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ABSTRACT

The SLATE (Software for Linear Algebra Targeting Exascale) library
is being developed to provide fundamental dense linear algebra
capabilities for current and upcoming distributed high-performance
systems, both accelerated CPU–GPU based and CPU based. SLATE
will provide coverage of existing ScaLAPACK functionality, includ-
ing the parallel BLAS; linear systems using LU and Cholesky; least
squares problems using QR; and eigenvalue and singular value
problems. In this respect, it will serve as a replacement for Sca-
LAPACK, which after two decades of operation, cannot adequately
be retrofitted for modern accelerated architectures. SLATE uses
modern techniques such as communication-avoiding algorithms,
lookahead panels to overlap communication and computation, and
task-based scheduling, along with a modern C++ framework. Here
we present the design of SLATE and initial reports of several of its
components.
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1 INTRODUCTION

The objective of SLATE is to provide fundamental dense linear
algebra capabilities for the high-performance computing (HPC)
community at large. The ultimate objective of SLATE is to replace
ScaLAPACK [7], which has become the industry standard for dense
linear algebra operations in distributed memory environments. Af-
ter two decades of operation, ScaLAPACK is past the end of its life
cycle and overdue for a replacement, as it can hardly be retrofitted
to support hardware accelerators, which are an integral part of
today’s HPC hardware infrastructure. In the past two decades, HPC
has witnessed tectonic shifts in hardware technology, software
technology, and a plethora of algorithmic innovations in scientific
computing that are not reflected in ScaLAPACK. At the same time,
while several libraries provide functionality similar to ScaLAPACK,
no replacement for ScaLAPACK has emerged to gain widespread
adoption in applications. SLATE aims to be this replacement, boast-
ing superior performance and scalability in modern, heterogeneous,
distributed-memory HPC environments.

Primarily, SLATE aims to extract the full performance potential
and maximum scalability from modern, many-node HPC machines
with large numbers of cores and multiple hardware accelerators
per node. For typical dense linear algebra workloads, this means
getting close to the theoretical peak performance and scaling to
the full size of the machine (i.e., thousands to tens of thousands of
nodes).

SLATE currently implements parallel BLAS (PBLAS); linear sys-
tems using partial pivoted LU, Cholesky, and block Aasen’s for
symmetric indefinite systems [6]; mixed-precision iterative refine-
ment; least squares using communication-avoiding QR [15]; andma-
trix inversion. We are actively developing communication-avoiding
two-stage symmetric eigenvalue and singular value decompositions.
Future work will include non-symmetric eigenvalue problems and
randomized algorithms.

https://doi.org/10.1145/3295500.3356223
https://doi.org/10.1145/3295500.3356223
https://doi.org/10.1145/3295500.3356223
https://www.acm.org/publications/policies/artifact-review-badging/#available


SC ’19, November 17–22, 2019, Denver, CO, USA Gates, Kurzak, Charara, YarKhan, Dongarra

1.1 Motivation

In the United States, the plan for achieving exascale relies heavily
on the use of GPU accelerated machines, similar to the Summit 1

and Sierra 2 systems at Oak Ridge National Laboratory (ORNL)
and Lawrence Livermore National Laboratory (LLNL), respectively,
which currently occupy positions #1 and #2 on the TOP500 list.

The urgency of developing multi-GPU accelerated, distributed-
memory software is underscored by the architectures of these sys-
tems. The Summit system contains three NVIDIA V100 GPUs per
POWER9 CPU. The peak double precision floating point perfor-
mance of the CPUs is 22 cores × 24.56 GFLOP/s = 0.54 TFLOP/s.
The peak performance of the GPUs is 3 devices × 7.8 TFLOP/s =
23.4 TFLOP/s. That is, 97.7% of performance is on the GPU side,
and only 2.3% of performance is on the CPU side. This means that,
for all practical purposes, the CPUs can be ignored as floating point
hardware, with their main purpose being to keep the GPUs busy.

1.2 Related work

Numerous libraries provide dense linear algebra routines. Since its
initial release nearly 30 years ago, LAPACK [5] has become the
de facto standard library for dense linear algebra on a single node.
It leverages vendor-optimized BLAS for node-level performance,
including shared-memory parallelism. ScaLAPACK [7] built upon
LAPACK by extending its routines to distributed computing, relying
on both the Parallel BLAS (PBLAS) and explicit distributed-memory
parallelism. Some attempts [18, 19] have been made to adapt the
ScaLAPACK library for accelerators, but these efforts have shown
the need for a new framework.

More recently, the DPLASMA [9] and Chameleon [2, 3] libraries
both build a task dependency graph and launch tasks as their depen-
dencies are fulfilled. This eliminates the artificial synchronizations
inherent in ScaLAPACK’s design, and allows for overlap of commu-
nication and computation. DPLASMA relies on the PaRSEC runtime
to schedule tasks, while Chameleon uses the StarPU runtime. If
the dataflow is known at compile time, an algorithm can be ex-
pressed using the efficient and scalable Parameterized Task Graph
(PTG) interface. Algorithms that make runtime decisions based on
data, such as partial pivoting in LU, are easier to express using the
less efficient but more intuitive Insert Task interface, similar to
OpenMP tasks. Both DPLASMA and Chameleon are accelerated
on GPU-based architectures. Instead of leveraging C++ templates,
they auto-generate all precisions from the double-complex code.

Elemental [39] is an extensive distributed linear algebra library,
using C++ templates for multiple precision support. It is fairly
unique in distributing the matrix by elements, rather than blocks,
thus allowing arbitrary algorithmic blocking instead of tying the
blocking to the distribution. However, it lacks accelerator support.

Algorithmic innovations to minimize communication and in-
crease computational intensity have also been explored. This in-
cludes the two-stage reductions to tridiagonal and bidiagonal for the
symmetric eigenvalue and SVD problems, respectively. ELPA [37]
provides symmetric eigensolvers, with both one stage and two
stage reductions to tridiagonal, and has GPU acceleration, but
lacks other ScaLAPACK functionality. Demmel et al. have also

1https://www.olcf.ornl.gov/summit/
2https://hpc.llnl.gov/hardware/platforms/sierra

derived communication-avoiding algorithms for QR and LU factor-
ization [15], as well as for matrix-matrix multiplication [14, 42].

