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Abstract

In this work we present a novel compact scene representation based on Stixels that

infers geometric and semantic information. Our approach overcomes the previous rather

restrictive geometric assumptions for Stixels by introducing a novel depth model to ac-

count for non-flat roads and slanted objects. Both semantic and depth cues are used

jointly to infer the scene representation in a sound global energy minimization formula-

tion. Furthermore, a novel approximation scheme is introduced that uses an extremely

efficient over-segmentation. In doing so, the computational complexity of the Stixel in-

ference algorithm is reduced significantly, achieving real-time computation capabilities

with only a slight drop in accuracy. We evaluate the proposed approach in terms of se-

mantic and geometric accuracy as well as run-time on four publicly available benchmark

datasets. Our approach maintains accuracy on flat road scene datasets while improving

substantially on a novel non-flat road dataset.

1 Introduction

Autonomous vehicles, advanced driver assistance systems, robots and other intelligent de-

vices need to understand their environment; this requires both geometric (distance) and se-

mantic (classification) information. This data must be represented in a very compact model
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and must be computed in real-time that can serve as building block of higher-level modules,

such as localization and planning.
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Figure 1: The proposed approach: pixel-wise semantic and depth information serve as input

to our Slanted Stixels, a compact semantic 3D scene representation that accurately handles

arbitrary scenarios as e.g. San Francisco. The optional over-segmentation in the top-right

yields significant speed gains nearly retaining the depth and semantic accuracy.

The Stixel World has been successfully used for representing traffic scenes, as introduced

in [20]. The intelligent vehicles community has shown an increasing interest in this model

over the last years [2, 3, 4, 6, 11, 13, 15, 23]. It defines a compact medium-level repre-

sentation of dense 3D disparity data obtained from stereo vision using rectangles (Stixels)

as elements. These are classified either as ground-like planes, upright objects or sky, which

are the geometric primitives found in man-made environments. This converts millions of

disparity pixels to hundreds or thousands of Stixels. At the same time, most task-relevant

scene structures, such as free space and obstacles, are adequately represented.

A recent work [23] fuses geometric and semantic information in an extended Stixel

model, which is able to provide a richer yet compact representation of the traffic scene.

Our work extends [23] by incorporating a new depth model that takes arbitrary kinds of

slanted objects and non-flat roads into account. The induced extra computational complexity

is reduced in this paper by incorporating an over-segmentation strategy that nearly retains

the accuracy and can be applied to any Stixel model proposed so far.

Our work yields an improved Stixel representation that accounts for non-flat roads, out-

performing the original Stixel model in this context while keeping the same accuracy on flat

road scenes. An overview of our approach is shown in Fig. 1.

2 Related work

Our proposed approach introduces a novel Stixel-based scene representation that is able to

account for non-flat roads, c.f . Fig. 1. We also devise an approximation to compute Stixels

faster. Therefore, we see three categories of related publications.

The first group is comprised by road scene models. In most cases, occupancy grid maps

are used to represent the surrounding of the vehicle [7, 17, 18, 24]. Typically a grid in bird’s

eye perspective is defined and used to detect occupied grid cells. These grids and the Stixel

World both represent the 2D image in terms of column-wise stripes allowing to capture the
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camera data in a polar fashion. However, the Stixel inference in the image domain differs

significantly from classical grid-based approaches.

The second category includes different Stixel-based methods. Stixels were originally

devised to represent the 3D scene as observed by stereoscopic [2, 20] or monocular imagery

[15]. Our proposal is based on [23]: they use semantic cues in addition to depth to extract a

Stixel representation. However, they are limited to flat road scenarios due to constant height

assumption. In contrast, our proposal overcomes this drawback by incorporating a novel

plane model together with effective priors on the plane parameters.

Finally, the third category consists of fast methods for Stixel computation. Some methods

[1, 2, 13] model the scene with a single Stixel per column: they can be faster but provide an

incomplete world model, e.g. they cannot represent a pedestrian and a building in the same

column. A recent work [3] uses edge-based disparity maps to compute Stixels: this method is

also fast but gives inferior accuracy compared to the original Stixels [21]. The FPGA imple-

mentation from [17] runs at 25 Hz. Finally, [11] present an embedded GPU implementation

that runs at 26 Hz for Stixel widths of 5 px computed using an SGM stereo algorithm also

implemented on GPU [10]. In contrast, we propose a novel algorithmic approximation that

is hardware agnostic. Accordingly, it could also benefit of the aforementioned approaches.

