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Abstract

Slant curves are introduced in three-dimensional warped products with Euclidean factors. These curves
are characterised by the scalar product between the normal at the curve and the vertical vector field,
and an important feature is that the case of constant Frenet curvatures implies a proper mean curvature
vector field. A Lancret invariant is obtained and the Legendre curves are analysed as a particular case.
An example of a slant curve is given for the exponential warping function; our example illustrates a
proper (that is, not reducible to the two-dimensional) case of the Lancret theorem of three-dimensional
hyperbolic geometry. We point out an eventuality relationship with the geometry of relativistic models.
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1. Introduction

Recall that in the Euclidean differential geometry of space curves an important class of
examples is provided by curves of constant slope. The name is justified by the fact that
for such a curve γ its tangent vector field has a constant angle θ with a fixed direction
called the axis of γ. Cylindrical helices is another well-known name for this class
since there exists a cylinder on which γ moves in such a way as to cut each ruling at
a constant angle. The Bertrant–Lancret–de Saint Venant theorem [2] is the technical
characterisation: the curve γ in E3 is of constant slope if and only if the ratio of torsion
and curvature is constant. Then for a cylindrical helix we have the Lancret invariant:

Lancret(γ) =
cos θ
|sin θ|

=
τ

k
. (1.1)

An extension of this class to the almost contact metric geometry was introduced
in [10] under the name of slant curve: the axis of γ is now the Reeb vector field. In
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the particular case θ = π/2 (or θ = 3π/2) we recover the Legendre curves of [1]. Slant
curves in three-dimensional Sasakian manifolds have, after [10, Theorem 3.1, p. 362],

Lancret(γ) =
cos θ
|sin θ|

=
τ ± 1

k
.

The literature on Legendre curves comes under several titles [3, 6, 9, 15, 17, 19–22]
while slant curves have hitherto been studied only in Sasakian geometry [10], contact
pseudo-Hermitian geometry [11], normal almost contact geometry [7], f -Kenmotsu
geometry [8] and, under the name of generalised helices, in Lie groups with bi-
invariant metric in [12]. The purpose of this paper is to begin a study of slant curves
in another important class of manifolds introduced by Bishop and O’Neill [4] in order
to construct a large class of manifolds with negative curvature.

Our work is structured as follows. Section 2 is a very brief review of (three-
dimensional) warped products and Frenet curves in general Riemannian geometry.
Section 3 is devoted to the study of slant (particularly Legendre) curves in this
generalised framework of warped products with Euclidean factors. So we obtain a
characterisation of slant curves similar to [10, Proposition 3.1, p. 361] and an a priori
estimate (inequality) in terms of the slant angle, the logarithm of the warping function
and the curvature of the curve. Two cases of equality for this inequality are analysed.

Section 4 is the main part of this paper and begins with a classification of all slant
curves. Based on the general expression of these curves, their curvature and torsion
are computed and a Lancret invariant is naturally associated. Our Lancret expression
is more complicated, involving, in addition to the fraction of curvature and torsion, a
square root and the direct trigonometric functions in the slant angle θ. The particular
case of Legendre curves is discussed for curvature and torsion. This section ends with
an important property, namely that these curves with constant curvature and torsion,
that is, general helices, have proper mean curvature vector field or, more precisely, the
normal vector field is an eigenvalue of the Laplacian.

Section 5 is devoted to examples. After a short look at the Euclidean case
considered as a trivial warped product, an example of a slant curve is studied for
exponential warped product manifolds. Let us point out that the case of a warping
function f of exponential type appears as an extremal case since from relation (3.3) of
Section 3 we obtain that f can have at most exponential growth.

Section 6 discuss the possible applications for the trajectories of particles of slant
type in relativistic models; two open problems are naturally raised, with respect to both
dynamical and geometrical aspects of these particles.

2. Warped products and Frenet curves

Let B and N be two smooth manifolds endowed with the Riemannian metrics gB

and gN and with dimension b and n respectively. Let f : B→ R∗+ be a smooth and
strictly positive function. The warped product of B and F with warping function f is
the Riemannian manifold

B × f N = (Mb+n, g) = (B × N, gB + f 2gN)
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where in the right-hand side the function f is in fact f ◦ π with π : B × N→ B the
projection on the first factor.

