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Abstract. In this paper, we define and study both slant lightlike submanifolds and screen slant lightlike
submanifolds of an indefinite Sasakian manifold. We provide non-trivial examples and obtain necessary
and sufficient conditions for the existence of a slant lightlike submanifold.

1. Introduction

In [8], Duggal and Bejancu introduced the geometry of arbitrary lightlike submanifolds of semi-
Riemannian manifolds. Since then, many authors have studied the geometry of lightlike hypersurfaces
and lightlike submanifolds. Lightlike geometry has its applications in general relativity, particularly in
black hole theory. Indeed, it is known that lightlike hypersurfaces are examples of physical models of
Killing horizons in general relativity[13]. A Killing horizon is a lightlike hypersurface which is a local
isometry horizon with respect to 1− parameter group. Physically, a particle on local isometry horizon of
a 4− dimensional spacetime manifold may immediately be travelling at the speed of light along the single
null generator, but standing still to relative to its surroundings. Roughly speaking, a Killing horizon is a
lightlike hypersurface whose generating null vector can be normalized so as to coincide with one of the
Killing vector. The surface of a black hole is described in terms of Killing horizon. This relation has its
roots in Hawking’s area theorem which states that if matter satisfies the dominant energy condition, then
the area of the black hole can not decrease[15].

On the other hand, the theory of contact manifolds has its roots in differential equations, optics and
phase space of a dynamical system (for details see [1]. Recently, Fritelli at all [12] gave a self-contained
presentation of the null surface formulation of the Einstein based on the contact geometry of differential
equation. The essential idea of the null surface formulation is to start from family of co-dimension one
foliations of the spacetime manifold by hypersurfaces, fix the conformal structure of spacetime by requiring
these hypersurface to be null and formulate the Einstein equations in terms of these data.

Let M̄ be a Sasakian manifold with almost contact structure (φ, η,V) and M a Riemannian manifold
isometrically immersed in M̄ such that the structure vector field V is tangent to M. Then M is called
invariant if φ(TpM) = TpM, for every p ∈ M, where TpM denotes the tangent space to M at the point p.
M is called anti-invariant if φ(TpM) ⊂ TpM⊥ for every p ∈ M, where TpM⊥ denotes the normal space to
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M at the point p. As a generalization of invariant and totally real submanifolds of almost contact metric
manifolds, following Chen’s definition [6], A. Lotta [16] and Cabrerizo et all [5] studied the geometry of
slant submanifolds of a Sasakian manifold M̄ as a real submanifold such that the angle between φX and
TxM is constant for every vector X ∈ TxM and x ∈M. The first author of this paper introduced lightlike slant
submanifolds of indefinite Kaehler manifolds in [18] and [19]. On the other hand, in [10], Duggal-S. ahin
studied various lightlike submanifolds of indefinite Sasakian manifolds. However, the concept of slant
lightlike submanifolds of indefinite Sasakian manifolds has not been studied as yet.

The objective of this paper is to introduce the notion of slant submanifolds of an indefinite Sasakian
manifolds. We study the existence problem and establish an interplay between slant lightlike submanifolds
and contact Cauchy Riemann (CR)-lightlike submanifolds [10].

Section 2 includes basic information on the lightlike geometry as needed in this paper. In section 3,
we introduce the concept of slant lightlike submanifolds and give a non-trivial example. We show that,
contrary to the Riemannian case, the geometry of slant lightlike and screen slant lightlike submanifolds is
very different from the Riemannian case. We prove a characterization theorem and show that co-isotropic
contact CR-lightlike submanifolds are slant lightlike submanifolds. Because, a slant lightlike submanifold of
an indefinite Sasakian manifold do not contain invariant and screen real submanifolds, finally, in section 4,
we introduce screen slant lightlike submanifoldds of indefinite Sasakian manifold and give an example of
such submanifolds.