Our main contributions are: (1) a real-time, compact and robust Stixel representation that

incorporates a novel depth model to accurately represent arbitrary kinds of slanted surfaces

in a sound probabilistic formulation; (2) a novel over-segmentation input to the main Stixel

segmentation algorithm that significantly reduces the run-time of the method while nearly

retaining its accuracy; (3) a new challenging synthetic dataset with non-flat roads that in-

cludes pixel-level semantic and depth ground-truth and allows to evaluate the accuracy of

competing algorithms in such scenarios. This dataset will be made publicly available1with

this paper; (4) an in-depth evaluation in terms of run-time as well as semantic and depth ac-

curacy carried out on this novel dataset and several real-world benchmarks. Compared to the

existing state-of-the-art approach, the depth accuracy is substantially improved especially in

non-flat road scenarios.

3 Stixel Model

The Stixel world is a segmentation of image columns into stick-like super-pixels with class

labels and a 3D planar depth model. This joint segmentation and labeling problem is car-

ried out via optimization of the column-wise posterior distribution P(S: | M:) defined over a

Stixel segmentation S: given all measurements M: from that particular image column. In the

following, we drop the column indexes for ease of notation. We obtain Stixel widths > 1 as

illustrated e.g. in Fig. 1 by down-sampling of the inputs.

A Stixel column segmentation consists of an arbitrary number N of Stixels Si, each rep-

resenting four random variables: the Stixel extent via bottom V b
i and top V t

i row, as well as

it’s class Ci and depth model Di. Thereby, the number of Stixels itself is a random variable

that is optimized jointly during inference. To this end, the posterior probability is defined

by means of the unnormalized prior and likelihood distributions P(S | M) = 1
Z

P̃(M | S) P̃(S)

transformed to log-likelihoods via P(S = s | M = m) =− log(e−E(s,m)).

The likelihood term Edata(·) thereby rates how well the measurements mv at pixel v fit

1http://synthia-dataset.net
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to the overlapping Stixel si

Edata(s,m) =
N

∑
i=1

Estixel(si,m) =
N

∑
i=1

vt
i

∑
v=vb

i

Epixel(si,mv) . (1)

This pixel-wise energy is further split in a semantic and a depth term

Epixel(si,mv) = Edisp(si,dv)+wl ·Esem(si, lv) . (2)

The semantic energy favors semantic classes of the Stixel that fit to the observed pixel-level

semantic input [23]. The parameter wl controls the influence of the semantic data term. The

depth term is defined by means of a probabilistic and generative sensor model Pv(·) that

considers the accordance of the depth measurement dv at row v to the Stixel si

Edisp(si,dv) =− log(Pv(Dv = dv | Si = si)) . (3)

It is comprised of a constant outlier probability pout and a Gaussian sensor noise model for

valid measurements with confidence cv

Pv(Dv | Si) =
pout

ZU

+
1− pout

ZG(si)
e
−

(

cv(dv−µ(si ,v))
σ(si)

)2

(4)

that is centered at the expected disparity µ(si,v) given the depth model of the Stixel. ZU and

ZG(si) normalize the distributions.

This paper introduces a new plane depth model that overcomes the previous rather restric-

tive constant depth and constant height assumptions for object respectively ground Stixels.

To this end, we formulate the depth model µ(si,v) using two random variables defining a

plane in the disparity space that evaluates to the disparity in row v via

µ(si,v) = bi · v+ai . (5)

Note that we assume narrow Stixels and thus can neglect one plane parameter, i.e. the roll.

The prior captures knowledge about the segmentation: the Stixel segmentation has to be

consistent, i.e. each pixel is assigned to exactly one Stixel. A model complexity term favors

solutions composed of fewer Stixels by invoking costs for each Stixel in the column seg-

mentation S. Furthermore, prior assumptions as "objects are likely to stand on the ground"

and "sky is unlikely below the road surface" are taken into account. The interested reader

is referred to [6] for more details. The Markov property is used so that the prior reduces to

pair-wise relations between subsequent Stixels. Accordingly, the prior is computed as

Eprior(s) =
N

∑
i=2

Epair(si,si−1)+E f irst(s1) . (6)

In this paper, we propose a new additional prior term that uses the specific properties of the

three geometric classes. We expect the two random variables A,B representing the plane

parameters of a Stixel to be Gaussian distributed, i.e.