In the following we restrict ourselves to the case where B = I, an open real interval
with the Euclidean metric, and N = E2 is the Euclidean plane. We use the classical
coordinates (x, y) on E2 and z on I; therefore the main vector field considered below
on (M3, g) = I × f E

2, namely ∂/∂z = ∂z, will be called the vertical vector field. The
warping function is then f = f (z), and for further use we consider the function
F : B→ R, where

F = log f .

Denote by ∇ the Levi-Civita connection of (M3, g) and by U, V lifts to M of vector
fields tangent to E2. Then

∇UV = DUV − F′g(U, V)∂z, (2.1a)

∇U∂z = ∇∂z U = F′U, (2.1b)

∇∂z∂z = 0 (2.1c)

where D is the covariant derivative on E2 and prime denotes the derivative with respect
to the variable z. Also, denote by η = dz the dual of the vertical vector field.

In the last part of this section we recall the notion of a Frenet curve in an m-
dimensional Riemannian manifold (Mm, g) following [5, p. 164]. Let r be an integer
with 1 ≤ r ≤ m. The curve γ : J ⊆ R→ M parametrised by the arc length s is called an
r-Frenet curve on M if there exist r orthonormal vector fields (E1 = γ′, . . . , Er) along
γ such that there exist positive smooth functions k1, . . . , kr−1 of s with

∇γ′E1 = k1E2,
∇γ′E2 = −k1E1 + k2E3,
. . . ,
∇γ′Er = −kr−1Er−1.

(2.2)

The function k j is called the jth curvature of γ while γ is:

(1) a geodesic if r = 1, so we get the well-known equation ∇γ′γ′ = 0;
(2) a circle if r = 2 and k1 is a constant, so we have ∇γ′E1 = k1E2 together with

∇γ′E2 = −k1E1;
(3) a helix of order r if k1, . . . , kr−1 are constants.

The Frenet curve γ is called nongeodesic if k1 > 0 everywhere on I.

3. Slant and Legendre curves in three-dimensional warped products

Fix a 3-Frenet curve γ in M3 = I × f E
2 (so r = m = 3), for which we denote the

Frenet frame as usual (T = γ′, N, B), and the Frenet equations (2.2) are
∇T T = kN,
∇T N = −kT + τB,
∇T B = −τN.
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D 3.1. (i) The structural angle of γ is the function θ : J→ [0, 2π) given by

cos θ(s) = g(T (s), ∂z) = η(T (s)). (3.1)

(ii) We call γ a slant curve (or more precisely a θ-slant curve) if θ is a constant
function [10, p. 361]. In the particular case where θ ≡ π/2 (or 3π/2), γ is called
a Legendre curve [1].

E 3.2. (i) The integral curves of the vertical vector field ∂z are slant curves
with θ ≡ 0. These curves are γ(s) = (x0, y0, s + z0) with s ∈ J = R and γ(0) =

(x0, y0, z0) the initial point. From (2.1c) these curves are geodesics for the warped
metric g.

(ii) The tangent vector field of a Legendre curve belongs to the contact distribution
D := Ker η. A remarkable fact of the warped geometry I × f N in any dimension
is thatD defines a Riemannian foliation since it is integrable from dη = 0.

In the following we suppose that γ is nongeodesic, that is, k > 0 and then γ cannot
be an integral curve of ξ which means that θ , 0, π. A first main result is the following
characterisation of slant curves and an a priori estimate.

P 3.3. The Frenet curve γ is a θ-slant curve if and only if along γ the
following relation holds:

η(N) = −
F′

k
sin2 θ. (3.2)

Then a necessary condition for γ to be θ-slant is

|sin θ| ≤min
{
1,

k
|F′|

}
(3.3)

if f is not a constant function.

P. Suppose that T (s) = (T1(s), T2(s), T3(s) = cos θ). From (2.1b)–(2.1c),

∇T∂z = ∇(T1,T2,0)∂z = F′(T1, T2, 0) = F′(T − cos θ∂z).