There are also numerous node-level linear algebra libraries. Eigen
[32] and Armadillo [41] use C++ templates extensively to make
precision-independent code. MAGMA [16] provides accelerated
linear algebra, with extensive coverage of LAPACK’s functionality.
ViennaCL [40] provides accelerated linear algebra, but lacks most
dense linear algebra aside from BLAS and no-pivoting LU. NVIDIA
cuBLAS [38] and AMD rocBLAS [4] provide native BLAS opera-
tions on GPU accelerators. Vendor libraries such as Cray Scientific
Libraries (LibSci) [13] and IBM Engineering and Scientific Sub-
routine Library (ESSL) [29] provide accelerated versions of BLAS
and LAPACK for GPU accelerators. These accelerated node-level
libraries may give some limited benefit to ScaLAPACK, which is
built on top of BLAS and LAPACK. However, this is limited by
the bulk-synchronous, fork-join design of ScaLAPACK. The Intel
Math Kernels Library (MKL) [31] provides BLAS, LAPACK, and
ScaLAPACK for CPUs and Xeon Phi accelerators.

1.3 Goals

Ultimately, a distributed linear algebra library built from the ground
up to support accelerators, and incorporating state-of-the-art par-
allel algorithms, will give the best performance. In this manuscript,
we describe how we have designed SLATE to achieve this, and
describe how it fulfills the following design goals.

Targets modern HPC hardware consisting of a large num-
ber of nodes with multicore processors and several hardware
accelerators per node.

Achieves portable high performance by relying on vendor
optimized standard BLAS, batch BLAS, and LAPACK, and
standard parallel programming technologies such as MPI
and OpenMP. Using the OpenMP runtime puts less of a
burden on applications to integrate SLATE than adopting a
proprietary runtime would.

Provides scalability by employing proven techniques in dense
linear algebra, such as 2D block cyclic data distribution and
communication-avoiding algorithms, as well as modern par-
allel programming approaches, such as dynamic scheduling
and communication overlapping.

Facilitates productivity by relying on the intuitive Single

Program, Multiple Data (SPMD) programming model and
a set of simple abstractions to represent dense matrices and
dense matrix operations.

Assures maintainability by employing useful C++ facilities,
such as templates and overloading of functions and operators,
with a focus on minimizing code.

Eases transition to SLATE by natively supporting the Sca-
LAPACK 2D block-cyclic layout and providing a backwards-
compatible ScaLAPACK API.

2 MATRIX LAYOUT

The new matrix storage introduced in SLATE is one of its most
impactful features. In this respect, SLATE represents a radical de-
parture from other distributed dense linear algebra software such
as ScaLAPACK, Elemental, and DPLASMA, where the local ma-
trix occupies a contiguous memory region on each process. While

https://www.olcf.ornl.gov/summit/
https://hpc.llnl.gov/hardware/platforms/sierra
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DPLASMA uses tiled algorithms, the tiles are stored in one contigu-
ous memory block on each process. In contrast, SLATE makes tiles
first class objects that can be individually allocated and passed to
low-level tile routines. In SLATE, the matrix consists of a collection
of individual tiles, with no correlation between their positions in
the matrix and their memory locations. At the same time, SLATE
also supports tiles pointing to data in a traditional ScaLAPACK ma-
trix layout, easing an application’s transition from ScaLAPACK to
SLATE. A similar strategy of allocating tiles individually has been
successfully used in low-rank, data-sparse linear algebra libraries,
such as hierarchical matrices [8, 25] in HLib [26] and with the block
low-rank (BLR) format [45]. Compared to other distributed dense
linear algebra formats, SLATE’s matrix structure offers numerous
advantages:

First, the same structure can be used for holding many different
matrix types: general, symmetric, triangular, band, symmetric band,
etc., as shown in Fig. 1. Little memory is wasted for storing parts
of the matrix that hold no useful data, e.g., the upper triangle of
a lower triangular matrix. Instead of wasting O(n2) memory as
ScaLAPACK does, only O(nnb ) memory is wasted in the diagonal
tiles for a block size nb ; all unused off-diagonal tiles are simply
never allocated. There is no need for using complex matrix layouts
such as the Recursive Packed Format (RPF) [22] or Rectangular Full
Packed (RFP) [24] in order to save space.

Second, the matrix can be easily converted, in parallel, from one
layout to another with O(P) memory overhead for P processors
(cores/threads). Possible conversions include: changing tile layout
from column-major to row-major, łpackingž of tiles for efficient
BLAS execution [30], and low-rank compression of tiles. Notably,
transposition of the matrix can be accomplished by transposition of
each tile and remapping of the indices. There is no need for complex
in-place layout translation and transposition algorithms [23].

Also, tiles can be easily allocated and copied among different
memory spaces. Both inter-node communication and intra-node
communication is vastly simplified. Tiles can be easily and effi-
ciently transferred between nodes using MPI. Tiles can be easily
moved in and out of fast memory, such as the MCDRAM in Xeon
Phi processors. Tiles can also be copied to one or more device
memories in the case of GPU acceleration.

In practical terms, a SLATE matrix is implemented using the
std::map container from the C++ standard library as:

std::map< std::tuple< int64_t, int64_t, int >,

Tile<scalar_t>* >

The map’s key is a triplet consisting of the tile’s (i, j) block row
and column indices in the matrix, and the device number (host or
accelerator) where the tile is located. It relies on global indexing of
tiles, meaning that each tile is identified by the same unique tuple
across all processes. The map’s value is a lightweight Tile object
that stores a tile’s data and properties.

In addition to facilitating the storage of different types of matri-
ces, this structure also readily accommodates partitioning of the
matrix to the nodes of a distributed memory system. Each node
stores only its local subset of tiles, as shown in Fig. 2. Mapping
of tiles to nodes is defined by a C++ lambda function, and set to
2D block cyclic mapping by default, but the user can supply an
arbitrary mapping function. Similarly, distribution to accelerators

within each node is 1D block cyclic by default, but the user can
substitute an arbitrary function.