Eplane(si) =

(

a−µ
a
ci

σa
ci

)2

+

(

b−µ
b
ci

σb
ci

)2

− log(Z) . (7)
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Figure 2: Comparison of original [23] (top) and our slanted (bottom) Stixels: due to the fixed

slant in the original formulation the road surface is not well represented as illustrated on the

left. The novel model is capable to reconstruct the whole scene accurately.

This prior favors planes in accordance to the expected 3D layout corresponding to the ge-

ometric class. E.g. object Stixels are expected to have an approximately constant disparity,

i.e. µ
b
object = 0. The expected road slant µ

a
ground can be set using prior knowlede or a preceed-

ing road surface detection. Note that the novel formulation is a strict generalization of the

original method, since they are equivalent, if the slant is fixed, i.e. σ
b
ob ject → 0,µb

ob ject = 0.

3.1 Inference

The sophisticated energy function defined in Sec. 3 is optimized via Dynamic Programming

as in [20]. However, we also have to optimize jointly for the novel depth model. When

optimizing for the plane parameters ai,bi of a certain Stixel si, it becomes apparent that all

other optimization parameters are independent of the actual choice of the plane parameters.

We can thus simplify

argmin
ai,bi

E(s,m) = argmin
ai,bi

Estixel(si,m)+Eplane(si) . (8)

Thus, we minimize the global energy function with respect to the plane parameters of all

Stixels and all geometric classes independently. We can find an optimal solution of the

resulting weighted least squares problem in closed form, however, we still need to compare

the Stixel disparities to our new plane depth model. Therefore, the complexity added to the

original formulation is another quadratic term in the image height.

3.2 Stixel Cut Prior

The Stixel inference described so far requires to estimate the costs for each possible Stixel

in an image, although many Stixels could be trivially discarded, e.g. in image regions with

homogeneous depth and semantic input. We propose a novel prior that can be easily used to

significantly reduce the computational burden by exploiting hypothesis generation. To this

end, we formulate a new prior similar to [4], but instead of Stixel bottom and top probabilities

we incorporate generic likelihoods for pixels being the cut between two Stixels.

We leverage this additional information adding a novel term for a Stixel si

Ecut(si) =− log
(

cvb
i
(cut)

)

, (9)
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Figure 3: Stixel inference illustrated as shortest path problem on a directed acyclic graph:

the Stixel segmentation is computed by finding the shortest path from the source (left gray

node) to the sink (right gray node). The vertices represent Stixels with colors encoding their

geometric class, i.e. ground, object and sky. Only the incoming edges of ground nodes are

shown for simplicity. Adapted from [6].

where cvb
i
(cut) is the confidence for a cut at vb

i , thus cvb
i
(cut) = 0 implies that there is no cut

between two Stixels at row v.

As described in [19], we can use a recursive definition of the optimization problem to

design the Dynamic Programming solution scheme. In order to simplify our description we

use a special notation to refer to Stixels: obt
b = {vb,vt ,ob ject}. Similarly, OBk is defined as

the minimum aggregated cost of the best segmentation from position 0 to k. The Stixel at

the end of the segmentation associated with each minimum cost is denoted as obk. We next

show a recursive definition of the problem:

OBk = min



















Edata(obk
0)+Eprior(obk

0)

Edata(obk
x)+Eprior(obk

x,obx−1)+OBx−1∀x ∈ cuts,x ≤ k

Edata(obk
x)+Eprior(obk

x,grx−1)+GRx−1∀x ∈ cuts,x ≤ k

Edata(obk
x)+Eprior(obk

x,skx−1)+SKx−1∀x ∈ cuts,x ≤ k

(10)

We only show the case for object Stixels, but the other cases are solved similarly. Also, GRk

and SKk stand for ground and sky respectively. The base case problem, i.e. segmenting a

column of the single pixel at the bottom, is defined: OB0 = Edata(ob0
0)+Eprior(ob0

0). Our

method trusts that all the optimal cuts will be included in our over-segmentation (cuts in

Eq. (10)), therefore, only those positions are checked as Stixel start and end. This reduces

the complexity of the Stixel estimation problem for a single column to O(h′×h′), where h′

is the number of over-segmentation cuts computed for this column, h is image height and

h′ ≪ h.