Let us covariantly derive the relation (3.1) along γ:

0 = −θ′ sin θ = g(kN, ∂z) + g(T, F′(T − cos θ∂z)) = kη(N) + F′ sin2 θ,

which yields (3.2). The expression of ∂z in the Frenet frame is

∂z = cos θT +

(
−

F′

k
sin2 θ

)
N + η(B)B,

and since ∂z is a unitary vector field we get from this decomposition that

1 = cos2 θ +
F′2 sin4 θ

k2
+ η(B)2,

and then η(B) there exists only if the condition |F′ sin θ| ≤ k holds, which means
that (3.3) is satisfied. �
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R 3.4. (i) The decomposition of ∂z in the Frenet frame of a slant curve is

∂z = cos θT +

(
−

F′

k
sin2 θ

)
N +

(
|sin θ|

√
k2 − F′2 sin2 θ

k

)
B; (3.4)

and then, for a Legendre curve, ∂z is in the plane spanned by N and B.
(ii) The equality |sin θ| = k/|F′| implies η(B) = 0, and then

∂z = cos θT ± |sin θ|N.

Applying ∇T to this equality gives

F′(T − cos θ(cos θT ± |sin θ|N)) = (cos θ)kN ± |sin θ|(−kT + τB);

analysing the coefficient of B, we derive that τ = 0, and then γ can be thought of
as a circle. Also, it follows that F′ < 0.

(iii) In [16, p. 155] the following notion is introduced: a nongeodesic curve is called
a slant helix if the principal normal lines of γ make a constant angle with
a fixed direction. Therefore, a slant curve with k a nonzero constant in a
three-dimensional warped product having f (z) = exp(βz), where β ∈ R satisfies
|β sin θ| ≤ k, is a slant helix with ∂z as fixed direction. Let us call this manifold
an exponential Euclidean warped product in what follows.

4. Classification of slant curves, the Lancret invariant and their proper mean
curvature field

In the following theorem we classify all θ-slant curves, inspired by an idea of [8].

T 4.1. Let γ be a θ-slant curve in I × f E
2 defined on J ⊆ R. Then γ is given by

γ(s) =

(
|sin θ|

∫ s ζ(t) dt
f (t cos θ)

, s cos θ
)

(4.1)

where ζ(s) = (cos α(s), sin α(s)), with α ∈C∞(J), is an arbitrary parametrisation of
the unit circle S1.

P. As in the proof of Proposition 3.3, from T (s) = (T1(s), T2(s), cos θ) with
‖T‖2 = 1 we get

1 = f 2(s cos θ)(T 2
1 + T 2

2 ) + cos2 θ

which yields

T 2
1 + T 2

2 =
sin2 θ

f 2(s cos θ)
.

Therefore

T1 =
|sin θ|

f (s cos θ)
cos α(s), T2 =

|sin θ|
f (s cos θ)

sin α(s)

and we get the desired conclusion. �
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Now we are able to compute the Frenet invariants.

T 4.2. The curvature and the torsion of a θ-slant curve are

k = |sin θ|
√

(α′)2 + (F′)2, (4.2a)

τ = |α′|cos θ −
|α′|F′′ cos θ − sgn (α′)α′′F′

(α′)2 + (F′)2
, (4.2b)

where sgn (α′) = α′/|α′|.

P. A long but straightforward computation gives

∇T T =

(
|sin θ|

f
(−α′ sin s + F′ cos θ cos s),

|sin θ|
f

(α′ cos s + F′ cos θ sin s), −F′ sin2 θ
)

and from k2 = ‖∇T T‖2 we obtain (4.2a).
For (4.2b) we derive covariantly the relation (3.2),

g(−kT + τB, ∂z) + g(N, F′(T − cos θ∂z)) = −
d
ds

(F′

k

)
sin2 θ,

and, using the Frenet equations and (3.2) again,

τη(B) = k cos θ −
(F′)2

k
cos θ sin2 θ −

d
ds

(F′

k

)
sin2 θ.

Using η(B) in (3.4) we obtain (4.2b). �

R 4.3. (i) Returning to Remarks 3.4, the equality |sin θ| = k/|F′| implies that
α′ = 0, and then α is a constant function α(s) = α0 ∈ R.

(ii) The characterisation (3.2) becomes:

η(N) = −
F′|sin θ|√

(α′)2 + (F′)2
. (4.3)

Another main result gives a Lancret-type invariant for slant curves.