Remote access is realized by replicating remote tiles in the local
matrix for the duration of the operation. This is shown in Fig. 2
for the trailing matrix update in Cholesky, where portions of the
remote panel (yellow) have been copied locally.

Finally, SLATE can support non-uniform tile sizes (Fig. 3). Most
factorizations require that the diagonal tiles are square, but the
block row heights and block column widths can, in principle, be
arbitrary. The current implementation has a fixed tile size, but the
structure does not require it. This will facilitate applications where
the block structure is significant, for instance in Adaptive Cross

Approximation (ACA) linear solvers [34].

3 MATRIX CLASS HIERARCHY

The design of SLATE revolves around the Tile class and the Ma-
trix class hierarchy listed below. The Tile class is intended as a
simple class for maintaining the properties of individual tiles and
implementing core serial tile operations, such as tile BLAS, while
the Matrix class hierarchy maintains the state of distributed ma-
trices throughout the execution of parallel matrix algorithms in a
distributed memory environment.

BaseMatrix Abstract base class for all matrices.
Matrix General,m × n matrix.
BaseTrapezoidMatrix Abstract base class for all upper or

lower trapezoid storage,m × n matrices. For upper, tiles
A(i, j) for i ≤ j are stored; for lower, tiles A(i, j) for i ≥ j

are stored.
TrapezoidMatrix Upper or lower trapezoid,m×nmatrix;

the opposite triangle is implicitly zero.
TriangularMatrix Upper or lower triangular, n×n ma-

trix.
SymmetricMatrix Symmetric, n×n matrix, stored by its

upper or lower triangle; the opposite triangle is known
implicitly by symmetry (aj,i = ai, j ).

HermitianMatrix Hermitian, n × n matrix, stored by its
upper or lower triangle; the opposite triangle is known
implicitly by symmetry (aj,i = ai, j ).

The BaseMatrix class stores the matrix dimensions; whether
the matrix is upper, lower, or general; whether it is non-transposed,
transposed, or conjugate-transposed; how the matrix is distributed;
and the set of tiles – both local tiles and temporary workspace
tiles as needed during the computation. It also stores the distribu-
tion parameters and MPI communicators that would traditionally
be stored in a ScaLAPACK context. As such, there is no separate
structure to maintain state, nor any need to initialize or finalize the
SLATE library.

It is also planned to add a similar hierarchy for band matrices:
BandMatrix, TriangularBandMatrix, SymmetricBandMatrix, and
HermitianBandMatrix classes. For an upper block bandwidth ku
and lower block bandwidth kl , only the tiles A(i, j) for j − ku ≤ i ≤

j + kl are stored.
SLATE routines require the correct matrix types for their argu-

ments, which helps to ensure correctness, while inexpensive shal-
low copy conversions exist between the various matrix types. For in-
stance, a general Matrix can be converted to a TriangularMatrix
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Figure 1: General, symmetric, band, and symmetric band matrices. Only shaded tiles are stored; blank tiles are implicitly zero

or known by symmetry, so are not stored.

Figure 2: View of symmetric matrix on process (0, 0) in 2 × 2

process grid. Darker blue tiles are local to process (0, 0);

lighter yellow tiles are temporary workspace tiles copied

from remote process (0, 1).

Figure 3: Block sizes can vary. Most algorithms require

square diagonal tiles.

for doing a triangular solve (trsm), without copying. The two ma-
trices have a reference-counted C++ shared pointer to the same
underlying data (std::map of tiles).

Likewise, copying a matrix object is an inexpensive shallow copy,
using a C++ shared pointer. Sub-matrices are also implemented
by creating an inexpensive shallow copy, with the matrix object
storing the offset from the top-left of the original matrix and the
transposition operation with respect to the original matrix.

Transpose and conjugate-transpose are supported by creating
an inexpensive shallow copy and changing the transposition op-
eration flag stored in the new matrix object. For a matrix A that
is a possibly transposed copy of an original matrix A0, the func-
tion A.op() returns Op::NoTrans, Op::Trans, or Op::ConjTrans,
indicating whether A is non-transposed, transposed, or conjugate-
transposed, respectively. The functions A = transpose(A0) and
A = conj_transpose(A0) return new matrices with the opera-
tion flag set appropriately. Querying properties of a matrix object
takes the transposition and sub-matrix offsets into account. For
instance, A.mt() is the number of block rows of op(A0), where
A = op(A0) = A0, AT0 , or A

H
0 . The function A(i, j) returns the

i, j-th tile of op(A0), with the tile’s operation flag set to match the
A matrix.

SLATE supports upper and lower storage with A.uplo() re-
turning Uplo::Upper or Uplo::Lower. Tiles likewise have a flag
indicating upper or lower storage, accessed by A(i, j).uplo().
For tiles on the matrix diagonal, the uplo flag is set to match the
matrix, while for off-diagonal tiles it is set to Uplo::General.

3.1 Handling of side, uplo, trans

The classical BLAS take parameters such as side, uplo, trans
(named łopž in SLATE), and diag to specify operation variants.
Traditionally, this has meant that implementations have numerous
cases. The reference BLAS has nine cases in zgemm and eight cases in
ztrmm (times several sub-cases). ScaLAPACK and the PLASMA [17]
likewise have eight cases in ztrmm. In contrast, by storing both
uplo and op within the matrix object itself, and supporting inex-
pensive shallow copy transposition, SLATE can implement just one
or two cases and map all the other cases to that implementation by
appropriate transpositions.

For instance, at the high level, gemm can ignore the operations
onA and B. If transposed, the matrix object itself handles swapping
indices to obtain the correct tiles during the algorithm. At the low
level, the transposition operation is set on the tiles, and is passed
on to the underlying node-level BLAS gemm routine.

