
SLAM++: Simultaneous Localisation and Mapping at the Level of Objects

Renato F. Salas-Moreno1 Richard A. Newcombe2 Hauke Strasdat1 Paul H. J. Kelly1

Andrew J. Davison1

1Imperial College London 2University of Washington

Abstract

We present the major advantages of a new ‘object ori-

ented’ 3D SLAM paradigm, which takes full advantage

in the loop of prior knowledge that many scenes consist

of repeated, domain-specific objects and structures. As a

hand-held depth camera browses a cluttered scene, real-

time 3D object recognition and tracking provides 6DoF

camera-object constraints which feed into an explicit graph

of objects, continually refined by efficient pose-graph opti-

misation. This offers the descriptive and predictive power

of SLAM systems which perform dense surface reconstruc-

tion, but with a huge representation compression. The ob-

ject graph enables predictions for accurate ICP-based cam-

era to model tracking at each live frame, and efficient ac-

tive search for new objects in currently undescribed image

regions. We demonstrate real-time incremental SLAM in

large, cluttered environments, including loop closure, relo-

calisation and the detection of moved objects, and of course

the generation of an object level scene description with the

potential to enable interaction.

1. Introduction

Most current real-time SLAM systems operate at the

level of low-level primitives (points, lines, patches or non-

parametric surface representations such as depth maps),

which must be robustly matched, geometrically transformed

and optimised over in order that maps represent the intrica-

cies of the real world. Modern processing hardware permits

ever-improving levels of detail and scale, and much inter-

est is now turning to semantic labelling of this geometry

in terms of the objects and regions that are known to exist

in the scene. However, some thought about this process re-

veals a huge amount of wasted computational effort; and the

potential for a much better way of taking account of domain

knowledge in the loop of SLAM operation itself.

We propose a paradigm for real-time localisation and

mapping which harnesses 3D object recognition to jump

over low level geometry processing and produce incremen-

Figure 1. (top) In SLAM++, a cluttered 3D scene is efficiently

tracked and mapped in real-time directly at the object level. (left)

A live view at the current camera pose and the synthetic rendered

objects. (right) We contrast a raw depth camera normal map with

the corresponding high quality prediction from our object graph,

used both for camera tracking and for masking object search.

tally built maps directly at the ‘object oriented’ level. As

a hand-held depth camera browses a cluttered scene, prior

knowledge of the objects likely to be repetitively present

enables real-time 3D recognition and the creation of a sim-

ple pose graph map of relative object locations. This graph

is continuously optimised as new measurements arrive, and

enables always up-to-date, dense and precise prediction of

the next camera measurement. These predictions are used

for robust camera tracking and the generation of active

search regions for further object detection.

Our approach is enabled by efficient GPGPU parallel im-

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.178

1350

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.178

1350

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.178

1350

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.178

1352

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.178

1352

plementation of recent advances in real-time 3D object de-

tection and 6DoF (Degree of Freedom) ICP-based pose re-

finement. We show that alongside the obvious benefit of

an object-level scene description, this paradigm enables a

vast compression of map storage compared to a dense re-

construction system with similar predictive power; and that

it easily enables large scale loop closure, relocalisation and

great potential for the use of domain-specific priors.

2. Real-Time SLAM with Hand-Held Sensors

In SLAM (Simultaneous Localisation and Mapping),

building an internally consistent map in real-time from a

moving sensor enables drift-free localisation during arbi-

trarily long periods of motion. We have still not seen truly

‘pick up and play’ SLAM systems which can be embed-

ded in low-cost devices and used without concern or un-

derstanding by non-expert users, but there has been much

recent progress. Until recently, the best systems used ei-

ther monocular or stereo passive cameras. Sparse feature

filtering methods like [5] were improved on by ‘keyframe

SLAM’ systems like PTAM [8] which used bundle adjust-

ment in parallel with tracking to enable high feature counts

and more accurate tracking.