P 4.4. If γ is a nongeodesic (k > 0) θ-slant curve then it has the Lancret
invariant

Lancret(γ) =
τ

k
((α′)2 + (F′)2)3/2

|α′|((α′)2 + (F′)2 − F′′)
+

sgn (α′)α′′F′

|α′|((α′)2 + (F′)2 − F′′)|sin θ|
.

P. The above expression is Lancret(γ) = cos θ/|sin θ|, and we have the
conclusion. �

In particular, the Legendre curves have

k =
√

(α′)2 + (F′)2, τ =
sgn (α′)α′′F′

(α′)2 + (F′)2
,

implying that Legendre curves with α′ constant (particularly vanishing; see
Remark 4.3(i)) can be thought of as circles, since τ = 0.
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Now let h be the second fundamental form of γ and H its mean curvature field:

H = Tr(h) = h(T, T ) = ∇T T.

Then the Laplacian of H is
∆H = −∇T∇T∇T T

and γ is called a curve with proper mean curvature vector field if there exists λ ∈C∞(γ)
such that

∆H = λH;

and if, in particular, λ = 0 then γ is a curve with harmonic mean curvature vector field.
The last equation becomes

−∆H = (−3k′k)T + (k′′ − k3 − kτ2)N + (2k′τ + kτ′)B = λ(−kN),

which means that k and τ are constants and, for k , 0,

λ = k2 + τ2, (4.4)

which yields the following result.

P 4.5. A slant curve has a proper mean curvature vector field if and only if
the expressions 

(α′)2 + (F′)2,

|α′|cos θ −
F′′((α′)2 cos θ + (F′)2)
|α′|((α′)2 + (F′)2)

(4.5)

are constants (equivalently it is a helix of order three), and then

λ = ((α′)2 + (F′)2) sin2 θ +

(
|α′|cos θ −

F′′[(α′)2 cos θ + (F′)2]
|α′|[(α′)2 + (F′)2]

)2

. (4.6)

P. The constancy of the above expressions means the constancy of the curvature
and torsion, while expression (4.6) is the application of formula (4.4) with k and τ
from (4.2a) and (4.2b). �

An important observation is that the first condition (4.5) is universal, that is, does
not depend on the slant angle θ. Therefore, the same conditions are required for
Legendre curves, for which

λ = (α′)2 + (F′)2 +
(F′′)2(F′)4

(α′)2((α′)2 + (F′)2)
.

5. Examples

E 5.1. The Euclidian space E3 is a trivial warped product, that is, f ≡ 1; then
F ≡ 0. The curve

γ(s) = (|sin θ|sin s + x0, −|sin θ|cos s + y0, s cos θ + z0) (5.1)
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F 1. The first curve.

is a θ-slant curve (it corresponds to α(s) = s) and has the Frenet frame
T (s) = (|sin θ| cos s, |sin θ| sin s, cos θ),
N(s) = (−sin s, cos s, 0),
B(s) = (−cos θ, −cos θ sin s, |sin θ|),

with γ(0) = (x0, y0 − sin θ, z0) as initial point. Also, k(s) = |sin θ| and τ(s) = cos θ. So
the unit circle S1 (x0 = y0 = 0) and its parallels (that is, for every z0 ∈ R) are Legendre
curves in E3, as is easy to see. The Lancret invariant (4.3) becomes Lancret(γ) = τ/k
and we recover the Lancret expression (1.1) from the Introduction. Let us point out
that since f ′ ≡ 0 the second and third conditions (3.3) do not work.

With the Matlab file:

>> t=-20:0.1:20;

>> plot3(sin(t)/sqrt(2), -cos(t)/sqrt(2), t/sqrt(2))

>> plot3(sin(t)/sqrt(2), -cos(t)/sqrt(2), -t/sqrt(2))

we obtain Figures 1 and 2, which prove that γ belongs to the cylinder

(x − x0)2 + (y − y0)2 = sin2 θ.

According to Proposition 4.5, all slant curves in E3 with an affine α, that is, α =

as + b where a , 0, have a proper mean curvature vector field with the corresponding
λ = a2.