Similarly, the Cholesky factorization, shown in Fig. 9, implements
only the lower case; the upper case is handled by a shallow copy
transposition to map it to the lower case. The data is not physically
transposed in memory, only the transpose op flag is set so that the
matrix is logically lower.
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4 MULTIPLE PRECISIONS

SLATE handles multiple precisions by C++ templating, so there is
only one precision-independent version of the code, which is then
instantiated for the desired precisions. Operations are defined to
apply consistently across all precisions. For instance, blas::conj
extends std::conj to apply to real precisions (float, double), where
it is a no-op. SLATE’s BLAS++ component [21] provides overloaded,
precision-independent wrappers for all the underlying node-level
BLAS, which SLATE’s PBLAS are built on top of. For instance,
blas::gemm in BLAS++ maps to the classical sgemm, dgemm, cgemm,
or zgemm BLAS, depending on the precision of its arguments. For
real arithmetic, symmetric and Hermitian matrices are considered
interchangeable, so hemm maps to symm, herk to syrk, and her2k

to syr2k. This mapping aides in templating higher-level routines,
such as Cholesky, which does a herk (mapped to syrk in real) to
update the trailing matrix.

Currently, the SLATE library has explicit instantiations of the
four main data types: float, double, std::complex<float>, and
std::complex<double>. The SLATE code should accommodate
other data types, such as half, double-double, or quad precision,
given appropriate underlying node-level BLAS. For instance, Intel
MKL and NVIDIA cuBLAS provide half-precision gemm operations.

SLATE also implements mixed-precision algorithms [10] that
factor a matrix in low precision, then use iterative refinement to at-
tain a high precision final result. These exploit the faster processing
in low precision for theO(n3) factorization work, while refinement
in the slower high precision is only O(n2) work. In SLATE, the low
and high precisions are independently templated; currently we use
the traditional single and double combination. However, recent in-
terest with half precision has led to algorithms using half precision
with either single or double [11, 27]. One could also go to higher
precisions, using double-double [28] or quad for the high precision.
By adding the relevant underlying node-level BLAS operations in
the desired precisions to BLAS++, the templated nature of SLATE
greatly simplifies instantiating different combinations of precisions.

5 PARALLELISM MODEL

SLATE utilizes three or four levels of parallelism: distributed paral-
lelism between nodes using MPI, explicit thread parallelism using
OpenMP, implicit thread parallelism within the vendor’s node-level
BLAS, and, at the lowest level, vector parallelism for the processor’s
SIMD vector instructions. For multicore, SLATE typically uses all
the threads explicitly, and uses the vendor’s BLAS in sequential
mode. For GPU accelerators, SLATE uses a batch BLAS call, utilizing
the thread-block parallelism built into the accelerator’s BLAS.

The cornerstones of SLATE are 1) the SPMD programmingmodel
for productivity and maintainability, 2) dynamic task scheduling
using OpenMP for maximum node-level parallelism and portability,
3) the lookahead technique for prioritizing the critical path, 4) pri-
marily reliance on the 2D block cyclic distribution for scalability,
5) reliance on the gemm operation, specifically its batch rendition,
for maximum hardware utilization.

The Cholesky factorization demonstrates the basic framework,
with its task graph shown in Fig. 4 and code shown in Fig. 9.
Dataflow tasking (omp task depend, Fig. 9 lines 19, 48, 68) is
used for scheduling operations with dependencies on large blocks

Panel

Lookahead
Update

Trailing Matrix
Update

... ... ...

Panel

Lookahead
Update

Trailing Matrix
Update

Figure 4: Tasks in Cholesky factorization. Arrows depict de-

pendencies.

of the matrix. Dependencies are performed on a dummy vector,
representing each block column in the factorization, rather than on
the matrix data itself. Within each large block, either nested task-
ing (omp task, Fig. 10 line 12) or batch operations of independent
tile operations are used for scheduling individual tile operations
to individual cores, without dependencies. For accelerators, batch
BLAS calls are used for fast processing of large blocks of the matrix
using accelerators.

Compared to pure tile-by-tile dataflow scheduling, as used by
DPLASMA and Chameleon, this approach minimizes the size of the
task graph and number of dependencies to track. For a matrix of
N × N tiles, tile-by-tile scheduling creates O(N 3) tasks and depen-
dencies, which can lead to significant scheduling overheads. This is
one of the main performance handicaps of the OpenMP version of
the PLASMA library [17] in the case of manycore processors such as
the Xeon Phi family. In contrast, the SLATE approach createsO(N )

dependencies, eliminating the issue of scheduling overheads. At the
same time, this approach is a necessity for scheduling a large set
of independent tasks to accelerators, to fully occupy their massive
compute resources. It also eliminates the need to use a hierarchical
task graph to satisfy the vastly different levels of parallelism on
CPUs vs. on accelerators [47].

At each step of Cholesky, one or more columns of the trail-
ing submatrix are prioritized for processing, using the OpenMP
priority clause, to facilitate faster advance along the critical path,
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implementing a lookahead. At the same time, the lookahead depth
needs to be limited, as it is proportional to the amount of extra
memory required for storing temporary tiles. Deep lookahead trans-
lates to depth-first processing of the task graph, synonymous with
left-looking algorithms, but can also lead to catastrophic memory
overheads in distributed memory environments [36].

Distributed memory computing is implemented by filtering oper-
ations based on the matrix distribution function (Fig. 10 line 11); in
most cases, the owner of the output tile performs the computation
to update the tile. Appropriate communication calls are issued to
send tiles to where the computation will occur. Management of mul-
tiple accelerators is handled by a node-level memory consistency
protocol.

The user can choose among various target implementations.
In the case of accelerated execution, the updates are executed as
calls to batch gemm (Target::Devices). In the case of multicore
execution, the updates can be executed as:

• a set of OpenMP tasks (Target::HostTask),
• a nested parallel for loop (Target::HostNest), or
• a call to batch gemm (Target::HostBatch).

To motivate our choices of CPU tasks on individual tiles and
GPU tasks using batches of tiles, we examine the performance of
dgemm. Libraries such as DPLASMA and Chameleon have demon-
strated that doing operations on a tile-by-tile basis can achieve
excellent CPU performance. For instance, as shown in Fig. 5, for tile
sizes ≥ 160, IBM ESSL dgemm achieves over 90% of its maximum
performance. In contrast, accelerators would take much larger tiles
to reach their maximum performance. On an NVIDIA P100, cuBLAS
dgemm would require an unreasonably large tile size ≥ 3136 to
achieve 90% of its maximum performance. DPLASMA dealt with
this disparity in tile sizes between the CPU and GPU by using a
hierarchical DAG, whereby the CPU has small tiles and the GPU
has large tiles [47].