2. Preliminaries

An odd dimensional semi-Riemannian manifold (M̄, 1̄) is called a contact metric manifold [4] if there
exists a (1, 1) tensor field φ, a vector field V, called the characteristic vector field, and its 1-form η satisfying

1̄(φX, φY) = 1̄(X,Y) − ε η(X)η(Y), 1̄(V,V) = ε, (1.1)
φ2 (X) = −X + η (X) V, 1̄(X, V) = η(X),

d η(X, Y) = 1̄(X, φY), ∀X,Y ∈ Γ(TM̄),

where ε = 1 or −1. It follows that φV = 0, η ◦ φ = 0, η(V) = ε.

Then (φ, V, η, 1̄) is called contact metric structure of M̄. We say that M has a normal contact structure if
Nφ + d η⊗ ξ = 0,where Nφ is the Nijenhuis tensor field of φ [4]. A normal contact metric manifold is called
a Sasakian manifold [20] for which we have

∇̄XV = φX, (1.2)
(∇̄Xφ)Y = −1̄(X,Y)V + ε η(Y)X. (1.3)

We follow [8] for the notation and formulas used in this paper. A submanifold (Mm, 1) immersed in
a semi-Riemannian manifold (M̄m+n, 1̄) is called a lightlike submanifold if the metric 1 induced from 1̄ is
degenerate and the radical distribution Rad(TM) is of rank r, where 1 ≤ r ≤ m. Let S(TM) be a screen
distribution which is a semi-Riemannian complementary distribution of Rad(TM) in TM, i.e.,

TM = Rad (TM) ⊥ S(TM).

Consider a screen transversal vector bundle S(TM⊥), which is a semi-Riemannian complementary vector
bundle of Rad(TM) in TM⊥. Since, for any local basis {ξi} of Rad(TM), there exists a local null frame {Ni}
of sections with values in the orthogonal complement of S(TM⊥) in [S(TM)]⊥ such that 1̄(ξi,N j) = δi j, it
follows that there exists a lightlike transversal vector bundle ltr(TM) locally spanned by {Ni} [8, page 144].
Let tr(TM) be complementary (but not orthogonal) vector bundle to TM in TM̄|M. Then,

tr(TM) = ltr(TM) ⊥ S(TM⊥),
TM̄|M = S(TM) ⊥ [Rad(TM) ⊕ ltr(TM)] ⊥ S(TM⊥).
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Although S(TM) is not unique, it is canonically isomorphic to the factor vector bundle TM/Rad TM [14].
Following result is important to this paper.

Proposition 2.1 [8]. The lightlike second fundamental forms of a lightlike submanifold M do not depend
on S(TM),S(TM⊥) and ltr(TM).

Throughout this paper, we will discuss the dependence (or otherwise) of the results on induced object(s)
and refer [8] for their transformation equations.

Followings are four subcases of a lightlike submanifold (M, 1,S(TM),S(TM⊥).
Case 1: r - lightlike if r < min{m, n};
Case 2: Co - isotropic if r = n < m; S(TM⊥) = {0};
Case 3: Isotropic if r = m < n; S(TM) = {0};
Case 4: Totally lightlike if r = m = n; S(TM) = {0} = S(TM⊥).

The Gauss and Weingarten formulas are:

∇̄XY = ∇XY + h(X,Y),∀X,Y ∈ Γ(TM), (1.4)
∇̄XV = −AVX + ∇t

XV,∀X ∈ Γ(TM),V ∈ Γ(tr(TM)), (1.5)

where {∇XY,AVX} and {h(X,Y),∇t
XV} belong to Γ(TM) and Γ(ltr(TM)), respectively. ∇ and ∇t are linear

connections on M and on the vector bundle ltr(TM), respectively. The second fundamental form h is a
symmetric F (M)-bilinear form on Γ(TM) with values in Γ(tr(TM)) and the shape operator AV is a linear
endomorphism of Γ(TM). Then we have

∇̄XY = ∇XY + hl(X,Y) + hs(X,Y), (1.6)
∇̄XN = −ANX + ∇l

X(N) + Ds(X,N), (1.7)