E 5.2. In the following we give an example of a nongeodesic θ-slant curve in
an exponential Euclidean warped product with β > 0. Let us point out firstly that the
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F 2. The second curve.

manifold E ×exp z E
2 has constant sectional curvature c = −1, and by changing the z-

coordinate one can obtain the upper half space model of the hyperbolic 3-space. More
precisely, considering as in [13, p. 46] the new coordinate z̃ = exp(−z), we see that
(E ×exp z E

2, g) is isometric to (H3
+, g−1), where H3

+ = {(x, y, z̃) ∈ R3; z̃ > 0} and

g−1 =
1
z̃2

(dx2 + dy2 + dz̃2).

Secondly, the θ-slant curve

γ(s) =

(sin θ exp(−βs cos θ)
1 + β2 cos2 θ

(sin s − β cos θ cos s, −cos s − β cos θ sin s), s cos θ
)

(5.2)
corresponds to α(s) = s and has the tangent vector field

T (s) = (sin θ cos s exp(−βs cos θ), sin θ sin s exp(−βs cos θ), cos θ)

and the initial point γ(0) = (sin θ/(1 + β2))(−β cos θ, −1, 0). Since{
E1 = exp(−βz)

∂

∂x
, E2 = exp(−βz)

∂

∂y
, E3 =

∂

∂z

}
is a g-orthonormal basis with

[E1, E2] = 0, [E1, E3] = βE1, [E2, E3] = βE2,

we derive the Levi-Civita connection:

∇E1 E1 = ∇E2 E2 = −βE3, ∇E1 E3 = βE1, ∇E2 E3 = βE2,
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the rest being zero. As a result,

∇γ′γ
′ = (β sin θ cos θ cos s − sin θ sin s)E1 + (β sin θ cos θ sin s + sin θ cos s)E2

− β sin2 θE3.

and then k =
√

1 + β2|sin θ| in correspondence with (4.2a). Then we have two cases.
(i) θ ∈ (0, π). We get k =

√
1 + β2 sin θ and

N(s) =
1√

1 + β2
((β cos θ cos s − sin s)E1 + (β cos θ sin s + cos s)E2 + (−β sin θ)E3).

(ii) θ ∈ (π, 2π). We have k = −
√

1 + β2 sin θ and

N(s) =
1√

1 + β2
((−β cos θ cos s + sin s)E1 + (−β cos θ sin s − cos s)E2 + β sin θE3).

Let us remark that condition (3.3) reads |sin θ| ≤min{1,
√

1 + β2|sin θ|/|β|}, which is
true. For both cases we derive that τ = cos θ and we recover the Lancret invariant (4.3),
Lancret(γ) = (τ/k)

√
1 + β2. From (3.4) we have the expressions

B(s) =
1√

1 + β2
((−cos θ cos s − β sin s)E1 + (−cos θ sin s + β cos s)E2 + sin θE3)

for case (i), and

B(s) =
1√

1 + β2
((cos θ cos s + β sin s)E1 + (cos θ sin s − β cos s)E2 − sin θE3)

for case (ii). In conclusion, γ is a helix of order three and for β = 0 we recover
the first example with x0 = y0 = z0 = 0. For θ = π/2 we obtain the Legendre curve
γ(s) = (sin s, −cos s, 0) which is the unit circle S1. Also, we can apply Proposition 4.5
and then γ is a curve with proper mean curvature vector field and

λ = k2 + τ2 = 1 + β2 sin2 θ.

Since β and θ are constants, N is an eigenvector for the Laplacian with eigenvalue (5.2).

The Lancret theorem for the hyperbolic space in [2, p. 1506] states that a curve γ
in H3

+ is a general helix if and only if either:

(1) τ ≡ 0 and γ is a curve in some hyperbolic plane H2(−1); or
(2) γ is in H3

+ with constant curvature and torsion.

Our curve (5.2) belongs to case (2). Recall that a general helix means, after [2], the
existence of a Killing vector field V with constant length along γ making a constant
angle with T . From the last line of Section 2 above we have that, for our case β = 1,

V(s) = cos ϕT (s) + sin ϕB(s)
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F 3. The first curve.

with

cot ϕ =
cos2 θ + 1
√

2|sin θ|cos θ
.

We get

V(s) =
1√

1 + (3 + sin2 θ) cos2 θ

× (e−s cos θ|sin θ|(cos s − cos θ sin s, sin s + cos θ cos s), 2 cos θ).

