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Abstract. The present paper is devoted to study the curvature and tor-
sion of slant Frenet curves in 3-dimensional normal almost paracontact
metric manifolds. Moreover, in this class of manifolds, properties of non-
Frenet slant curves (with null tangents or null normals) are studied. We
illustrate such results by some examples.
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Introduction

In this paper, we consider the properties of slant curves in 3-dimensional
normal almost paracontact metric manifolds. Slant curves have been studied
in [6–9] but a direct inspiration to this work was the paper [5], where slant
curves in 3-dimensional normal almost contact manifolds are considered.

In a 3-dimensional manifold M endowed with an almost contact metric
structure (ϕ, ξ, η, g) the metric g is positive definite, a slant curve is definite
as a unit curve γ : I → M for which g(γ̇(t), ξ) = cos θ(t) = const, where
θ : I → [0, 2π) is called a structural angle, therefore the notion of a slant
curve generalizes the notion of cylindrical helix in Euclidean space E

3 - curves
known from classical differential geometry, for which the tangent vector field
has a constant angle with fixed direction.

In present paper, we consider manifolds with pseudo-Riemannian met-
ric g, so that our definition of a slant curve is more general and we demand
γ : I → M be a unit or null curve and g(γ̇(t), ξ) = const.. We write about
this in the first section. In view of this definition, we look at the slant curves
also as a generalization of Legendre curves (see e.g. [1,2,15,21,22]). In [22],
we have investigated Legendre curves in 3-dimensional normal almost para-
contact metric manifolds. Some results obtained in present paper generalizes
theorems for Legendre curves from [22]. Moreover, we present new properties
of Legendre curves in Theorem 4.3 and Corollary 4.4.
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This work consists of five sections. In the first one we define a normal
almost paracontact metric manifold as well as a slant curve in a 3-dimensional
normal almost paracontact metric manifold. We also present some properties
of these objects. In second, third and fourth sections, we present, respectively,
definitions and curvature properties of Frenet slant curves, null slant curves
and slant curves with null normal. The examples illustrating theorems are in
the last section.

1. Preliminaries

Let M be a (2n + 1)-dimensional differentiable manifold. Let ϕ be a (1, 1)-
tensor field, ξ a vector field and η a 1-form on M . Then (ϕ, ξ, η) is called an
almost paracontact structure on M if
(i) η(ξ) = 1, ϕ2 = Id −η ⊗ ξ,

(ii) the tensor field ϕ induces an almost paracomplex structure on the distri-
bution D = ker η, that is, the eigen distributions D+, D− corresponding
to the eigenvalues 1, −1 of ϕ, respectively, have equal dimension n.

M is said to be almost paracontact manifold if it is endowed with an almost
paracontact structure (cf. [4,14,20,23]).

Let M be an almost paracontact manifold. M will be called an almost
paracontact metric manifold if it is additionally endowed with a pseudo-
Riemannian metric g of signature (n + 1, n) and such that

g(ϕX,ϕY ) = − g(X,Y ) + η(X)η(Y ).

For such a manifold, we additionally have η(X) = g(X, ξ), η(ξ) = 1, ϕξ = 0,
η ◦ϕ = 0. Moreover, we can define a skew-symmetric 2-form Φ by Φ(X,Y ) =
g(X,ϕY ), which is called the fundamental form corresponding to the struc-
ture. Note that η ∧ Φn is up to a constant factor the Riemannian volume
element of M .

On an almost paracontact manifold, one defines the (2, 1)-tensor field
N (1) by

N (1)(X,Y ) = [ϕ, ϕ](X,Y ) − 2 dη(X,Y )ξ, (1.1)

where [ϕ,ϕ] is the Nijenhuis torsion of ϕ given by

[ϕ, ϕ](X,Y ) = ϕ2[X,Y ] + [ϕX,ϕY ] − ϕ[ϕX, Y ] − ϕ[X,ϕY ].