Instead, in SLATE we observe that most gemm operations are
block outer-products, where A is a block column and B is a block
row (e.g., the Schur complement in LU factorization), and that
these can be implemented using a batch gemm. In Fig. 6, the regular
cuBLAS dgemmuses standard LAPACK column-major layout, while
the tiled / batch dgemm uses a tiled layout with k × k tiles and
multiplies all tiles simultaneously using cuBLAS batch dgemm.
This demonstrates that at specific sizes (192, 256, . . . ), the batch
dgemm matches the performance of a regular dgemm. Thus with
an appropriately chosen, modest block size, SLATE can achieve the
maximum performance from accelerators.

SLATE intentionally relies on standards in MPI, OpenMP, and
BLAS to maintain easy portability. Any CPU platform with good
implementations of these standards should work well for SLATE.
For accelerators, SLATE’s reliance on batch gemm means any plat-
form that implements batch gemm is a good target. Differences
between vendors’ BLAS implementations will be abstracted at a
low level in the BLAS++ library to ease porting. There are very few
accelerator (e.g., CUDA) kernels in SLATE – currently just matrix
norms and transposition – so porting should be a lightweight task.
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6 MESSAGE PASSING COMMUNICATION

Communication in SLATE relies on explicit dataflow information.
When a tile will be needed for computation, it is broadcast to all the
processes where it is required, as shown in Fig. 7 for broadcasting
a single tile from the Cholesky panel to its trailing matrix update.
Rather than explicitly listing MPI ranks, the broadcast is expressed
in terms of the destination tiles to be updated. tileBcast takes
a tile’s (i, j) indices and a sub-matrix that the tile will update; the
tile is sent to all processes owning that sub-matrix (Fig. 9 lines 25,
40). To optimize communication, listBcast aggregates a list of
these tile broadcasts and pipelines the MPI and CPU to accelerator
communication. As the set of processes involved is dynamically
determined from the sub-matrix, using an MPI broadcast would
require setting up a new MPI communicator, which is an expensive
global blocking operation. Instead, SLATE uses point-to-point MPI
communication in a hypercube tree fashion to broadcast the data.
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Figure 7: Broadcast of tile and its symmetric image to nodes

owning a block row and block column in a symmetric ma-

trix.

7 NODE-LEVEL MEMORY CONSISTENCY

Several solutions are available for dealing with the complexity
of node-level memory architecture involving separate physical
memories ofmultiple hardware accelerators.We investigated CUDA
managed memory, OpenMP directives, and the OpenMP offload
API. None of these seemed yet fully capable and portable across a
wide variety of platforms.

CUDA managed memory is applied on a memory page basis.
However, a tile in a ScaLAPACK-style matrix is not contiguous and
has a column stride, meaning each column could be in a separate
page, and migrating pages to the GPU would also migrate excess
data outside the tile, adding communication overhead. CUDA man-
aged memory is also a proprietary solution and, in particular, the
MPI implementation must be CUDA-aware to work with it.

OpenMP directives and offload allow for arbitrary size arrays,
not just page sizes, but support only contiguous data – not sub-
matrices with a column stride. This would work if our tiles were
always contiguous, but again would prevent us from working on a
ScaLAPACK-style layout.

Instead, currently SLATE allocates and manages accelerator
memory itself. To support multiple accelerator devices, SLATE
allows for multiple copies of a tile in different device memories.
The initial copy of a local tile given by the user is marked as origin.
This can be either in host memory or accelerator memory. All other
copies are marked as workspace – either a temporary copy of a
remote tile, or a copy of a local tile on another device. By default,
at the end of a computation SLATE ensures that the origin copy of
a tile is up-to-date, and workspace tiles have been deleted.

For offload to GPU accelerators, SLATE implements a memory
consistency model, inspired by the MOSI cache coherency proto-
col [33, 43], on a tile-by-tile basis. For read only access, tiles are
mirrored in the memories of possibly multiple GPU devices, and
deleted when no longer needed. For write access, tiles are migrated
to the GPU memory and returned to the CPU memory afterwards if
needed. SLATE’s memory consistency model has three states plus
an orthogonal OnHold flag:

Modified (M) Tile’s data is modified; other instances are In-
valid; tile cannot be purged.

1 // Distributed parallel Cholesky solve , AX = B

2 // A: Matrix to factor; overwritten by L

3 // B: On input , matrix B; overwritten by X

4 // opts: User options such as Target and Lookahead

5 // scalar_t: Datatype: float , double , std::complex , etc.

6 template <typename scalar_t >

7 void posv(HermitianMatrix <scalar_t >& A,

8 Matrix <scalar_t >& B,

9 const std::map <Option , Value >& opts)

10 {

11 potrf( A, opts ); // factor A = LL^H

12 potrs( A, B, opts ); // solve AX = B using factorization

13 }

Figure 8: Cholesky solve driver, slate::posv

Shared (S) Tile’s data is up-to-date with other instances; other
instances may be Shared or Invalid; instance may be purged
unless OnHold.

Invalid (I) Tile’s data is invalid.
OnHold (O) Flag to prevent tile from being purged.

The states are managed by a simple API to fetch tiles to the CPU
or accelerator as needed (Fig. 10 lines 15–17). The OnHold flag is
used to optimize CPU to accelerator communication. Normally, at
the end of an operation such as internal::gemm, workspace tiles
are delete from GPU devices to limit the required workspace mem-
ory. However, if a tile will soon be used again by another operation,
placing it on hold will prevent it from being purged, eliminating
the subsequent re-fetching of data to the accelerator. This happens,
for instance, in applying a block Householder reflector, I −VTVH ,
where the tiles in V are used in two gemm operations.

8 SLATE API

Currently, SLATE’s routine names are derived from traditional
BLAS and LAPACK names, minus the traditional initial letter denot-
ing the precision (s, d, c, z). In the future, we will develop simplified
names using overloaded functions, using the Matrix types to iden-
tify the operation to be performed. For instance, multiply(A, B, C)

can map to a general, symmetric, or triangular matrix-matrix mul-
tiply (gemm, symm, or trmm) depending on whether the types of A, B,
and C are general Matrix, SymmetricMatrix, or TriangularMatrix,
respectively.