Our curve (5.2) is plotted in Matlab with:

>> t=-20:0.1:20;

>> plot3(((sqrt(2)*sin(t)-cos(t)).*exp(-t/sqrt(2)))/3,

-((sqrt(2)*cos(t)+sin(t)).*exp(-t/sqrt(2)))/3, t/sqrt(2))

>> plot3(((cos(t)-sqrt(2)*sin(t)).*exp(-t/sqrt(2)))/3,

((sqrt(2)*cos(t)+sin(t)).*exp(-t/sqrt(2)))/3, t/sqrt(2))

>> plot3(((sqrt(2)*sin(t)-2*cos(t)).*exp(-t*sqrt(2)))/3,

-((sqrt(2)*cos(t)+2*sin(t)).*exp(-t*sqrt(2)))/3, t/sqrt(2))

>> plot3(((2*cos(t)-sqrt(2)*sin(t)).*exp(-t*sqrt(2)))/3,

((sqrt(2)*cos(t)+2*sin(t)).*exp(-t*sqrt(2)))/3, t/sqrt(2))

6. Applications

It is well known that some standard space–time models of the universe are
(Lorentzian) warped products: Robertson and Walker, Schwarzschild, and others [18].
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So, inspired also by the title of [14], we designate as a slant particle in the 3-manifold
M3 = I × f N2, a particle having as trajectory (or world-line) a slant curve. The present
work characterises these particles from the point of view of their curvature and torsion
and gives the Lancret expression (4.3) as first integral of motion.

Two interesting open problems arise naturally:

(1) A type of inverse problem; or more precisely, a dynamical problem: Does there
exist a Lagrangian L = L(x, y, z, ẋ, ẏ, ż) on M3 such that the slant curves are the
solutions of the Euler–Lagrange equations for L?
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(2) A geometrical problem but related to (1): Does there exist a Riemannian (or
Finsler) metric on M3 having the slant curves as geodesics?

For the Euclidean case (5.1) the second-order equations are

d2x
ds2

= −x,

d2y
ds2

= −y,

d2z
ds2

= 0,

which correspond to the Lagrangian

L = 1
2 (ẋ2 + ẏ2 + ż2) − 1

2 (x2 + y2).

For the exponential case (5.2) we derive the equations

d2x
ds2

= −sin2θx + 2 cos θy,

d2y
ds2

= −2 cos θx − sin2 θy,

d2z
ds2

= 0,

with the corresponding Lagrangian

L = ẋẏ +
ż2

2
+ cos θ(y2 − x2) − sin2 θxy.
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The general second-order equations corresponding to (4.1) are

d2x
ds2

= −ẏ − F′(z)ẋż,

d2y
ds2

= ẋ − F′(z)ẏż,

d2z
ds2

= 0,

for which we derive two first integrals,I1 =
ẋ2 + ẏ2

f 2(z)
= sin2 θ,

I2 = ż = cos θ.

Then the Lancret invariant (4.3) is a combination of these first integrals,

Lancret(γ) =
cos θ
|sin θ|

=
f (z)ż√

(ẋ)2 + (ẏ)2
.

Acknowledgement

We are extremely grateful to our colleague Marian Ioan Munteanu with whom we
collaborated on [8]. He inspired us to obtain the main results of the present paper.

References

[1] Ch. Baikoussis and D. E. Blair, ‘On Legendre curves in contact 3-manifolds’, Geom. Dedicata
49(2) (1994), 135–142.

[2] M. Barros, ‘General helices and a theorem of Lancret’, Proc. Amer. Math. Soc. 125(5) (1997),
1503–1509.

[3] M. Belkhelfa, I.-E. Hirica, R. Rosca and L. Verstraelen, ‘On Legendre curves in Riemannian and
Lorentzian Sasaki spaces’, Soochow J. Math. 28(1) (2002), 81–91.

[4] R. L. Bishop and B. O’Neill, ‘Manifolds of negative curvature’, Trans. Amer. Math. Soc. 145
(1969), 1–49.

[5] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, 2nd edn. Progress in
Mathematics, 203 (Birkhäuser, Boston, MA, 2010).

[6] D. E. Blair, F. Dillen, L. Verstraelen and L. Vrancken, ‘Deformations of Legendre curves’, Note
Mat. 15(1) (1995), 99–110 (1997).
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e-mail: mcrasm@uaic.ro

https://doi.org/10.1017/S0004972712000809 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972712000809