If N (1) vanishes identically, then the almost paracontact manifold (struc-
ture) is said to be normal (cf. [20] and recent papers [4,23]). The normality
condition says that the almost paracomplex structure J defined on M × R

by

J
(
X,λ

d

dt

)
=
(
ϕX + λξ, η(X)

d

dt

)

is integrable (paracomplex).
In the sequel, we are interested in dimension 3. The following theo-

rem presents conditions equivalent to the normality of 3 dimensional almost
paracontact manifolds, which we will use later in the work.
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Theorem 1.1 [22]. For a 3-dimensional almost paracontact metric manifold
M , the following three conditions are mutually equivalent
(a) M is normal,
(b) there exist functions α, β on M such that

(∇Xϕ)Y = β(g(X,Y )ξ − η(Y )X) + α(g(ϕX, Y )ξ − η(Y )ϕX), (1.2)

(c) there exist functions α, β on M such that

∇Xξ = α(X − η(X)ξ) + βϕX. (1.3)

Here ∇ is the Levi-Civita connection of g.

Corollary 1.2 [22]. The functions α, β appearing in (1.2) and (1.3) are given
by

2α = Trace {X → ∇Xξ}, 2β = Trace {X → ϕ∇Xξ}. (1.4)

A 3-dimensional normal almost paracontact metric manifold is said to
be
• paracosymplectic if α = β = 0 [10],
• quasi-para-Sasakian if and only if α = 0 and β �= 0 [14,22],
• β-para-Sasakian if and only if α = 0 and β �= 0 and β is constant, in

particular, para-Sasakian if β = −1 [22,23],
• α-para-Kenmotsu if α �= 0 and α is constant and β = 0.

At the end of this section, let γ : I → M , I being an interval, be a curve
on M such that g(γ̇, γ̇) = ±1 or g(γ̇, γ̇) = 0 and let ∇γ̇ denote the covariant
differentiation along γ.

We say that the curve γ is a slant curve in a 3-dimensional normal
almost paracontact metric manifold, if

g(γ̇, ξ) = η(γ̇) = c and c is constant.

In the particular case, c = 0 the curve γ is called Legendre curve [22].

Remark 1.3. In a normal almost contact metric manifold with Riemannian
metric g, the value of g(γ̇, ξ) satisfies −1 � g(γ̇, ξ) � 1, so that we can define
the structural angle of γ i.e the function θ : I → [0, 2π) given by

cos θ(t) = g(γ̇(t), ξ) = η(γ̇(t)).

Then, the curve γ is said to be a slant curve, (or θ-slant curve), if θ is a
constant function (see [5–7]).

Let γ : I → M be a slant curve on M such that g(γ̇, γ̇) = ε1 = ±1. Let
us consider the vector fields γ̇, ϕγ̇, ξ for which, we have

g(γ̇, γ̇) = ε1, g(γ̇, ξ) = c, g(ϕγ̇, ϕγ̇) = −ε1 + c2, g(ξ, ξ)
= 1, g(γ̇, ϕγ̇) = g(ξ, ϕγ̇) = 0,

where c is constant. These vector fields are linearly independent and form a
bases of Tγ(t)M for any t ∈ I if and only if ε1 − c2 �= 0. In this case, we define
an orthonormal frame along γ as follows:

F1 = γ̇, F2 =
ϕγ̇√|ε1 − c2| , F3 =

ξ − ε1cγ̇√|ε1 − c2| , (1.5)
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where g(F1, F1) = ε1, g(F2, F2) = sgn (−(ε1 − c2)) = υ, g(F3, F3) = −ε1υ.
The frame (F1, F2, F3) will play an auxiliary role in the proofs of The-

orems 2.3 and 4.2.
Separately, we discuss the case when γ̇, ϕγ̇, ξ are linearly dependent. Let

us note that γ̇, ϕγ̇, ξ are linearly dependent if and only if

γ̇ = cξ or γ̇ = cξ ± ϕγ̇. (1.6)

Indeed, if γ̇, ϕγ̇, ξ are linearly dependent then ε1 = 1 and c2 = 1. Hence
g(ϕγ̇, ϕγ̇) = 0 and either ϕγ̇ = 0 or ϕγ̇ is an isotropic vector field.