∇̄XW = −AWX + ∇s
X(W) + Dl(X,W), ∀X,Y ∈ Γ(TM), (1.8)

N ∈ Γ(ltr(TM)) and W ∈ Γ(S(TM⊥)). Denote the projection of TM on S(TM) by P̄. Then, by using (1.4),
(1.6)-(1.8) and taking account that ∇̄ is a metric connection we obtain

1̄(hs(X,Y),W) + 1̄(Y,Dl(X,W)) = 1(AWX,Y), (1.9)
1̄(Ds(X,N),W) = 1̄(N,AWX). (1.10)

We set

∇XP̄Y = ∇∗XP̄Y + h∗(X, P̄Y), (1.11)

∇Xξ = −A∗ξX + ∇∗tXξ, (1.12)

for X,Y ∈ Γ(TM) and ξ ∈ Γ(Rad(TM)). By using above equations we obtain

1̄(hl(X, P̄Y), ξ) = 1(A∗ξX, P̄Y), (1.13)

1̄(h∗(X, P̄Y),N) = 1(ANX, P̄Y), (1.14)

1̄(hl(X, ξ), ξ) = 0 , A∗ξξ = 0. (1.15)

In general, the induced connection ∇ on M is not metric connection. Since ∇̄ is a metric connection, by
using (1.6) we get

(∇X1)(Y,Z) = 1̄(hl(X,Y),Z) + 1̄(hl(X,Z),Y). (1.16)

However, it is important to note that ∇? is a metric connection on S(TM). From now on, we briefly denote
(M, 1,S(TM),S(TM⊥)) by M in this paper.

Definition 2.1 [10] Let (M, 1,S(TM),S(TM⊥)) be a lightlike submanifold tangent to the structure vector field
V immersed in an indefinite Sasakian manifold (M̄, 1̄). We say that M is a contact CR - lightlike submanifold
of M̄ if the following conditions are satisfied:
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(A) Rad TM is a distribution on M such that Rad TM ∩ φ(RadTM) = {0},

(B) There exist vector bundles D0 and D′ over M such that

S(TM) = {φ(RadTM) ⊕D′} ⊥ Do ⊥ V,
φDo = Do, φ(D′) = L1 ⊥ ltr(TM),

where D0 is a non-degenerate distribution on M and L1 is a vector sub bundle of S(TM⊥).
Thus, we have the following decomposition

TM = D ⊕ V ⊕D′, (1.17)

where

D = Rad TM ⊥ φ(Rad TM) ⊥ Do. (1.18)

A contact CR-lightlike submanifold is proper if Do , {0} and L1 , {0}.

3. Slant lightlike submanifolds

We start with the following lemmas which will be useful for later results.

Lemma 3.1. Let M be an r− lightlike submanifold of an indefinite Sasakian manifold M̄ of index 2q. Suppose
that φRadTM is a distribution on M such that RadTM ∩ φRadTM = {0}. Then φltr(TM) is subbundle of the
screen distribution S(TM) and φRadTM ∩ φltr(TM) = {0}

Proof. Since by hypothesis φRadTM is a distribution on M such that φRadTM ∩ RadTM = {0}, we have
φRadTM ⊂ S(TM). Now we claim that ltr(TM) is not invariant with respect to φ. Let us suppose that
ltr(TM) is invariant with respect to φ. Choose ξ ∈ Γ(RadTM) and N ∈ Γ(ltr(TM)) such that 1̄(N, ξ) = 1.
Then from the decomposition of a lightlike submanifold, we have 1 = 1̄(ξ,N) = 1̄(φξ, φN) = 0 due to
φξ ∈ Γ(S(TM)) and φN ∈ Γ(ltr(TM)). This is a contradiction, so ltr(TM) is not invariant with respect to φ.
Also φN does not belong to S(TM⊥), since S(TM⊥) is orthogonal to S(TM), 1̄(φN, φξ) must be zero, but
we have 1̄(φN, φξ) = 1̄(N, ξ) , 0 for some ξ ∈ Γ(RadTM), this is again a contradiction. Thus we conclude
φltr(TM) is a distribution on M. Moreover,φN does not belong to RadTM. Indeed, if φN ∈ Γ(RadTM), we
would have φ2N = −N ∈ Γ(φRadTM), but this is impossible. Similarly, φN does not belong to φRadTM.
Thus we conclude that φltr(TM) ⊂ S(TM) and φRadTM ∩ φltr(TM) = {0}.