Most recently, a breakthrough has been provided by

‘dense SLAM’ systems, which take advantage of GPGPU

processing hardware to reconstruct and track full surface

models, represented non-parametrically as meshes or im-

plicit surfaces. While this approach is possible with an RGB

camera [12], commodity depth cameras have now come to

the fore in high performance, robust indoor 3D mapping,

in particular via the KinectFusion algorithm [11]. New de-

velopments such as [18] have tackled scaling the method

via a sliding volume, sub-blocking or octrees; but a a truly

scalable, multi-resolution, loop closure capable dense non-

parametric surface representation remains elusive, and will

always be wasteful in environments with symmetry.

From sparse feature-based SLAM, where the world is

modelled as an unconnected point cloud, to dense SLAM

which assumes that scenes contain continuous surfaces, we

have seen an increase in the prior scene knowledge brought

to bear. In SLAM++ we step up to the even stronger as-

sumption that the world has intrinsic symmetry in the form

of repetitive objects. While we currently pre-define the ob-

jects expected in a scene, we intend that the paradigm per-

mits the objects in a scene to be identified and segmented

automatically as salient, repeated elements.

Object SLAM has many characteristics of a return

to feature-based SLAM methods. Unlike dense non-

parametric approaches, the relatively few discrete entities

in the map makes it highly feasible to jointly optimise over

all object positions to make globally consistent maps. The

fact that the map entities are now objects rather than point

features, however, puts us in a stronger position than ever

before; tracking one object in 6DoF is enough to localise

a camera, and reliable relocalisation of a lost camera or

loop closure detection can be performed on the basis of

just a small number of object measurements due to their

high saliency. Further, and crucially, instant recognition

of objects provides great efficiency and robustness benefits

via the active approaches it permits to tracking and object

detection, guided entirely by the dense predictions we can

make of the positions of known objects.

SLAM++ relates strongly to the growing interest in se-

mantically labelling scene reconstructions and maps, in

both the computer vision and robotics communities, though

we stress the big difference between post-hoc labelling

of geometry and the closed loop, real-time algorithm we

present. Some of the most sophisticated recent work was

by Kim et al. [7]. A depth camera is first used to scan a

scene, similar in scale and object content to the results we

demonstrate later, and all data is fused into a single large

point cloud. Off-line, learned object models, with a degree

of variation to cope with a range of real object types, are

then matched into the joint scan, optimising both similarity

and object configuration constraints. The results are impres-

sive, though the emphasis is on labelling rather than aiding

mapping and we can see problems with missing data which

cannot be fixed with non-interactive capture. Other good

work on labelling using RDB-D data was by Silberman [16]

as well as Ren et al. [14] who used kernel descriptors for

appearance and shape to label single depth camera images

with object and region identity.

Several published approaches use object detection, like

we do, with the aim of not just labelling but actually im-

proving reconstruction and tracking; but none of these have

taken the idea nearly as far as we have with the combina-

tion of real-time processing, full 3D operation, dense pre-

diction and a modern graph optimisation back-end. To give

a flavour of this work, Castle et al. [4] incorporated pla-

nar object detection into sparse feature-based monocular

SLAM [5]. These objects, once recognized via SIFT de-

scriptors, improved the quality of SLAM due to their known

size and shape, though the objects were simple highly tex-

tured posters and the scene scale small. Also in an EKF

SLAM paradigm, Ramos et al. [13] demonstrated a 2D

laser/camera system which used object recognition to gen-

erate discrete entities to map (tree trunks) rather than using

raw measurements. Finally, the same idea that object recog-

nition aids reconstruction has been used in off-line structure

from motion. Bao et al. [3] represented a scene as a set of

points, objects and regions in two-view SfM, solving ex-

pensively and jointly in a graph optimisation for a labelling

and reconstruction solution taking account of interactions

between all scene entities.