If ϕγ̇ = 0 then 0 = ϕ2γ̇ = γ̇ − cξ and γ̇ = cξ.
If ϕγ̇ is an isotropic vector field then, we can write γ̇ = aξ + bϕγ̇, for

some functions a and b. Using g(γ̇, γ̇) = 1 and g(γ̇, ξ) = c, we find a = c.
Now

ϕγ̇ = bϕ2γ̇ = b(γ̇ − cξ) = b(cξ + bϕγ̇ − cξ) = b2ϕγ̇.

Hence b2 = 1 and γ̇ = cξ ± ϕγ̇.

2. Frenet Slant Curves

Let (M, g) be a 3-dimensional pseudo-Riemannian manifold.
Let γ : I → M be a curve on M , I being an interval.
We say that γ is a Frenet curve if g(γ̇, γ̇) = ε1, ε1 = ±1 and one of the

following three cases holds

(a) γ is of osculating order 1, i.e., ∇γ̇ γ̇ = 0 i.e. γ is a geodesic;

(b) γ is of osculating order 2, i.e., there exist two orthonormal vector
fields E1, E2 and a positive function κ (the curvature) along γ such that
E1 = γ̇, g(E2, E2) = ε2 = ±1 and

∇γ̇E1 = κε2E2, ∇γ̇E2 = −κε1E1;

(c) γ is of osculating order 3, i.e., there exist three orthonormal vector
fields E1, E2, E3 and two positive functions κ (the curvature) and τ (the
torsion) along γ such that E1 = γ̇, g(E2, E2) = ε2 = ±1, g(E3, E3) = ε3 = ±1
and

∇γ̇E1 = κε2E2, ∇γ̇E2 = − κε1E1 + τε3E3, ∇γ̇E3 = − τε2E2.

Proposition 2.1. Let M be a 3-dimensional normal almost paracontact metric
manifold. If γ : I → M is a slant Frenet curve in M , such that g(γ̇, γ̇) = 1
and g(γ̇, ξ) = c = ±1 then γ is a geodesics.

Proof In view of (1.6), we consider two cases.
If γ̇ = cξ then from (1.3) ∇γ̇ γ̇ = ∇ξξ = 0 and γ is a geodesics.
If γ̇ = cξ ± ϕγ̇ using (1.3) and (1.2), we get

∇γ̇ γ̇ = c∇γ̇ξ ± ∇γ̇ϕγ̇ = c∇γ̇ξ ± (∇γ̇ϕ)γ̇ ± ϕ∇γ̇ γ̇

= (α ∓ β)(cγ̇ − ξ ∓ cϕγ̇) ± ϕ∇γ̇ γ̇ = ± ϕ∇γ̇ γ̇.

Then g(∇γ̇ γ̇,∇γ̇ γ̇) = ±g(∇γ̇ γ̇, ϕ∇γ̇ γ̇) = 0 and taking the definition of Frenet
curve into account, γ is necessarily a geodesic. �
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Proposition 2.2. Let M be a 3-dimensional normal almost paracontact metric
manifold. If γ : I → M is a slant Frenet curve of osculating order 3, then

∇γ̇F1 = υδ
√

|ε1 − c2|F2 − ε1α
√

|ε1 − c2|F3, (2.1)

∇γ̇F2 = − ε1δ
√

|ε1 − c2|F1 + (ε1β − υcδ)F3, (2.2)

∇γ̇F3 = −ε1υα
√

|ε1 − c2|F1 + (β − ε1υcδ)F2, (2.3)

where δ =
g(∇γ̇ γ̇, ϕγ̇)
|ε1 − c2| , and for simplicity we write α, β instead of the com-

posed functions α ◦ γ, β ◦ γ with α, β being the same as in (1.4).

Proof Let us put ∇γ̇F1 = pF1 + qF2 + rF3 for some functions p, q, r. Then
pε1 = g(∇γ̇F1, F1) = 0.

Next using (1.2) we get

qυ = g(∇γ̇F1, F2) = − 1√|ε1 − c2|g(γ̇,∇γ̇ϕγ̇)

= − 1√|ε1 − c2|g(γ̇, (∇γ̇ϕ)γ̇ + ϕ∇γ̇ γ̇) = δ
√

|ε1 − c2|.

