the Markl s1mp1e computer[S1Go82] which consists of
20 components with bit-widths 32, 16, 13 3, and 1. The partitioner part1t1ons
lthe design into two sliced stack modules and one glue- log1c module and the ﬁnal
layout is shown in F1gure 18. The results in Table 3 show that the layout
generated by SLAM - with' partitioning is 20% smaller than that without”
partitioning. : | | | | |

‘November 7, 1989 | _ : ‘ ', | . | . . Page 35

LIM IN and COUNT OUT

I

YR O AT

Fhs o SOV YIS

WY U‘

Figure 16. Layout of a controlled counter

Noverrbér 7, 1989

Page 36

(ad

Figure 17 (a) SLAM without stack foldmg, (b) SLAM with stack
folding, and (c) macrocells placement /routing

- . November 7,1989 ’ | " Page 37

| Figure 18. Layout of MARK1 sinple conputer

November 7, 1989

Pége 38

TO HMEMORY *DATA IN*
GND VDO ; ! fuin
" e

IR XIND X
o
ean

(F'T

) G

Airea.= 15S8um * 1838um = 2,863,804 Area = 1207um * 2420um = 2,920,940

Figure 19. The layouts of a simple computer with 1:1 and 2:1 aspect
‘ratios .

November 7, 1989 _ L ~ Page 39

unit Slam with lam without standard
micron partitioning | partitioning cells
H/W 620 * 780 93»4 * 582 740 * 782
‘Area 483,600 -543,588 . 578,680'
% o .0 +12.4 +19.6

Table 1. Layout comparison of the controlled counter

Unit folded Sfol fnacrocell placement
micron) olae unfq dgd and routing
Total (W/H) 1046 * 997 1046 * 1380 1264 % 1175 ;
Area 1,042,862 1,443,480 1,485,200 .
2 | o +38.4 42,4

Table 2. Lélyout comparison for stack folding implementation

©unit Slam with |Slam without
micron - partitioning | partitioning
H/W 4250 * 2640 | 4250 * 3150
Area 11,220,000 | 13,387,500

% 0 +19.3

Table 3. Layouf cor.nbarisonl of the MARK1 computer-

November 7, 1989

Finally, eka.rﬁple 4 is a simple cOmputef[Man088]. The la_ybuts for examplé 4
With 1:1 and 2:1 aspect ratiosarevslriow.n 'in figure 19.. |
8. Conclusions

In this‘ pa‘perv, wé described a sliced layout architecture and presented pvéo _
met_hodé f01“ _performinig partitioning, gompon'ent‘ paftitiqning " and 'stack
partitioning. ,The corﬁponent ‘partitioning algorithm decidesf_whi’ch layout style,

glue-logic or bit-slices, is best suited for each component based on the

. component’s types and connéctivtities.‘ The stack folding algorithm partitions

glue-logic and bit-slices into clusters, and implements layout tradeoffs between

bit-slices and' glue-logic components to achieve better area utilization. The

experimental results in Table 1 show that using the partitioning techn_iqueé and

the sliced layout a_ichitecture, denser layoﬁts are achieved in comparison with -

standard cells. The experimental results in Table 2 'and\ Table 3 demonstrate

- that better area utilization can be achieved using the stack folding technique.

. . : '\ .
9. Acknowledgements
This work was supported by NSF graht #MIP-8711025. We are grateful for their -

support.

" November 7,1989 = o o . Pagedl

10. References
[Arms89] Armstrong, J., Chip Level Modeling with VHDL, Prentice-Hall, 1989.

‘[BuMaSS] Buric, M. R, and Matheson, T.G., ."Silicon" Compilation
Env1ronments Proc. CICC, 1985. ' ’

[ChGag9) Chen, G. D. and Gajski, D., " An Intelligent - Componénﬁ Dv'ata_base‘
System for Behavioral Synthe51s Tech. Report 89-39, ICS Dept., -
U.C. Irvine, 1989. ' '

[HaSt71] Hashimoto, A. and J. Steven, "Wire Routing by Optiinizing Channel
' ' Assignment within Large Apertures,” Proc. of 8th DAC, 1971.

[HsGr87] Héu, D., Grate, L., Ng, C., Hartoog, M., and Bohm, D., "The
ChipCompiler, An Automated Standard Cell/Macrocell Physical
Design Tool," Proc. CICC, 1987. ‘

'[JaJe85] Jamier, R. and-Jeraya, A., "APOLLON A Datapath Comp11er Proc.
ICCD 1985.

[JohaT79} - Johannsen, D. L., "Bristle Blocks: A Silicon Compiler,'; Proc. 16th
DAC, 1979. S

- ' [KeLi70] Kernighan, B. W., and Lin S., " An Efficient Heuristics' for
I . - Partitioning Graphs," Bell System Technical Journal, 49, (2), 1970.

| - [LiGa87] Lin, Y.L. and 'Gajski, D., "LES: A Layout Expert System," Proc.-24th
| _ ' 'DAC, 1987. . : : :

[Lis89] - Lis, J. S, "VHDL Structure Nethst Spec1ﬁcat10h," CADLAB Tnternal - 3
: Document ICS Dept., U.C. Irvine, 1989

[LiGa89] Lis, J. S and Gajski, D., Synthe51s from VHDL " Proc. ICCD, 1988

[LuDe89] Luk, W. K.,' and Dean, A. A.,_ "Multi-Stack Optimization for Data-
~Path Chip(Microprocessor).Layout " Proc. 26th DAC, 1989. '

[Maﬁo88]l Mano, M. M Computer Engmeermg Hardware De51gn, PP- 291 o
- Prentice- Hall 1988 . a

November 7, 1989 . o o Page 42

[PeWhs6]

[RoWa87]
[SCS89)]

[ScWe8T]

[SiGo82)

[ThKo87]

[TrDig9]
[VaCo86]

[VaGags]

Peterson, B. R., White, B. A., Salomon, D. J., and Elmasary, M. L,
"SPIL:A Silicon Comp1ler w1th Performance Evaluat1on' Proc.
ICCAD, 1986.

Rowson, J., Walker, B., and Dholakia, S., "A Datapath Compiler for
Standard Cells and Gate Arrays," Proc. CICC, 1987.

"GDT Database and Language Tools" S1hcon Comp1ler System, Sec.

7, V.4.0, 1989.

'Schuek, J., Wehn, N.,”Glesner, M., and Kamp, G., "The ALGIC
‘Silicon Compiler System: Implementation, Design Experience . and

Results," Proc. 24th DAC, 1987.

S1ew1orek D. -P., Bell, C G., and Newell, A. Computer Structures:
Principles.and Examples McGraw Hill, 1982.

Thonemann, H. G., Kolonko, M., Severloh, H.,‘. "VENUS-An
Advanced VLSI Design Environment for Custom Integrated Circuits
with Macros Cells, Standard Cells and Gate Arrays," Proc. CICC,
1987. : '

Trick, M. T., Director, S. W "LASSIE:Structure to Layout for_

Behavioral Synthes1s Tools Proc 26th DAC, 1989.

Varinot P., J. A, Court01s B J. R, Pr1nc1ples of The SYCO
Compiler,"” Proc 23rd DAC, 1986 ‘

Vanzen Zanden, N., and Gajski, D., "MILO: A Microarchitecture and
Logic Optimizer,"” Proc. 25th DAC, 1988. .

November 7, 1989 o | - Page 43