The computational complexity reduction becomes apparent in Fig. 3a. As stated in [6],

the inference problem can be interpreted as finding the shortest path in a directed acyclic

graph. Our approach prunes all the vertices associated with the Stixel’s top row not included

according to the Stixel cut prior, c.f . Fig. 3b.
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sidewalk building vegetation traffic light traffic sign bicycle motorcycle road lines

terrain road wall pole rider truck bus train fence person sky car

Figure 4: The SYNTHIA-SF Dataset. A sample frame (left) with its depth (center) and

semantic labels (right).

4 Experiments

This section assesses the accuracy and run-time of our proposal. A previous concern is

to verify that our method maintains the accuracy for scenes containing only flat roads and

represents non-flat roads better. For that purpose, we evaluate on both synthetic and real

data, c.f . Sec. 4.1. We introduce metrics and baselines as well as a Stixel over-segmentation

method and other details in Sec. 4.2. Finally, quantitative and qualitative results are reported,

c.f . Sec. 4.3.

4.1 Datasets

As our Stixel model represents geometric and semantic information, we measure the accu-

racy of our method for both. Therefore, we evaluate on the -to the best of our knowledge-

only such dataset: an annotated subset of KITTI [14] called Ladicky. It consists of 60 images

with a resolution of 0.5 MP that we all use for evaluation. We follow the suggestion of the

original author to ignore the three rarest object classes, leaving a set of 8 classes. Following

[23], we use additional publicly available semantic annotations on other parts of KITTI for

training. All in all, we have a training set of 676 images, where we harmonized the object

classes used by the different authors.

We also evaluate disparity accuracy on the training data of the well-known stereo chal-

lenge KITTI 2015 [9]. This dataset comprises a set of 200 images with sparse dispar-

ity ground truth obtained from a laser scanner. However, there is no suitable semantic

ground truth available for this dataset. Furthermore, we evaluate the semantic accuracy on

Cityscapes [5], a highly complex dataset with dense annotations of 19 classes on ca. 3000

images for training and 500 images for validation that we used for testing.

Unfortunately, all the above datasets were generated in flat road environments, and they

only help us validate that we are not decreasing our accuracy for this case. In order to

compare the accuracy of competing algorithms on non-flat road scenarios, a new dataset is

required. Therefore, we introduce a new synthetic dataset inspired by [22]. This dataset has

been generated with the purpose of evaluating our model, but it contains enough information

to be useful in additional related tasks, such as object recognition, semantic and instance

segmentation, among others. SYNTHIA-San Francisco (SYNTHIA-SF) consists of photo-

realistic frames rendered from a virtual city and comes with precise pixel-level depth and

semantic annotations for 19 classes (see Fig. 4). This new dataset contains 2224 images that

we use to evaluate both depth and semantic accuracy.
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4.2 Experiment Details

We evaluate our proposed method in terms of semantic and depth accuracy using two met-

rics. The depth accuracy is obtained as the outlier rate of the disparity estimates, the standard

metric used to evaluate on KITTI benchmark [9]. An outlier is a disparity estimation with an

absolute error larger than 3 px or a relative deviation larger than 5% compared to the ground

truth. The semantic accuracy is evaluated with average Intersection-over-Union (IoU) over

all classes, also a standard measure for semantics [8]. We also provide Frame-rate (Hz) to

ensure our system is capable of real-time performance and number of Stixels per image to

quantify the complexity of the obtained representation. All Stixel run-times are obtained

using a multi-threaded implementation on standard consumer hardware: Intel i7-6800K. For

the FCN output, a Maxwell NVidia Titan X is used.

Semantic Stixels [23] serves as baseline, because they achieve state-of-the-art results in

terms of Stixel accuracy. We provide the accuracy of our new disparity model, c.f . Sec. 3.

Finally, we also evaluate our reduced complexity approach, c.f . Sec. 3.2, both for our model

and Semantic Stixels, Ours (fast) and [23] (fast), respectively.

As input, we use disparity images D obtained via semi-global-matching (SGM) [12] and

pixel-level semantic labels L computed by a fully convolutional network (FCN) [16]. We use

the same FCN model used in [23] without retraining to allow for comparison. For the same

reason, we set Stixel width to 8 px. The same downscaling is applied in the v-direction.