Now using (1.3), we have

−ε1υr = g(∇γ̇F1, F3) =
1√|ε1 − c2|g(∇γ̇ γ̇, ξ − ε1cγ̇)

= − 1√|ε1 − c2|g(γ̇,∇γ̇ξ) = − 1√|ε1 − c2|α(ε1 − c2).

Hence in view of above p = 0, q = υδ
√|ε1 − c2|, r = −ε1α

√|ε1 − c2| and this
leads to (2.1). Similarly, we calculate (2.1) and (2.3). �

Theorem 2.3 generalizes results obtained for Legendre curves in [22].

Theorem 2.3. Let M be a 3-dimensional normal almost paracontact metric
manifold. If γ : I → M is a slant Frenet curve of osculating order 3 in M ,
then its curvature and torsion are given by

κ =
√

|ε1 − c2||α2 − ε1δ2|, (2.4)

τ =
∣∣∣ sgn(1 − ε1c

2)β + cδ +
αδ̇ − α̇δ

α2 − ε1δ2

∣∣∣. (2.5)

where δ =
g(∇γ̇ γ̇, ϕγ̇)
|ε1 − c2| , and for simplicity we write α, β instead of the com-

posed functions α ◦ γ, β ◦ γ with α, β being the same as in (1.4).

Proof Let γ be a slant Frenet curve of osculating order 3 in M . Then γ
is not a geodesic curve and from Proposition 2.1 ε1 �= 1 or c �= ±1. Hence
ε1 − c2 �= 0 and so that we can use the frame (F1, F2, F3) from (1.5) to
calculate the curvature and the torsion functions of γ.

We obtain the curvature function using (2.1) and calculating the length
of ∇γ̇ γ̇, we get

κ2ε2 = −ε1υ|ε1 − c2|(α2 − ε1δ
2)
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so that the curvature is given by (2.4) and ε2 = sgn(−ε1υ(α2 − ε1δ
2)) = ±1.

Using (2.1), (2.1) and (2.3), we find

E2 =
1

ε2κ
∇γ̇E1 =

ε2(υδF2 − ε1αF3)√|α2 − ε1δ2| ,

Let us denote p =
√|α2 − ε1δ2| and calculate

∇γ̇E2 = ε2υγ̇
δ

p
F2 + ε2υ

δ

p
∇γ̇F2 (2.6)

− ε1ε2γ̇
α

p
F3 − ε1ε2

α

p
∇γ̇F3

= −ε1κE1 +
(

ε2υγ̇
δ

p
− ε2

αυ

p
(ε1υβ − cδ)

)
F2

+
(

−ε1ε2γ̇
α

p
+ ε2

δ

p
(ε1υβ − cδ)

)
F3

= −ε1κE1 + ε2

(
−ε1υβ + cδ +

αδ̇ − α̇δ

α2 − ε1δ2

)
υαF2 − δF3√|α2 − ε1δ2| .

Hence from (2.6), in view of the Frenet equations, we have

ε3τ
2 = υ sgn(α2 − ε1δ

2)

(
−ε1υβ + cδ +

αδ̇ − α̇δ

α2 − ε1δ2

)2

= −ε1ε2

(
sgn(1 − ε1c

2)β + cδ +
αδ̇ − α̇δ

α2 − ε1δ2

)2

.

This gives (2.5) and ε3 = −ε1ε2. �

Below, we find the functions of curvature and torsion of a slant Frenet
curve of osculating order 3 in some subclasses of a 3-dimensional normal
almost paracontact metric manifold.

Corollary 2.4. Let M be a 3-dimensional manifold, γ : I → M be a slant
Frenet curve of osculating order 3 in M .

If M is a paracosymplectic manifold then the curvature and torsion of
γ are given by

κ =
√

|ε1 − c2||δ|, τ = |cδ|.
If M is a quasi-para-Sasakian manifold then the curvature and torsion

of γ are given by

κ =
√

|ε1 − c2||δ|, τ =
∣∣∣ sgn(1 − ε1c

2)β + cδ
∣∣∣.