SLATE’s API is composed of several layers, going from highest
to lowest level:

Drivers. As in LAPACK and ScaLAPACK, driver routines solve
an entire problem, such as a linear system Ax = b (routines gesv,
posv), a least squares problemAx � b (gels), or a singular value de-
compositionA = U ΣVH (gesvd). Drivers in turn call computational
routines to solve sub-problems. Drivers are typically independent
of the target (CPU or device), delegating those details to lower level
routines. Figure 8 gives an example of the Cholesky driver, posv,
which relies on computational routines potrf and potrs to factor
the matrix A and solve the system Ax = b.

Computational routines. Again as in LAPACK and ScaLAPACK,
computational routines solve a sub-problem, such as computing
an LU factorization (getrf), or solving a linear system given an
LU factorization (getrs). In SLATE, these are templated on target
(CPU or device), with the code typically independent of the device.
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However, if needed, code can be optimized for a specific target
by providing an overloaded version. Communication between pro-
cesses and dependencies between tasks are managed at this level.
SLATE’s PBLAS exists at this level.

Figure 9 gives an example of the Cholesky factorization computa-
tional routine (potrf), used by the Cholesky driver. SLATE’s potrf
routine is approximately the same length as the LAPACK dpotrf

code, and roughly half the length of the ScaLAPACK and MAGMA
code (all excluding comments). Yet SLATE’s code handles all pre-
cisions, multiple targets, distributed memory and shared memory
parallelism, a lookahead to overlap communication and computa-
tion, and GPU acceleration. Of course, there is significant code in
lower levels, but this demonstrates that writing driver and compu-
tational routines can be simplified by delegating code complexity
to lower level abstractions.

Internal routines. SLATE adds a third layer of internal routines
that generally perform one step of a computational routine. For
instance, in the outer k loop, slate::gemm calls a sequence of
slate::internal::gemm, each of which performs one block outer
product. Most internal routines consist of a set of independent
tile operations that can be issued as a batch gemm or an OpenMP
parallel-for loop, with no task dependencies to track. Internal rou-
tines provide device-specific implementations such as OpenMP
nested tasks, parallel-for loops, or batch BLAS operations. In many
linear algebra algorithms, these internal routines implement the
trailing matrix update.

Figure 10 gives an example of the internal gemm routine, used
in the PBLAS gemm routine and for the update in the Cholesky
factorization routine. This code reveals several features of SLATE.
Currently, routines loop over all tiles in the matrix C , and selects
just the local tiles to operate on. By filtering for local tiles via the
tileIsLocal call, SLATE is agnostic to the actual distribution. To
reduce overheads, we are developing 2D iterators that are aware
of the distribution, so can iterate over just the local tiles without
needing to check if tiles are local, while the code can still be agnostic
to the distribution.

In the potrf call, the internal::gemm call is an OpenMP task.
Within internal::gemm, each tile gemm call is a nested OpenMP
task, with no dependencies. Before each tile gemm, tileGetForReading
and tileGetForWriting ensures that the tiles are in CPU memory,
initiating a transfer from accelerator memory if necessary. Remote
tiles are given a life counter to track the number of tiles they update.
After each tile gemm, theA and B tiles have their lives decremented
by tileTick; once all local tiles in row i of C are updated, the life
of tile A(i, 0) reaches zero and the tile is deleted if it is a workspace
tile (i.e., not an origin tile). Similarly, when all local tiles in column
j of C are updated, the life of tile B(0, j) reaches zero and the tile is
deleted, if it is workspace.

Panel operations, such as the LU and QR parallel panels, also
exist as internal routines. However, unlike trailing matrix updates,
panels create a set of interdependent tasks.

Tile operations. These update one or a small number of individual
tiles. For instance, a tile gemm takes three tiles, A, B, and C , and
updates C . Transposition of individual tiles is resolved at this level
when calling optimized BLAS. This allows higher level operations
to ignore whether a matrix is transposed or not. Currently, all

tile operations are CPU-only, since accelerators use only batch
operations. Figure 11 gives an example of the tile gemm routine,
used in the internal gemm routine (Fig. 10).

BLAS++ and LAPACK++. At the lowest level, these packages pro-
vide thin, precision independent, overloaded C++ wrappers around
tradition BLAS, batch BLAS, and LAPACK routines, as previously
discussed in Section 4. They use C++ calling conventions and enum
values instead of character constants, but otherwise the calling
sequence is similar to the standard BLAS and LAPACK routines.
BLAS++ also includes batch BLAS, on both CPUs and GPUs.

A slightly higher level interface taking arrays as mdspan ob-
jects may be developed as mdspan becomes standardized [20] and
wide-spread in C++ standard library implementations. That would
eliminate the separate dimension arguments, yielding, for instance,

gemm( transA, transB, alpha, A, B, beta, C )

where A, B, and C are mdspan objects encapsulating their dimensions
and column or row strides.

9 SCALAPACK COMPATIBILITY

Asmany applications have significant existing code bases using Sca-
LAPACK, we also provide a ScaLAPACK compatibility API. These
routines intercept calls to ScaLAPACK and redirect them to SLATE
calls. This is enabled simply by adjusting the link line of the ap-
plication, putting -lslate_scalapack_api before -lscalapack.
No code modifications are required. Any ScaLAPACK calls that
SLATE implements will be intercepted; other calls will continue to
use ScaLAPACK as before.

It should be noted, however, that an optimal configuration for
ScaLAPACK – typically one MPI process per core – is not optimal
for SLATE, where we’ve found using one MPI process per socket
works better. Also, SLATE typically uses larger tile sizes, particularly
when using accelerators. Instead of nb = 64 used for ScaLAPACK,
SLATE may require nb = 192 or 256 for good efficiency. Using
SLATE’s native API directly also avoids overhead in creating the
SLATE matrices inside each intercepted ScaLAPACK call. Thus, in
the long term, we recommend rewriting applications to natively
call SLATE. In the future, we plan to provide thin C and Fortran
wrappers to access SLATE’s functionality directly.

10 RESULTS

In this paper we have focused on the SLATE framework itself, rather
than the specific linear algebra algorithms that SLATE implements.
We present performance for a couple routines here, to demonstrate
SLATE’s capabilities. More detailed analysis and performance re-
sults will be provided in forthcoming reports and papers that focus
on specific algorithms.