13511351135113531353

Figure 2. Outline of the SLAM++ pipeline. Given a live depth map Dl, we first compute a surface measurement in the form of a vertex and

normal map Nl providing input to the sequentially computed camera tracking and object detection pipelines. (1) We track the live camera

pose Twl with an iterative closest point approach using the dense multi-object scene prediction captured in the current SLAM graph G. (2)

Next we attempt to detect objects, previously stored in a database, that are present in the live frame, generating detection candidates with an

estimated pose in the scene. Candidates are first refined or rejected using a second ICP estimation initialised with the detected pose. (3) We

add successfully detected objects g into the SLAM graph in the form of a object-pose vertex connected to the live estimated camera-pose

vertex via a measurement edge. (4) Rendering objects from the SLAM graph produce a predicted depth Dr and normal map Nr into the

live estimated frame, enabling us to actively search only those pixels not described by current objects in the graph. We run an individual

ICP between each object and the live image resulting in the addition of a new camera-object constraint into the SLAM graph.

3. Method

SLAM++ is overviewed in Figure 2, and detailed below.

3.1. Creating an Object Database

Before live operation in a certain scene, we rapidly make

high quality 3D models of repeatedly occurring objects via

interactive scanning using KinectFusion [11] in a controlled

setting where the object can easily be circled without occlu-

sion. A mesh for the object is extracted from the truncated

signed distance volume obtained from KinectFusion using

marching cubes [10]. A small amount of manual editing

in a mesh tool is performed to separate the object from the

ground plane, and mark it up with a coordinate frame such

that domain-specific object constraints can be applied. The

reconstructed objects are then stored in a simple database.

3.2. SLAM Map Representation

Our representation of the world is a graph, where each

node stores either the estimated SE(3) pose (rotation and

translation relative to a fixed world frame) Twoj of object

j, or Twi of the historical pose of the camera at timestep

i (see Figure 5). Each object node is annotated with a

type from the object database. Each SE(3) measurement

of the pose of an object Zi,oj from the camera is stored in

the graph as a factor (constraint) which links one camera

pose and one object pose. Additional factors can option-

ally be added to the graph; between camera poses to rep-

resent camera-camera motion estimates (e.g. from ICP), or

domain-specific structural priors, e.g. that certain types of

objects must be grounded on the same plane. Details on

graph optimisation are given in Section 3.5.

3.3. Real-Time Object Recognition

We follow the approach of Drost et al. [6] for recognis-

ing the 6DoF pose of 3D objects, represented by meshes, in

a depth image. We give details of our parallel implemen-

tation, which achieves the real-time detection of multiple

instances of multiple objects we need by fully exploiting

the fine-grained parallelism of GPUs.

As in the Generalised Hough Transform [2], in Drost et

al.’s method an object is detected and simultaneously lo-

calised via the accumulation of votes in a parameter space.

The basis of voting is the correspondence between Point-

Pair Features (PPFs); four-dimensional descriptors of the

relative position and normals of pairs of oriented points on

the surface of an object. Points, with normal estimates,

are randomly sampled on a bilateral-filtered image from the

depth camera. These samples are paired up in all possible

combinations to generate PPFs which vote for 6DoF model

configurations containing a similar PPF.

A global description for each object mesh is quickly gen-

erated on the GPU by discretising PPFs with similar values

and storing them in search data structures built using par-

allel primitive operations such as reduction, scan and sort

(see Algorithm 1), provided by modern GPU template li-

braries such as Bolt [1]. Similar structures are also built

from each live frame. This process typically takes <5ms

for 160K PPFs and could also be used in the future to de-

scribe new object classes on the fly as they are automatically

segmented.

Matching similar features of the scene against the model

can be efficiently performed in parallel via a vectorised bi-

nary search, producing a vote for each match. Accumula-

tion of votes into a shared buffer can be prohibitively expen-

sive on the GPU, where many threads would require atomic

operations when incrementing a common memory location

13521352135213541354

Figure 3. Object recognition with active search. (top-left) Mea-

sured normal map from sensor. (top-right) Predicted view from

graph. (bottom-left) Undescribed regions to be searched are in

white. (bottom-right) Masked normal map used for recognition.