Lemma 3.2. Under the hypothesis of Lemma 3.1 and the spacelike characteristic vector field, if r = q, then
any complementary distribution to φ(RadTM) ⊕ φltr(TM) in S(TM) is Riemannian.

Proof. Let dim(M̄) = m + n and dim(M) = m. Lemma 3.1 implies that φltr(TM) ⊕ φRadTM ⊂ S(TM). We
denote the complementary distribution to φltr(TM) ⊕ φRadTM in S(TM) by D′. Then we have a local quasi
orthonormal field of frames on M̄ along M

{ξi, Ni, φξi, φNi,Xα, Wa}, i ∈ {1, ..., r}, α ∈ {3r + 1, ...,m}, a ∈ {r + 1, ...,n},

where {ξi} and {Ni} are lightlike basis of RadTM and ltr(TM), respectively andφξi, φNi, {Xα} and {Wa} are or-
thonormal basis of S(TM) and S(TM⊥), respectively. From the basis {ξ1, ..., ξr, φξ1, ..., φξr, φN1, ..., φNr, N1, ...,Nr}
of ltr(TM)⊕RadTM⊕φRadTM⊕φltr(TM), we can construct an orthonormal basis {U1, ...,U2r, V1, ...,V2r} as
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follows
U1 = 1√

2
(ξ1 + N1) U2 = 1√

2
(ξ1 −N1)

U3 = 1√
2
(ξ2 + N2) U4 = 1√

2
(ξ2 −N2)

... ...

... ...
U2r−1 = 1√

2
(ξr + Nr) U2r = 1√

2
(ξr −Nr)

V1 = 1√
2
(φξ1 + φN1) V2 = 1√

2
(φξ1 − φN1)

V3 = 1√
2
(φξ2 + φN2) V4 = 1√

2
(φξ2 − φN2)

... ...

... ...
V2r−1 = 1√

2
(φξr + φNr) V2r = 1√

2
(φξr − φNr).

Hence, Span{ξi, Ni, φξi, φNi} is a non-degenerate space of constant index 2r. Thus we conclude that
RadTM ⊕ φRadTM ⊕ ltr(TM) ⊕ φltr(TM) is non-degenerate and of constant index 2r on M̄. Since

index(TM̄) = index(RadTM ⊕ ltr(TM)) + index(φRadTM ⊕ φltr(TM)
+ index(D′ ⊥ S(TM⊥)),

we have 2q = 2r + index(D′ ⊥ S(TM⊥)). Thus, if r = q, then D′ ⊥ S(TM⊥) is Riemannian, i.e., index(D′ ⊥
(S(TM)⊥)) = 0. Hence D′ is Riemannian.

Remark 3.2. As mentioned in the introduction, the purpose of this paper is to introduce the notion of slant
lightlike submanifolds. To define this notion, one needs to consider angle between two vector fields. As we
can see from section 2, a lightlike submanifold has two (radical and screen) distributions: The radical distri-
bution is totally lightlike and therefore it is not possible to define angle between two vector fields of radical
distribution. On the other hand, the screen distribution is non-degenerate. Thus one way to define slant
notion is to choose a Riemannian screen distribution on lightlike submanifold, for which we use Lemma 3.2.

Proposition 3.1. There exist no lightlike submanifolds of an indefinite almost contact manifold M̄ such
that the structure vector field V is belong to RadTM or ltr(TM).

Proof. Suppose that M is a lightlike submanifold and V ∈ Γ(RadTM). Then there exist a vector field
W ∈ Γ(ltr(TM)) 1(N,V) = 1 , 0. On the other hand from (1) we have

1(φN, φV) = 1(V,N) − η(V)η(N).