Performance numbers were collected using the SummitDev sys-
tem 3 at ORNL, which is a prototype one generation behind ORNL’s
flagship supercomputer, Summit. (These results were obtained be-
fore Summit entered production.) SummitDev contains 54 nodes,
each of which contain two IBM POWER8 CPUs, ten cores each,
with 256 GiB of DDR4 memory, and four NVIDIA P100 (Pascal)
accelerators with 16 GiB of HBM2 memory each. The accelerators

3https://www.olcf.ornl.gov/kb_articles/summitdev-quickstart/

https://www.olcf.ornl.gov/kb_articles/summitdev-quickstart/
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1 // Distributed parallel Cholesky factorization , A = L L^H

2 template <Target target , typename scalar_t >

3 void potrf(slate:: internal ::TargetType <target >,

4 HermitianMatrix <scalar_t > A, int64_t look)

5 {

6 using real_t = blas::real_type <scalar_t >;

7 scalar_t one = 1.0;

8 const int64_t A_nt = A.nt();

9 if (A.uplo() == Uplo::Upper) // if upper , change to lower

10 A = conj_transpose(A);

11 // dummy vector to track dependencies

12 std::vector <uint8_t > column_vector(A_nt);

13 uint8_t* column = column_vector.data ();

14

15 #pragma omp parallel

16 #pragma omp master

17 for (int64_t k = 0; k < A_nt; ++k) {

18 // panel , high priority

19 #pragma omp task depend(inout:column[k]) priority (1)

20 {

21 // factor A(k, k)

22 internal ::potrf <Target ::HostTask >(A.sub(k, k), 1);

23 // send A(k, k) down col A(k+1:nt -1, k)

24 if (k+1 <= A_nt -1)

25 A.tileBcast(k, k, A.sub(k+1, A_nt -1, k, k));

26 // A(k+1:nt -1, k) * A(k, k)^{-H}

27 if (k+1 <= A_nt -1) {

28 auto Akk = A.sub(k, k);

29 auto Tkk = TriangularMatrix <scalar_t >(

30 Diag::NonUnit , Akk);

31 internal ::trsm <Target ::HostTask >(

32 Side::Right ,

33 one , conj_transpose(Tkk),

34 A.sub(k+1, A_nt -1, k, k), 1);

35 }

36 typename Matrix <scalar_t >:: BcastList bcast_list_A;

37 for (int64_t i = k+1; i < A_nt; ++i) {

38 // send A(i, k) across row A(i, k+1:i)

39 // and down col A(i:nt -1, i)

40 bcast_list_A.push_back(

41 {i, k, {A.sub(i, i, k+1, i),

42 A.sub(i, A_nt -1, i, i)}});

43 }

44 A.template listBcast(bcast_list_A );

45 } // omp task

46 // update lookahead column(s), high priority

47 for (int64_t j = k+1; j < k+1+ look && j < A_nt; ++j) {

48 #pragma omp task depend(in:column[k]) \

49 depend(inout:column[j]) priority (1)

50 {

51 // A(j, j) -= A(j, k) * A(j, k)^H

52 internal ::herk <Target ::HostTask >(

53 real_t (-1.0), A.sub(j, j, k, k),

54 real_t( 1.0), A.sub(j, j), 1);

55

56 // A(j+1:nt -1, j) -= A(j+1:nt -1, k) * A(j, k)^H

57 if (j+1 <= A_nt -1) {

58 auto Ajk = A.sub(j, j, k, k);

59 internal ::gemm <Target ::HostTask >(

60 -one , A.sub(j+1, A_nt -1, k, k),

61 conj_transpose(Ajk),

62 one , A.sub(j+1, A_nt -1, j, j), 1);

63 }

64 }

65 }

66 // update trailing submatrix , normal priority

67 if (k+1+ look < A_nt) {

68 #pragma omp task depend(in:column[k]) \

69 depend(inout:column[k+1+ look]) \

70 depend(inout:column[A_nt -1])

71 {

72 // A(kl+1:nt -1, kl+1:nt -1) -=

73 // A(kl+1:nt -1, k) * A(kl+1:nt -1, k)^H

74 // where kl = k + look

75 internal ::herk <target >(

76 real_t (-1.0), A.sub(k+1+look , A_nt -1, k, k),

77 real_t( 1.0), A.sub(k+1+look , A_nt -1));

78 }

79 }

80 } // k loop

81

82 A.tileUpdateAllOrigin ();

83 A.releaseWorkspace ();

84 }

Figure 9: Cholesky factorization computational routine, slate::potrf, with lookahead depth look.

are connected by NVLink 1.0 at 80 GB/s. The nodes are connected
with a fat-tree enhanced data rate (EDR) InfiniBand network.

All runs were performed using 16 nodes, yielding a peak multi-
core performance of 8.96 TFLOP/s and a peak accelerator perfor-
mance of 339.2 TFLOP/s in double precision. SLATE was run with
one process per node, while ScaLAPACK was run with one process
per core, which is still the prevailing method of getting the best
performance from ScaLAPACK. Only rudimentary performance
tuning was done in both cases.

The software environment used for the experiments included
GNU gcc 7.1.0, CUDA 9.0.69, ESSL 5.5.0, Spectrum MPI 10.1.0.4,
Netlib LAPACK 3.6.1, and Netlib ScaLAPACK 2.0.2.

10.1 Parallel BLAS

SLATE’s PBLAS [35] implements all Level 3 BLAS operations. For
the basic matrix-matrix multiply (gemm) operation, C = αAB + βC ,
we follow the SUMMA algorithm [1, 44], also used in ScaLAPACK’s
PBLAS [12]. At each step k , tiles in block column k of A are broad-
cast horizontally across the process grid, while tiles in block row
k of B are broadcast vertically across the process grid. Then all

tiles of C are updated in parallel by the process that owns them,
according to Ci j = αAikBk j + Ci j . Communication is pipelined,
so with lookahead = 1, the broadcast of step k + 1 occurs during
the computation of step k , to overlap communication and computa-
tion. As previously mentioned in Section 3.1, PBLAS operations can
ignore the transposition operations, which are resolved at lower
levels.