Algorithm 1: Build global description from PPFs

input : A set of N point-pair features (PPF)

output: Set of search data structures

1 // Encode the PPF index and hash key

2 codes ← new array;

3 foreach i ← 0 to N - 1 in parallel do

4 Compute the hash key hk from PPF i;

5 codes[i] = hk ≪ 32 + i;

6 codes ← Sort(codes);

7 // Decode PPF index and hash key

8 key2ppfMap ← new array;

9 hashKeys ← new array;

10 foreach i ← 0 to N - 1 in parallel do

11 key2ppfMap[i] = ∼(1 ≪ 32) & code[i];
12 hashKeys[i] = code[i] ≫ 32;

13 // Count PPF per hash key and remove

duplicate keys

14 hashKeys, ppfCount← Reduce(hashKeys,

sumOp);

15 // Find the first PPF index of a block

of PPFs in key2ppfMap having equal

hash key

16 firstPPFIndex ← ExclScan(ppfCount);

17 return hashKeys, ppfCount, firstPPFIndex,

key2ppfMap;

to avoid race conditions. To overcome this, each vote is rep-

resented as a 64-bit integer code (Figure 4), which can then

be efficiently sorted and reduced in parallel.

Figure 4. Packed 64-bit integer vote code. The first 6 bits encode

the alignment angle, followed by 26 bits for the model point and

32 bits for the scene reference point.

Sorting puts corresponding model points, scene refer-

ence points and alignment angles contiguously in memory.

This is followed by a parallel reduction with a sum opera-

tion to accumulate equal vote codes (Algorithm 2). After

peak finding, pose estimates for each scene reference point

are clustered on the CPU according to translation and rota-

tion thresholds as in [6].

Algorithm 2: Accumulate Votes

input : A set of M vote codes

output: Vote count per unique vote code

1 // Sort voteCodes in parallel

2 voteCodes ← Sort(voteCodes);

3 // Count votes with equal voteCode

4 voteCodes, voteCount ← Reduce(voteCodes,

sumOp);

5 return voteCodes, voteCount;

3.3.1 Active Object Search

Standard application of Drost et al.’s recognition algo-

rithm [6] in room scenes is highly successful when objects

occupy most of the camera’s field of view, but poor for ob-

jects which are distant or partly occluded by other objects,

due to poor sample point coverage. It is here that we re-

alise one of the major benefits of our in-the-loop SLAM++

approach. The view prediction capabilities of the system

mean that we can generate a mask in image space for depth

pixels which are not already described by projected known

objects. The measured depth images from the camera are

cropped using these masks and samples are only spread in

the undescribed regions (see Figure 3).

The result of object detection is often multiple cluster

peaks, and quantised localisation results. These must be

passed to ICP refinement as explained in the next section.

3.4. Camera Tracking and Accurate Object Pose
Estimation using ICP

Camera-Model Tracking: In KinectFusion [11], the

up-to-date volumetric map is leveraged to compute a view

prediction into the previously estimated camera pose, en-

abling estimation of the live camera using a fast dense itera-

tive closest point (ICP) algorithm [15]. In SLAM++, in con-

trast to the relatively incomplete models available at early

stages of mapping with KinectFusion, we track against a

complete high quality multi-object model prediction. Fol-

lowing [11], we compute a reference view prediction of

the current scene geometry consisting of a depth map Dr

and normal map Nr rendered into the previously estimated

frames pose Twr representing the 6DoF rigid body trans-

form defined as a member of the special Euclidean group

13531353135313551355

SE(3). We update the live camera to world transform

Twl by estimating a sequence of m incremental updates

{T̃n
rl}

m
n=1 parametrised with a vector x ∈ R

6 defining a

twist in SE(3), with T̃n=0
rl as the identity. We iteratively

minimise the whole depth image point-plane metric over all

available valid pixels u ∈ Ω in the live depth map:

Ec(x) =
∑

u∈Ω

ψ (e(u,x)) , (1)

e(u,x) = Nr(u
′)⊤(exp(x)v̂l(u)− vr(u

′)) . (2)

Here vr(u
′) and Nr(u

′) are the projectively data associated

predicted vertex and normal estimated at a pixel correspon-

dence u′ = π(Kv̂l(u)), computed by projecting the vertex

vl(u) at pixel u from the live depth map into the reference

frame with camera intrinsic matrix K and standard pin-hole

projection function π. The current live vertex is transformed

into the reference frame using the current incremental trans-

form T̃n
rl:

v̂l(u) = T̃n
rlvl(u) , (3)

vl(u) = K−1u̇Dl(u) , (4)

vr(u
′) = K−1u̇′Dr(u

′) . (5)

We chose ψ as a robust Huber penalty function in place of

the explicit point compatibility check used in [11] which

enables a soft outlier down weighting. A Gauss-Newton

based gradient descent on Equation (1) results in solution

of the normal equations:

∑

u∈Ω

J(u)⊤J(u)x =
∑

u∈Ω

ψ
′

(e)J(u) , (6)

where J(u) = ∂e(x,u)
∂x

is the Jacobian, and ψ′ computes

the robust penalty function derivative given the currently

estimated error. We solve the 6 × 6 linear system using

Cholesky decomposition. Taking the solution vector x to

an element in SE(3) via the exponential map, we compose

the computed incremental transform at iteration n+ 1 onto

the previous estimated transform T̃n
rl:

T̃n+1
rl ← exp(x)T̃n

rl . (7)

The estimated live camera pose Twl therefore results by

composing the final incremental transform T̃m
rl onto the pre-

vious frame pose:

Twl ← TwrT̃
m
rl . (8)

Tracking Convergence: We use a maximum of m = 10 it-

erations and check for poor convergence of the optimisation

process using two simple criteria. First, we do not attempt

to track against the predicted model if its pixel coverage is

less than 1
8 of a full image. Second, after an optimisation

iteration has completed we compute the ratio of pixels in

the live image which have been correctly matched with the

predicted model ascertained by discounting pixels which in-

duce a point-plane error greater than a specified magnitude

ǫpp.

Tracking for Model Initialisation: We utilise the dense

ICP pose estimation and convergence check for two further

key components in SLAM++. First, we note that the real-

world objects we use as features are often ambiguous, and

not well discriminated given a single view. Therefore, given

a candidate object and detected pose, we run camera-model

ICP estimation on the detected object pose, and check for

convergence using the previously described criteria. We

find that for correctly detected objects, the pose estimates

from the detector are erroneous within ±30◦ rotation, and

±50cm translation. This allows a more conservatively set

threshold ǫoi and early rejection of incorrect objects.

Camera-Object Pose Constraints: Given the active set

of objects that have been detected in SLAM++, we further

estimate relative camera-object pose parameters which are

used to induce constraints in the scene pose graph. To that

end, we run the dense ICP estimate between the live frame

and each model object currently visible in the frame. The

ability to compute an individual relative pose estimate in-

troduces the possibility to prune poorly initialised or incor-

rectly tracked objects from the pose graph at a later date. By

analysing the statistics of the camera-object pose estimate’s

convergence we can keep an inlier-outlier style count on the

inserted objects, and cull poorly performing ones.

3.5. Graph Optimisation

Figure 5. Example graph illustrating the pose of the moving cam-

era over four time steps Twi (red) as well as the poses of three

static objects in the world Twoj (blue). Observations of the object

oj at time i are shown as binary camera-object constraints Zi,oj

(yellow) while the relative ICP constraints between two cameras

are shown as Zi,i+1 (orange). We also apply unary structural con-

straints Po2,f , Po3,f encoding prior information.

We formulate the problem of estimating the historical

poses of the depth camera Twi at time i and the poses of

the static objects Twoj as graph optimisation. Zi,oj denotes

the 6DoF measurement of object j in frame i and Σ−1
i,oj

its

inverse measurement covariance which can be estimated us-

ing the approximated Hessian Σ−1
i,oj

= J⊤J (with J be-

13541354135413561356

ing the Jacobian from the final iteration of the object ICP).