Since V is null and φV = 0, we obtain
1(V,N) = 0.

This is a contradiction which proves our assertion.

From now on, we suppose that the structure vector field V is tangent to M. Then proposition 3.1 implies
that V ∈ Γ(S(TM)). In this paper we assume that V is spacelike.
Definition 3.1. Let M be a q− lightlike submanifold of an indefinite Sasakian manifold M̄ of index 2q. Then
we say that M is a slant lightlike submanifold of M̄ if the following conditions are satisfied:

(A) RadTM is a distribution on M such that

φRadTM ∩ RadTM = {0}. (3.1)

(B) For each non-zero vector field tangent to D at x ∈ U ⊂ M, the angle θ(X) between φX and the vector
space Dx is constant, that is, it is independent of the choice of x ∈ U ⊂ M and X ∈ Dx, where D is
complementary distribution to φRadTM ⊕ φltr(TM) in the screen distribution S(TM).
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This constant angle θ(X) is called slant angle of the distribution D. A slant lightlike submanifold is said to
be proper if D , {0} and θ , 0, π2 . From the definition 3.1, we have the following decomposition:

TM = RadTM ⊥ S(TM), (3.2)
= RadTM ⊥ (φRadTM ⊕ φltr(TM)) ⊥ D. (3.3)

Remark 3.3. As per Proposition 2.1, Definition 3.1 does not depend on S(TM) and S(TM⊥), but, it depends
on the transformation equations (2.60) in [8, page 165], with respect to the screen second fundamental forms
hs. However, our conclusions of this paper do not change with respect to a change of hs.

Example 3.1. Let M̄ = (R9
2, 1̄) be a semi-Riemann manifold, where 1̄ is of signature (−,+,+,+,−,+,+,+,+)

with respect to canonical basis

{∂x1, ∂x2, ∂x3, ∂x4, ∂y1, ∂y2, ∂y3, ∂y4, ∂z}.

Then for any θ ∈ (0, Π
2 )

X(u1,u2,u3,u4,u5,u6) = (u1,u2,u3, 0,u4,u1,u5 cosθ, u5 sinθ, u6),

defines a six-dimensional slant lightlike submanifolds M with slant angle θ in R9
2. It is easy to see that

e1 = 2(∂x1 + ∂y2 + y1∂z)
e2 = 2(∂x2 + y2∂z)
e3 = 2(∂x3 + y3∂z)
e4 = 2(∂y1)
e5 = 2(∂y3 + ∂y4)
e6 = 2∂z = V

form a local frame of TM. It is also easy to see that RadTM = span{e1} and φRadTM = {e2−e4}. Thus φRadTM
is a distribution on M. Furthermore D = span{e3, e5} is a slant distribution with slant angle θ. On the other
hand the screen transversal bundle is spanned by

W1 = ∂x4

W2 = −∂y3 + ∂y4

and the lightlike transversal bundle is spanned by

N = (−∂x1 + ∂y2).

Hence we can see that φN = 1
2 (e2 + e4) and 1(φN, φz1) = 1.

Proposition 3.2. Slant lightlike submanifolds do not include invariant and screen real lightlike submani-
folds of an indefinite Sasakian manifold.

Proof. Let M be a invariant or screen real lightlike submanifold of an indefinite Sasakian manifold M̄. Then,
since φRadTM = RadTM, the first condition of slant lightlike submanifold is not satisfied which proves our
assertion.

Proposition 3.3. Let M be a slant lightlike submanifold of indefinite Sasakian manifold M̄. If D is integrable
then M is a contact CR-lightlike submanifold with D0 = {0}.
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Proof. Since ∇̄ is a metric connection, for X,Y ∈ Γ(D) using (1.2), we get

1([X,Y],V) = 1(∇̄XY,V) − 1(∇̄YX,V)
= −1(Y, ∇̄XV) + 1(X, ∇̄YV)
= −1(Y, φX) + 1(X, φY)
= 21(φY,X).