If M is a para-Sasakian manifold then the curvature and torsion of γ
are given by

κ =
√

|ε1 − c2||δ|, τ =
∣∣∣ sgn(1 − ε1c

2) + cδ
∣∣∣.
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If M is an α-Kenmotsu manifold then the curvature and torsion of γ
are given by

κ =
√

|ε1 − c2||α2 − ε1δ2|, τ =
∣∣∣cδ +

αδ̇

α2 − ε1δ2

∣∣∣,

where δ =
g(∇γ̇ γ̇, ϕγ̇)
|ε1 − c2| and for simplicity we write α, β instead of the com-

posed functions α ◦ γ, β ◦ γ with α, β being the same as in (1.4).

3. Null Slant Curves

Next, we consider the case when γ is a null curve, i.e has a null tangent vector
field (g(γ̇, γ̇) = 0) and γ is not a geodesic, that is g(∇γ̇ γ̇,∇γ̇ γ̇) �= 0.

We take a parametrization of γ such that g(∇γ̇ γ̇,∇γ̇ γ̇) = 1. Then in [13]
it is proved that there exist only one Cartan frame T,N,W and the function
τ̃ along γ such that following Cartan equations are satisfied

∇γ̇T = N, ∇γ̇W = τ̃N. ∇γ̇N = −τ̃T − W.

The above Cartan frame is defined as follows

T = γ̇, N = ∇γ̇T, τ̃ =
1
2
g(∇γ̇N,∇γ̇N), W = −∇γ̇N − τ̃T. (3.1)

Hence

g(T,W ) = g(N,N) = 1, g(T, T ) = g(T,N) = g(W,W ) = g(W,N) = 0.

The Cartan frame is a frame with the minimum number of curvature
functions which are invariant under Lorentzian transformation (see [11–13,
19]).

In [22], we proved that every null Legendre curve in a 3-dimensional
normal almost paracontact metric manifold is a geodesic.

In this section, we consider a slant non-geodesic null curve γ : I → M .

Theorem 3.1. If γ : I → M is a slant non-geodesic null curve on a 3-
dimensional normal almost paracontact metric manifold then

τ̃ = −α2c2

2
− α̇c ± β − 1

2c2
, (3.2)

N = αcγ̇ ± 1
c
ϕγ̇, (3.3)

W =
−α2c2 − 1

2c
γ̇ ∓ αϕγ̇ +

1
c2

ξ, (3.4)

where for simplicity we write α, β instead of the composed functions α ◦ γ,
β ◦ γ with α, β being the same as in (1.4).

Proof Let ϕγ̇ = pγ̇ + qN + rW for some functions p, q, r. We find r =
g(ϕγ̇, γ̇) = 0. Then ϕγ̇ = pγ̇ + qN and

g(ϕγ̇, ϕγ̇) = c2 = q2, 0 = g(ϕγ̇, ξ) = pc + qαc2 = c(p ± αc2).

Hence q = ± c, p = ∓ αc2 and eventually ϕγ̇ = ∓ αc2γ̇ ± cN , which lead to
(3.3).
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Now, applying (1.2) and (3.3), we calculate

∇γ̇N = α̇cγ̇ + αc∇γ̇ γ̇ ± 1
c

((∇γ̇ϕ)γ̇ + ϕ∇γ̇ γ̇)

=
(

α̇ca + α2c2 ∓ β +
1
c

)
γ̇ ± αϕγ̇ − 1

c
ξ. (3.5)

Next, in view of the definition τ̃ and W in (3.1), we use (3.5) and get (3.2)
and (3.4). �

In the following corollary, we present the properties of slant null curves
in some subclasses of a 3-dimensional normal almost paracontact metric man-
ifold.

Corollary 3.2. Let M be a 3-dimensional manifold, γ : I → M be a slant
non-geodesic null curve on M .

If M is a paracosymplectic manifold then for γ, we have

τ̃ = − 1
2c2

, N = ± 1
c
ϕγ̇, W =

1
c2

ξ.