Zi,i+1 is the relative ICP constraint between camera i and

i+1, with Σ−1
i,i+1 the corresponding inverse covariance. The

absolute poses Twi and Twoj are variables which are mod-

ified during the optimisation, while Zi,oj and Zi,i+1 are

measurements and therefore constants. All variables and

measurements have 6DoF and are represented as members

of SE(3). An example graph is shown in Figure 5.

We minimize the sum over all measurement constraints:

Em =
∑

Zi,oj

|| log(Z−1
i,oj

· T−1
wi · Twoj)||Σi,oj

+
∑

Zi,i+1

|| log(Z−1
i,i+1 · T

−1
wi · Twi+1)||Σi,i+1

(9)

with ||x||Σ := x
⊤Σ−1

x the Mahalanobis distance and

log(·) the logarithmic map of SE(3). This generalised least

squares problem is solved using Levenberg-Marquardt; the

underlying normal equation’s sparsity is exploited using

a sparse Cholesky solver [9]. The pose Jacobians are of

the form ± ∂
∂ǫi

log(A · exp(ǫ) ·B)|ǫ=0, approximated using

higher order Baker-Campell-Haussdorf expansions [17].

3.5.1 Including Structural Priors

Additional information can be incorporated in the graph in

order to improve the robustness and accuracy of the optimi-

sation problem. In our current implementation we apply a

structural planar prior that the objects are located on a com-

mon ground plane. The world reference frame w is defined

in such that the x and z-axes lie within the ground plane

with the y-axis perpendicular into it. The ground plane is

implicitly detected from the initial observation Z1,o1 of the

first object; its pose Twf remains fixed during optimisation.

To penalize divergence of the objects from the ground plane,

we augment the energy,

Em&p = Em +
∑

Poj,f

|| log(P−1
oj ,f

· T−1
woj

· Twf)||Σoj,f
, (10)

using a set of unary constraints Poj ,f = exp((υ⊤, θ⊤)⊤)
with υ, θ ∈ R

3 (see Figure 5). In particular, we set the

translation along the y-axis, υ2 = 0, as well as the rotational

components about the x and z-axis to zero, θ1 = 0 and

θ3 = 0. We use the following inverse prior covariances:

Σ−1
oj ,f

= diag(0, wtrans, 0, wrot, 0, wrot) , (11)

with positive weights wtrans and wrot. Since the objects can

be located anywhere within the x−z plane and are not con-

strained in their rotation about the y-axis, the corresponding

weights are set to zero; the prior components υ1, υ3, θ2 do

not affect the energy and can be set to arbitrary values.

3.6. Other Priors

The ground plane constraint can have value beyond the

pose graph. We could guide point-pair feature sampling and

make votes for poses only in the unconstrained degrees of

freedom of objects. In the ICP method, again a prior could

be used as part of the energy minimisation procedure to pull

it always towards scene-consistent poses. While this is not

yet implemented we at least cull hypotheses of object posi-

tions far from the ground plane.

3.7. Relocalisation

When camera tracking is lost the system enters a relocal-

isation mode. Here a new local graph is created and tracked

from, and when it contains at least 3 objects it is matched

against the previously tracked long-term graph (see Figure

6). Graph matching is achieved by considering both the

local and long-term graphs as sets of oriented points in a

mesh that are fed into the same recognition procedure de-

scribed in Section 3.3. We use the position of the objects

as vertices and their x-axes as normals. The matched vertex

with highest vote in the long-term graph is used instead of

the currently observed vertex in the local graph and camera

tracking is resumed from it, discarding the local map.

Figure 6. Relocalisation procedure. When tracking is lost a lo-

cal graph (blue) is created and matched against a long-term graph

(red). (top) Scene with objects and camera frustum when tracking

is resumed a few frames after relocalisation. (bottom) Oriented

points extracted for matching. The connectivity depicts the detec-

tion sequence and is not used by the recognition procedure.