Since D is integrable, we get 1(φY,X) = 0. Because D is Riemannian, it shows that φ(D) ⊆ tr(TM). Thus M
is a contact CR-lightlike submanifold.

It is known that Contact CR-lightlike submanifolds also do not include invariant and real lightlike sub-
manifolds [10]. Thus we may expect some relations between contact CR-lightlike submanifold and slant
lightlike submanifold. Indeed we have the following.

Proposition 3.4. Let M be a q− lightlike submanifold of an indefinite Sasakian manifold M̄ of index
2q. Then any coisotropic contact CR-lightlike submanifold is a slant lightlike submanifold with θ = 0. In
particular, a lightlike real hypersurface of an indefinite Sasakian manifold M̄ of index 2 is a slant lightlike
submanifold with θ = 0. Moreover, any contact CR-lightlike submanifold of M̄ with Do = {0} is a slant
lightlike submanifold with θ = π

2 .

Proof. Let M be a q− lightlike contact CR-lightlike submanifold of an indefinite Sasakian manifold
M̄. Then, by definition of contact CR-lightlike submanifold, φRadTM is a distribution on M such that
RadTM ∩ φRadTM = {0}. If M is coisotropic, then S(TM⊥) = {0}, thus L2 = 0 Then the complementary
distribution to φRadTM ⊕ φltr(TM) is Do. Lemma 3.2 implies that Do is Riemannian. Since Do is invariant
with respect to φ, it follows that θ = 0. Our second assertion is clear due to a lightlike real hypersurface
of M̄ is coisotropic. Now, if M is contact CR-lightlike submanifold with Do = {0}, then the complementary
distribution to φRadTM ⊕ φltr(TM) is D′. Since D′ is anti-invariant with respect to φ, it follows that θ = π

2 .
Thus proof is complete.

From Proposition 3.4, coisotropic contact CR-lightlike submanifolds, lightlike real hypersurfaces and
contact CR-lightlike submanifolds with Do = {0} are some of the many more examples of slant lightlike
submanifolds.

Theorem 3.1. Let M be a q lightlike submanifold of an indefinite Sasakian manifold M̄. Then M is a slant
lightlike submanifold if and only if

1. φRadTM is a distribution on M such that

φRadTM ∩ RadTM = {0},
2. D = {X ∈ Γ(D)|T2X = −λ(X − η(X))ξ} is a distribution such that it is complementary to φRadTM ⊕
φltr(TM).

Proof. First of all, we get

cosθ(X) =
1(φX,TX)
|φX||TX| =

−1(X, φTX)
|X||TX| =

−1(X,T2X)
|X||TX| .

On the other hand, we have

cosθ(X) =
|TX|
|X| .

Hence

cos2 θ(X) =
−1(X,T2X)
|X|2 .
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Thus we have

T2X = −X + η(X)ξ,

which proves theorem.
We now denote the projections on RadTM, φRadTM, φltr(TM) and D in TM by P1,P2,P3,P4. Similarly

we denote the projections on ltr(TM) and S(TM⊥) by Q1 and Q2. Then we get

φX = P1X + P2X + P3X + P4X + η(X)V (3.4)

for X ∈ Γ(TM). Similarly, we write

W = Q1W + Q2W (3.5)

for W ∈ Γ(tr(TM)). Now applying φ to (3.4) we have

φX = φP1X + φP2X + φP3X + f P4X + FP4X (3.6)

where f P4X (resp., FP4X) denotes the tangential part(resp. screen transversal part) of φP4X. Thus we get

φP1X ∈ φRadTM, φP2X ∈ Γ(RadTM) (3.7)

φP3X ∈ Γ(ltr(TM)), f P4X ∈ Γ(D), (3.8)

FP4X ∈ Γ(S(TM⊥)).

Applying φ to (3.5) we get
φW = φQ1W + BQ2W + CQ2W,

where BQ2W (resp. CQ2W) denotes the tangential (resp. screen transversal part) of φQ2W.