If M is a quasi-para-Sasakian manifold then for γ, we have

τ̃ = ± β − 1
2c2

, N = ± 1
c
ϕγ̇, W =

1
c2

ξ.

If M is a para-Sasakian manifold then for γ, we have

τ̃ = ± 1 − 1
2c2

, N = ± 1
c
ϕγ̇, W =

1
c2

ξ.

If M is an α-Kenmotsu manifold then for γ, we have

τ̃ = −α2c2

2
− 1

2c2
, N = αcγ̇ ± 1

c
ϕγ̇, W =

−α2c2 − 1
2c

γ̇ ∓ αϕγ̇ +
1
c2

ξ.

4. Slant Curves with Null Normal

At last, we investigate curves with null normals (for such curves on Minkowski
space E

3
1, see among others [3,17,18]). We say that γ : I → M is a curve with

null normal if

g(γ̇, γ̇) = 1, ∇γ̇ γ̇ �= 0, g(∇γ̇ γ̇,∇γ̇ γ̇) = 0.

Proposition 4.1. Let γ : I → M be a curve with null normal. Then there
exist the frame T,N, V and the curvature function κ̃ along γ, which satisfy
the following Cartan equations:

∇γ̇T = N, ∇γ̇N = κ̃N, ∇γ̇V = −T − κ̃V. (4.1)

Proof By the assumption ∇γ̇ γ̇ is a null vector field. We set N = ∇γ̇ γ̇. Since
T = γ̇ is a unit vector field, there exist a unique null vector field V along γ
(see [16]) such that

g(N,V ) = 1 and g(T, V ) = 0. (4.2)
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Next we check that T,N, V satisfies (4.1). We put ∇γ̇N = aT + bN + cV for
some functions a, b, c. Then

a = g(∇γ̇N,T ) = −g(N,N) = 0, c = g(∇γ̇N,N) = 0.

Hence ∇γ̇N = bN . Similarly, we calculate ∇γ̇V = −T − bV . Thus T,N, V
satisfies (4.1) with κ̃ = b. �
Theorem 4.2. If γ : I → M is a slant non-geodesic curve with null normal in
a 3-dimensional normal almost paracontact metric manifold, for which c2 �= 1
then

N = − α(ξ − cγ̇ ± ϕγ̇), (4.3)

κ̃ =
α̇

α
± β + αc, (4.4)

V =
−1

2α(1 − c2)
(ξ − cγ̇ ∓ ϕγ̇), (4.5)

where for simplicity we write α, β instead of the composed functions α ◦ γ,
β ◦ γ with α, β being the same as in (1.4). Moreover g(N,ϕγ̇) = ±α(1−c2) �=
0.

Proof For a slant curve with null normal for which c2 �= 1, we can use an
orthonormal frame along γ as in (1.5). We put

N = ∇γ̇ γ̇ = aF2 + bF3, (4.6)

for some functions a and b and calculate g(N,N) = a2 − b2 = 0. Since γ is
not a geodesic then a = ±b �= 0. Moreover, using (1.3), we get

0 �= b = g(N,F3) = − 1√|1 − c2|g(∇γ̇ξ, γ̇)

= − α
√

|1 − c2|. (4.7)

Hence α �= 0 and putting (4.7) in (4.6), we obtain (4.3).
Next, using (1.5), we have

aυ = g(N,F2) =
g(N,ϕγ̇)√|1 − c2| (4.8)

and putting (4.7) in (4.8), we get g(Nϕγ̇) = ±α(1 − c2) �= 0.
To find the curvature expression of the κ̃, we use (1.3), (4.3), (1.2) and

calculate

∇γ̇N = − α̇(ξ − cγ̇ ± ϕγ̇)
− α(∇γ̇ξ − c∇γ̇ γ̇ ± (∇γ̇ϕ)γ̇ ± ϕ∇γ̇ γ̇)

= (−α̇ ∓ αβ − α2c)(ξ − cγ̇ ± ϕγ̇)

=
( α̇

α
± β + αc

)
N.