The rest of the parameters are taken from [23]. We use the known camera calibration to

obtain expected µ
a
ground and µ

b
ground . For objects, we set σ

b
ob ject → 0,µb

ob ject = 0 because the

disparity is too noisy for the slanted object model. Finally, for Sky Stixels it does not make

sense to have slanted surfaces, therefore, we set: µ
a
sky = 0,µa

sky = 0,σa
sky → 0,σb

sky → 0.

In order to improve the efficiency of our approach, we use a preceding Stixel cut prior

generation. Our goal is to show that we can speed up the Stixel computation with a very

simple and fast approach. Accordingly, we opt for [13] to generate our over-segmentation:

a very low-level method based on simple mathematical concepts like the use of local and

strict extrema of the disparity map to find points of interest. This method first performs

an Extreme points detection step that generates possible Stixel cuts and subsequently filters

them. As we are only interested in cut hypothesis we only use the first step. We also use

semantic segmentation to generate cuts, when there is a change in semantic class we assume

there is a cut.

4.3 Results

The quantitative results of our proposals and baselines as described in Sec. 3 are shown in

Table 1. The first observation is that all variants are compact representations of the surround-

ing, since the complexity of the Stixel representation is small compared to the high resolution

input images, c.f . the last row in the Table 1.

Second, our method achieves comparable or slightly better results on all datasets with

flat roads. This indicates that the novel and more flexible model does not harm the accuracy

in such scenarios.

The third observation is that the proposed fast variant improves the run-time of both the

original Stixel approach by up to 2x and the novel Stixel approach by up to 7x with only

a slight drop in depth accuracy. The benefit increases with higher resolution input images.

This is due to the mean density of Stixel cuts in our over-segmentation for SYNTHETIC-SF

of 13% with standard deviation of 2, which is equivalent to a 8x reduced vertical resolution.
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Left Image Original Stixels [23] Our Stixels

Figure 5: Exemplary outputs on real data: in all scenes with non-flat roads our model cor-

rectly represents the scene, while retaining accuracy on objects. The last line shows a failure

case, where our approach classifies the road as sidewalk due to erroneous semantic input.

However, the original approach reconstructs a wall in this case, highlighted by a red circle.

This could lead e.g. to an emergency break.

Finally, we observe that our novel model is able to accurately represent non-flat scenarios

in contrast to the original Stixel approach yielding a substantially increased depth accuracy

by more than 17%. We also improve in terms of semantic accuracy, which we address to the

joint semantic and depth inference that benefits of a better depth model.

The observations from the quantitative evaluation are confirmed also in the qualitative

results, c.f . Fig. 5.

5 Conclusions

This paper presented a novel depth model for the Stixel World that is able to represent non-

flat roads and slanted objects in a compact representation that overcomes the previous restric-

tive constant height and depth assumptions respectively. Moreover, a novel approximation is

introduced in order to reduce the computational complexity significantly by only checking

reasonable Stixel cuts. This representation change is required for difficult environments that

are found in the real world. We showed in extensive experiments on several related datasets

that our depth model is able to better represent those scenes and our approximation is able

to reduce the run-time drastically with only a slight drop in accuracy.
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Table 1: Quantitative results of our methods compared to [23], raw SGM and FCN. Signifi-

cantly best results highlighted in bold.

Metric Dataset SGM FCN [23] Ours [23] (fast) Ours (fast)

Disp Error (%)

Ladicky 16.6 - 17.3 16.9 18.5 17.8

KITTI 15 11.5 - 10.9 11.0 11.8 11.7

SYNTHIA-SF 11.0 - 30.9 12.9 33.9 15.4

IoU (%)

Ladicky - 69.8 63.5 63.4 63.9 63.7

Cityscapes - 60.8 65.7 65.8 65.7 65.8

SYNTHIA-SF - 45.9 46.0 48.5 46.9 48.5

Frame-rate (Hz)

KITTI 55 47.6 113 61 120 116

Cityscapes 22 15.4 20.9 6.6 36.6 27.5

SYNTHIA-SF 21 13.9 19.4 4.7 38.9 33.1

# Stixels (103)

KITTI 226 226 0.6 0.6 0.6 0.6

Cityscapes 1 k 1 k 1.4 1.5 1.3 1.4

SYNTHIA-SF 1 k 1 k 1.5 1.7 1.2 1.3
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