Now, using (3.4), Gauss-Weingarten formulas (2.3) − (2.5)and considering the decomposition of a slant
lightlike submanifold, we obtain

−1(X,Y)V + η(Y)X = ∇XP1Y + ∇XφP2Y − AφP3YX
+∇X f P4Y − AFP4YX − φP1∇XY − φP2∇XY

− f P4∇XY) − φhl(X,Y) − Bhs(X,Y),

hl(X, φP1Y) + hl(X, φP2Y) + hl(X, f P4Y) = −∇l
XφP3Y −Dl(X,FP4Y) + φP3∇XY

and

hs(X, φP1Y) + hs(X, φP2Y) + hs(X, f P4Y) = −Ds(X, φP3Y) − ∇s
XFP4Y

+FP4∇XY) − Chs(X,Y).

In particular, for Y ∈ Γ(RadTM), we have

φhl(X,Y) + Bhs(X,Y) = ∇XP1Y + ∇XφP2Y − φP1∇XY
−φP2∇XY − f P4∇XY (3.9)

and for Y ∈ Γ(S(TM)), we get

φhl(X,Y) + Bhs(X,Y) = ∇XφP2Y − AφP3YX
+∇X f P4Y − AFP4YX − φP1∇XY − φP2∇XY
− f P4∇XY + 1(X,Y)V − η(Y)X. (3.10)
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Theorem 3.2. Let M be a proper slant lightlike submanifold of indefinite Sasakian manifold M̄. Then the
induced connection ∇ is never a metric connection.

Proof. Suppose that the induced connection is a metric connection then ∇XφP2Y ∈ Γ(RadTM) and hl(X,Y) =
0, thus we have

∇XφP2Y − φP2∇XY ∈ Γ(RadTM).

Hence, we obtain

φP1∇XY + f P4∇XY) + Bhs(X,Y) − 1(X,Y)V = 0.

Since M has the following decomposition

TM = RadTM ⊕ φRadTM ⊕ φltr(TM) ⊕D ⊕ V.

We get

φP1∇XY = 0,

f P4∇XY) = −Bhs(X,Y),

1(X,Y)V = 0.

Now taking X = φN and Y = φξ then we obtain 1(N, ξ) = 0. Thus V = 0. This is a contradiction. Thus M
does not have a metric connection.

4. Screen slant lightlike submanifolds

In the previous section, we have seen that slant lightlike submanifolds do not contain invariant and
screen real submanifolds. In this section, we introduce a new class which includes invariant lightlike
submanifolds as well as screen real submanifolds. We first give the following lemma which will be useful
to define screen slant notion on the screen distribution.

Lemma 4.1. Let M be a 2q− lightlike submanifold of an indefinite Sasakian manifold M̄ with constant index
2q such that 2q < dim(M) and the structure vector field is a spacelike vector field on S(TM). Then the screen
distribution S(TM) of lightlike submanifold M is Riemannian.

Proof Let M̄ be a real 2k = m + n− dimensional indefinite Sasakian manifold and 1̄ be a semi-Riemannian
metric on M̄ of index 2q. Let us assume that M be an m− dimensional and 2q(< m)− lightlike submanifold
of M̄. Then we have a local quasi orthonormal field of frames on M̄ along M

{ξi, Ni, Xα, Wa}, i ∈ {1, ..., 2q}, α ∈ {2q + 1, ...,m}, a ∈ {2q + 1, ..., n},

where {ξi} and {Ni} are lightlike basis of RadTM and ltr(TM), respectively and {Xα} and {Wa} are orthonormal
basis of S(TM) and S(TM⊥), respectively. From the null basis {ξ1, ..., ξ2q,N1, ...,N2q} of ltr(TM) ⊕ RadTM, we
can construct an orthonormal basis {U1, ...,U4q} as follows

U1 = 1√
2
(ξ1 + N1) U2 = 1√

2
(ξ1 −N1)

U3 = 1√
2
(ξ2 + N2) U4 = 1√

2
(ξ2 −N2)

... ...