In view of (4.1), we obtain (4.4).
At last, we put V = dF1 +eF2 +fF3 for some functions d, e, f and using

(4.2), we get (4.5). �
As an immediate consequence of the above theorem, we obtain



974 J. We�lyczko MJOM

Theorem 4.3. Let γ : I → M be a Legendre curve with null normal in a
3-dimensional normal almost paracontact metric manifold M . Then α =
±g(N,ϕγ̇), α �= 0 and we have

T = γ̇, N = −α(ξ ± ϕγ̇), V =
−1
2α

(ξ ∓ ϕγ̇) and κ̃ =
α̇

α
± β,

where for simplicity we write α, β instead of the composed functions α ◦ γ,
β ◦ γ with α, β being the same as in (1.4).

Corollary 4.4. Let γ : I → M be a slant curve with null normal in a 3-
dimensional α-para-Kenmotsu manifold M , for which c2 �= 1. Then g(N,ϕγ̇)
= ± α(1 − c2) ∈ R\{0}

κ̃ = αc, N = −α(ξ − cγ̇ ± ϕγ̇), V =
−1

2α(1 − c2)
(ξ − cγ̇ ∓ ϕγ̇).

In the particular case when γ is a Legendre curve, we have

κ̃ = 0, N = −α(ξ ± ϕγ̇), V =
−1
2α

(ξ ∓ ϕγ̇).

where for simplicity we write α, β instead of the composed functions α ◦ γ,
β ◦ γ with α, β being the same as in (1.4).

5. Examples

Legendre curves with null normal that will appear in examples are from my
previous paper [22].

Example 1. Let R
3 be the Cartesian space with the standard Cartesian co-

ordinates (x, y, z). Define the standard almost paracontact structure (ϕ, ξ, η)
on R

3 by

ϕ∂1 = ∂2 − 2x∂3, ϕ∂2 = ∂1, ϕ∂3 = 0, ξ = ∂3, η = 2xdy + dz, (5.1)

where ∂1 =
∂

∂x
, ∂2 =

∂

∂y
and ∂3 =

∂

∂z
. By straightforward calculations, one

verifies that

[ϕ,ϕ](∂i, ∂j) − 2dη(∂i, ∂j)ξ = 0, 1 � i < j � 3,

so that (1.1) is satisfied and the structure is normal.
Let M = R

2 × R− ⊂ R
3 and consider a normal almost paracontact

metric structure on M defined in the following way: (ϕ, ξ, η) is the structure
(5.1) restricted to M and g is the Lorentz metric given by

[g(∂i, ∂j)] =

⎡
⎣

−2z 0 0
0 4x2 + 2z 2x
0 2x 1

⎤
⎦ .
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For the Levi-Civita connection, we have

∇∂1∂1 = −x

z
∂2 +

(
1 +

2x2

z

)
∂3, ∇∂1∂2 = ∇∂2∂1 =

x

z
∂2 +

(
1 − 2x2

z

)
∂3,

∇∂1∂3 = ∇∂3∂1 = ∇∂2∂3 = ∇∂3∂2 =
1
2z

∂1 +
1
2z

∂2 − x

z
∂3,

∇∂2∂2 =
2x

z
∂1 +

x

z
∂2 −

(
1 +

2x2

z

)
∂3, ∇∂3∂3 = 0.

Using the above expressions and (1.3), we find α = β = (2z)−1.

(a) γ(t) = (0,−2
√−t, t), t < 0

is a Frenet slant curve of osculating order 3. For such a curve ε1 = −1,

c = 1, α(γ(t)) = β(γ(t)) =
1
2t

, δ(t) =
1
t
, κ = −

√
5√
2t

, τ = − 3
2t

.

Now let M = R
2 × R+ ⊂ R

3 and consider a normal almost paracontact
metric structure on M such as in example (a)

We consider the following curves:

(b) γ(t) = (1/4, t, 3/8),

is a slant curve with null normal and ε1 = 1.
For such a curve, we have c = 1/2, α(γ(t)) = 4/3, β(γ(t)) = 4/3 and

T = (0, 1, 0), N = (4/3, 2/3,−4/3)
V = (−1/2, 1/4,−1/2), κ̃ = −2/3.