13551355135513571357

4. Results

The in-the-loop operation of our system is more effec-

tively demonstrated in our submitted video than on paper,

where the advantages of our method over off-line scene

labelling may not be immediately obvious. We present

demonstrations of a new level of real-time localisation and

mapping performance, surpassing previous SLAM systems

in the quality and density of geometry description obtained

given the very small footprint of our representation; and ri-

valling off-line multi-view scene labelling systems in terms

of object identification and configuration description.

4.1. Loop Closure

Loop closure in SLAM occurs when a location is re-

visited after a period of neglect, and the arising drift cor-

rected. In SLAM++, small loops are regularly closed using

the standard ICP tracking mechanism. Larger loop closures

(see Figure 7), where the drift is too much to enable match-

ing via predictive ICP, are detected using a module on based

matching fragments within the main long-term graph in the

same manner as in relocalisation (Section 3.7).

4.2. Large Scale Mapping

We have run SLAM++ in environments including the

large common room shown in Figure 1 (size 15×10×3m),

with two types of chair and two types of round table, all con-

strained to a common ground plane. The real-time process

lasted around 10 minutes, including various loop closures,

relocalisations due to lost tracking. 34 objects were mapped

across the room. Figure 1 gives a good idea of mapping per-

formance. Note that there are no priors in the system con-

cerning the regular positioning of tables and chairs, only

that they sit on the ground plane.

4.3. Moved Object Detection

We demonstrate the ability to detect the movement of ob-

jects, which fail ICP gating due to inconsistency (Figure 8).

Figure 8. When a mapped object is largely inconsistent with good

measurements (green) it is marked as invalid (red) and observa-

tions from it are stopped to avoid corrupting the rest of the graph.

4.4. Augmented Reality with Objects

Finally, the ability to semantically predict complete sur-

face geometry from partial views allows novel context-

aware AR capabilities such as path finding, to gracefully

avoid obstacles while reaching target objects. We apply this

to command virtual characters to navigate the scene and find

places to sit as soon as the system is started (without the

need to scan a whole room). (Figure 9).

Figure 9. Context-aware augmented reality: virtual characters nav-

igate the mapped scene and automatically find sitting places.

4.5. System statistics

We present system settings for mapping the room in Fig-

ure 7 (10×6×3m) using a gaming laptop. We compare the

memory footprint of SLAM++ with KinectFusion [11] for

the same volume (assuming 4 Bytes/voxel, 128 voxels/m).

Framerate 20 fps

Camera Count 132

Object Count 35

Object Class Count 5

Edge Count 338

Graph Memory 350 KB

Database Memory 20 MB

KinectFusion Memory 1.4 GB

Approx. Compression Ratio 1/70

5. Conclusions and Future Work

In this paper we have shown that using high performance

3D object recognition in the loop permits a new approach to

real-time SLAM with large advantages in terms of efficient

and semantic scene description. In particular we demon-

strate how the tight interaction of recognition, mapping and

tracking elements is mutually beneficial to all. Currently

our approach is well suited to locations like the interiors

of public buildings with many repeated, identical elements,

but we believe is the first step on a path to more generic

SLAM methods which take advantage of objects with low-

dimensional shape variability or in the long term which can

segment and define their own object classes.

13561356135613581358

Figure 7. Loop closure. (left) Open loop drift during exploration of a room; the two sets of objects shown in red were identified as

corresponding. The full SLAM++ graph is displayed with yellow lines for camera-object constraints and orange lines for camera-camera

constraints. (middle) Imposing the new correspondences and re-optimising the graph closes the loop and yields a more metric map. (right)

For visualisation purposes only (since raw scans are not normally saved in SLAM++), we show a coloured point cloud after loop closure.

Acknowledgements

Renato Salas-Moreno’s research was supported by a PhD

scholarship from AMD. We are grateful to Lee Howes for

useful discussions. We also acknowledge support from

ERC Starting Grant 210346.