... ...
U4q−1 = 1√

2
(ξ2q + N2q) U4q = 1√

2
(ξ2q −N2q).
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Hence, Span{ξi, Ni} is a non-degenerate space of constant index 2q. Thus we conclude that RadTM⊕ ltr(TM)
is non-degenerate and constant index 2q on M̄. Since

index(TM̄) = index(RadTM ⊕ ltr(TM)) + index(S(TM⊥) ⊥ S(TM)),

we obtain that S(TM) ⊥ S(TM⊥) is constant index zero, that is, S(TM) and S(TM⊥) are Riemannian vector
bundles. Thus proof is complete.

Thus Lemma 4.1 enables us to give the following definition.
Definition 4.1. Let (M, 1,S(TM)) be a 2q− lightlike submanifold of an indefinite Sasakian manifold M̄ with
constant index 2q < dim(M). Then we say that M is a screen slant lightlike submanifold of M̄ if the following
conditions are satisfied:

(i) RadTM is invariant with respect to φ, i.e. φ(RadTM) = RadTM,
(ii) For each non-zero vector field X tangent to S(TM) at x ∈ U ⊂ M, the angle θ(X) between φX and

S(TM) is constant, i.e., it is independent of the choice of x and X ∈ Γ(S(TM)).

We note that θ(X) is called the slant angle. We point out the following features:

(a) RadTM is even dimensional,
(b) Screen slant lightlike submanifolds do not include real hypersurface.

Proposition 4.1. Any invariant an screen real lightlike submanifolds are screen slant lightlike submanifolds
with θ = 0 and θ = π

2 , respectively.

Proof. Let M be a invariant lightlike submanifold. Thenφ(TM) = TM. Hence φ(RadTM) = RadTM and
φ(S(TM)) = S(TM). Thus the condition (i) is satisfied and θ = 0. The other assertion can be proved in a
similar way.

From Proposition 4.1, we conclude that there are many examples of screen slant lightlike submanifolds.
Now, we are going to give an example of proper screen slant submanifolds.
Example 4.1. Let M be a submanifold of R2

2 given by the following equations

x1 = u1sinθ + u2cosθ , y1 = u1cosθ − u2sinθ
x2 = 2cosu3 , y2 = 2sinu3

x3 = 2u3sinu4 , y3 = 2u3cosu4

x4 = u2 , y4 = u1

z = u5.

Then the tangent bundle of TM is spaned by

z1 = sinθ∂x1 + cosθ∂y1 + ∂y4 + sinθy1∂z,
z2 = cosθ∂x1 − sinθ∂y1 + (cosθy1 + y4)∂z,
z3 = 2(−sinu3∂x2 + sinu4∂x3 + cosu3∂y2 + cosu4∂y3) + (−sinu3y2 + sinu4y3)∂z,
z4 = 2(u3cosu4∂x3 − u3sinu4∂y3) + u3y3cosu4∂z,
Z = ∂z.

Then it follows that M is 2−lightlike submanifold with RadTM = span{z1, z2}. It is easy to see that φz1 = z2,
which implies that RadTM is invariant. On the other hand, we can see that S(TM) = span{z3, z4} is a slant
distribution with slant angle Π

4 . Thus M is a screen slant lightlike submanifold of R9
2. By direct computation,

the screen transversal bundle S(TM⊥) is spanned by

W1 = sinu3∂x2 + sinu4∂x3 − cosu3∂y2 + cosu4∂y4 + (sinu3y2 + sinu4y3)∂z,
W2 = cosu3∂x2 + sinu3∂y2 + cosu3y2∂z
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and lightlike transversal bundle ltr(TM) spanned by

N1 =
1
2

(−sinθ∂x1 + cosθ∂y1 + ∂y4) − sinθy1∂z,

N2 =
1
2

(−cosθ∂x1 + ∂x4 − sinθ∂y1) + (−cosθy1 + y4)∂z.
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