(c) γ(t) = (
√

t,−a
√

t, at), t > 0, a = 3
√

1 − b + 3
√

1 + b, b =

√
26
27

,

is a Legendre curve with null normal and ε1 = 1. For such a curve, we have
α(γ(t)) = (2at)−1, β(γ(t)) = (2at)−1, α(γ(t)) = g(N,ϕγ̇) = 1/(2at) and

T = ((2
√

t)−1,−a(2
√

t)−1, a), N = (1/4t−3/2,−1/(4a)t−3/2, 0),

V = (−2a2
√

t, 2a
√

t,−8at), κ̃ =
1 − 2a

2at
.

Example 2. Let M = R− ×R
2. Define a normal almost paracontact structure

(ϕ, ξ, η) on M by

ϕ∂1 = ∂2, ϕ∂2 = ∂1, ϕ∂3 = 0, ξ = ∂3, η = dz,

Let us define a compatible Lorentz metric

[g(∂i, ∂j)] =

⎡
⎣

−x 0 0
0 x 0
0 0 1

⎤
⎦ .

The quadruple (ϕ, ξ, η, g) becomes a normal almost paracontact metric struc-
ture on M . For the Levi-Civita connection, we find

∇∂1∂1 =
1

2x
∂1, ∇∂2∂2 =

1
2x

∂1, ∇∂1∂2 = ∇∂2∂1 =
1

2x
∂2,

∇∂1∂3 = ∇∂3∂1 = ∇∂2∂3 = ∇∂3∂2 = ∇∂3∂3 = 0,

Using the above and (1.3), we get α = β = 0.
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The curve

γ(t) =
(

− 1
3
√

4
,− 3

√
2t, t

)
,

is a null slant curve on M . For such a curve c = 1 and

T = (0,− 3
√

2, 1), N =
(
− 3

√
2, 0, 0

)
, g(N,N) = 1,

W =
(

0,− 3
√

2/2, 1/2
)

, τ̃ = −1/2.

Example 3. Suppose that M = R
2 ×R+. Define a normal almost paracontact

structure (ϕ, ξ, η) on M by

ϕ∂1 = ∂2, ϕ∂2 = ∂1, ϕ∂3 = 0, ξ = ∂3, η = dz,

and compatible with this structure a Lorentz metric

[g(∂i, ∂j)] =

⎡
⎣

−2z 0 0
0 2z 0
0 0 1

⎤
⎦ .

The quadruple (ϕ, ξ, η, g) becomes a normal almost paracontact metric struc-
ture on M . For the Levi-Civita connection, we find

∇∂1∂1 = ∂3, ∇∂1∂2 = ∇∂2∂1 = 0, ∇∂1∂3 = ∇∂3∂1 =
1
2z

∂1,

∇∂2∂2 = −∂3, ∇∂2∂3 = ∇∂3∂2 =
1
2z

∂2, ∇∂3∂3 = 0.

Using the above and (1.3), we get α = (2z)−1 and β = 0.
The curve

γ(t) =
(

cosh t, sinh t,
1
2

)
,

is a Legendre curve with ε1 = 1 and null normal in M .
Then for γ, we get α(γ(t)) = 1, δ(t) = −1 and

T = (sinh t, cosh t, 0), N = (cosh t, sinh t,−1) ,

V = −1
2

(cosh t, sinh t, 1) , κ̃ = 0.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License which permits any use, distribution, and reproduction in any
medium, provided the original author(s) and the source are credited.
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50-370 Wroc�law
Poland
e-mail: joanna.welyczko@pwr.wroc.pl

Received: March 9, 2013.

Revised: October 21, 2013.

Accepted: October 22, 2013.


	Slant Curves in 3-Dimensional Normal Almost Paracontact Metric Manifolds
	Abstract
	Introduction
	1. Preliminaries
	2. Frenet Slant Curves
	3. Null Slant Curves
	4. Slant Curves with Null Normal
	5. Examples
	Open Access
	References