References

[1] Advanced Micro Devices Inc. Bolt C++ Template Library.

2012. 3

[2] D. H. Ballard. Generalizing the Hough Transform to De-

tect Arbitrary Shapes. Pattern Recognition, 12(2):111–122,

1981. 3

[3] S. Y. Bao, M. Bagra, Y.-W. Chao, and S. Savarese. Semantic

Structure From Motion with Points, Regions, and Objects.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2012. 2

[4] R. O. Castle, D. J. Gawley, G. Klein, and D. W. Murray.

Towards simultaneous recognition, localization and mapping

for hand-held and wearable cameras. In Proceedings of the

IEEE International Conference on Robotics and Automation

(ICRA), 2007. 2

[5] A. J. Davison. Real-Time Simultaneous Localisation and

Mapping with a Single Camera. In Proceedings of the In-

ternational Conference on Computer Vision (ICCV), 2003.

2

[6] B. Drost, M. Ulrich, N. Navab, and S. Ilic. Model globally,

match locally: Efficient and robust 3D object recognition.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2010. 3, 4

[7] Y. M. Kim, N. J. Mitra, D.-M. Yan, and L. Guibas. Acquiring

3D Indoor Environments with Variability and Repetition. In

SIGGRAPH Asia, 2012. 2

[8] G. Klein and D. W. Murray. Parallel Tracking and Map-

ping for Small AR Workspaces. In Proceedings of the Inter-

national Symposium on Mixed and Augmented Reality (IS-

MAR), 2007. 2

[9] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and

W. Burgard. g2o: A General Framework for Graph Opti-

mization. In Proceedings of the IEEE International Confer-

ence on Robotics and Automation (ICRA), 2011. 6

[10] W. E. Lorensen and H. E. Cline. Marching Cubes: A high

resolution 3D surface construction algorithm. In Proceed-

ings of SIGGRAPH, 1987. 3

[11] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,

D. Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges,

and A. Fitzgibbon. KinectFusion: Real-Time Dense Sur-

face Mapping and Tracking. In Proceedings of the Inter-

national Symposium on Mixed and Augmented Reality (IS-

MAR), 2011. 2, 3, 4, 5, 7

[12] R. A. Newcombe, S. Lovegrove, and A. J. Davison. DTAM:

Dense Tracking and Mapping in Real-Time. In Proceedings

of the International Conference on Computer Vision (ICCV),

2011. 2

[13] F. T. Ramos, J. I. Nieto, and H. F. Durrant-Whyte. Combin-

ing object recognition and SLAM for extended map repre-

sentations. In Experimental Robotics, volume 39 of Springer

Tracts in Advanced Robotics, pages 55–64. Springer, 2008.

2

[14] X. Ren, L. Bo, and D. Fox. Indoor Scene Labeling using

RGB-D Data. In Workshop on RGB-D: Advanced Reasoning

with Depth Cameras, in conjunction with Robotics: Science

and Systems, 2012. 2

[15] S. Rusinkiewicz and M. Levoy. Efficient Variants of the ICP

Algorithm. In Proceedings of the IEEE International Work-

shop on 3D Digital Imaging and Modeling (3DIM), 2001.

4

[16] N. Silberman and R. Fergus. Indoor Scene Segmentation

using a Structured Light Sensor. In Workshop on 3D Repre-

sentation and Recognition, in conjunction with International

Conference on Computer Vision, 2011. 2

[17] H. Strasdat. Local Accuracy and Global Consistency for Ef-

ficient Visual SLAM. PhD thesis, Imperial College London,

2012. 6

[18] T. Whelan, J. McDonald, M. Kaess, M. Fallon, H. Johanns-

son, and J. J. Leonard. Kintinuous: Spatially Extended

KinectFusion. In Workshop on RGB-D: Advanced Reasoning

with Depth Cameras, in conjunction with Robotics: Science

and Systems, 2012. 2

13571357135713591359