WhenC is small relative toA andB, this algorithmwould produce
load imbalance and an excessive amount of communication, so
alternate algorithms are used.

Performance for SLATE’s gemm in double precision is given
in Fig. 12. In the left graph, we see that using only CPUs, SLATE
performs comparably with ScaLAPACK, except for small matrices.
Both achieve a substantial portion of the 8.96 TFLOP/s theoretical
peak. SLATE’s results used a relatively large block size nb = 512;
tuning nb would improve performance for small matrix sizes. We
also expect optimizations such as launching multiple asynchronous
MPI_Isend will improve network performance. For the accelerated
performance curve in the right graph, the performance massively
outperforms the multicore performance, but the curve is basically
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1 // C = alpha AB + beta C; A is one block col , B is one block row

2 template <typename scalar_t >

3 void gemm(internal ::TargetType <Target ::HostTask >,

4 scalar_t alpha , Matrix <scalar_t >& A,

5 Matrix <scalar_t >& B,

6 scalar_t beta , Matrix <scalar_t >& C,

7 int priority , Layout layout)

8 {

9 for (int64_t i = 0; i < C.mt(); ++i) {

10 for (int64_t j = 0; j < C.nt(); ++j) {

11 if (C.tileIsLocal(i, j)) {

12 #pragma omp task shared(A, B, C, err) \

13 priority(priority)

14 {

15 A.tileGetForReading(i, 0);

16 B.tileGetForReading (0, j);

17 C.tileGetForWriting(i, j);

18 gemm(alpha , A(i, 0),

19 B(0, j),

20 beta , C(i, j));

21 A.tileTick(i, 0);

22 B.tileTick(0, j);

23 }

24 }

25 }

26 }

27

28 #pragma omp taskwait

29 }

Figure 10: Internal matrix multiply routine,

slate::internal::gemm, corresponding to a single block

outer product.

1 // C = alpha AB + beta C

2 template <typename scalar_t >

3 void gemm(

4 scalar_t alpha , Tile <scalar_t > const& A,

5 Tile <scalar_t > const& B,

6 scalar_t beta , Tile <scalar_t >& C)

7 {

8 if (C.op() == Op:: NoTrans) {

9 // C = opA(A) opB(B) + C

10 blas::gemm(blas:: Layout ::ColMajor ,

11 A.op(), B.op(), // transpositions

12 C.mb(), C.nb(), A.nb(), // tile dimensions

13 alpha , A.data(), A.stride(),

14 B.data(), B.stride(),

15 beta , C.data(), C.stride ());

16 }

17 else { ... }

18 }

Figure 11: Tile matrix multiply routine, slate::gemm. Cases

for transposed C (CT and CH ) are omitted.

linear. The reason for this behavior is that the PBLAS performance
profile follows the roofline model [46]. For the tested matrix sizes,
the performance is bound by communication and therefore not
near saturation. This is unsurprising given the ratio of Summit-
Dev’s node performance to its communication bandwidth – today’s
machines are, unfortunately, over-provisioned for floating point
operations and under-provisioned for network bandwidth.

Performance for the standard four precisions (single, double,
single-complex, double-complex) is presented in Fig. 13 and Table 1.
For multicore runs (Fig. 13, left), the performance numbers are as

max CPU max GPU
precision performance performance
double 7.8 TFLOP/s 107.8 TFLOP/s
double-complex 8.0 TFLOP/s 246.8 TFLOP/s
single 14.6 TFLOP/s 166.5 TFLOP/s
single-complex 15.6 TFLOP/s 428.7 TFLOP/s

Table 1: Maximum gemm performance attained in Fig. 13.

Double precision gemm achieves 170.4 TFLOP/s in Fig. 12 due

to large sizes tested.

expected. Single precision is about twice as fast as double preci-
sion, which comes directly from the 2× factor between the single-
precision peak and the double-precision peak of the POWER8 cores.
At the same time, complex arithmetic is slightly faster than real
arithmetic. This is because complex arithmetic is twice as compute-
intensive as real arithmetic, bringing the performance number a
notch closer to the hardware peak.

For accelerated runs (Fig. 13, right), the situation is very different.
Here, the performance of single precision is twice the performance
of double precision; but also, the performance of complex arith-
metic is twice the performance of real arithmetic. This is because
here the performance is bound not by the floating-point peak, but
by the communication bandwidth. As a result, the accelerated per-
formance is directly correlated with the ratio of computation to
communication, which is 2× higher in single precision than in dou-
ble precision, and 2× higher in complex arithmetic than in real
arithmetic.

10.2 Linear solvers

For solving a linear system,AX = B, SLATE provides the traditional
partial pivoting LU factorization for general matrices (gesv) and
Cholesky factorization for symmetric positive definite matrices
(posv). The Cholesky factorization is straight-forward to imple-
ment using tasks, as previously shown in Fig. 4 and Fig. 9. The LU
factorization uses a distributed and multi-threaded parallel panel.
This is a challenge with the current OpenMP task environment,
as it requires having multiple tasks that are executed together, or
equivalently, having a single task with nested parallelism. Currently,
we over-subscribe threads to avoid deadlock, but are looking for
enhancements to OpenMP to remedy the issue. For least squares
problems, SLATE implements a communication-avoiding QR algo-
rithm.

Figure 14 shows performance for Cholesky factorization in dou-
ble precision. Formulticore runs (left), SLATE asymptotically slightly
outperforms ScaLAPACK, achieving 6.97 TFLOP/s. Both attain a
reasonable portion of the theoretical peak performance. For acceler-
ated runs (right), as with the BLAS in Section 10.1, the performance
significantly outperforms the multicore performance, achieving
65.6 TFLOP/s, but is basically linear due to the roofline model.

11 CONCLUSIONS

Scaling to the full performance on today’s heterogeneous HPC ma-
chines is very challenging. As we have seen, linear algebra libraries
need to take advantage of parallelism at multiple levels (nodes,
threads, vectors), manage execution on multiple devices (CPUs
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Figure 12: Performance of matrix-matrix multiply (dgemm) without acceleration (left) and with acceleration (right).
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Figure 14: Performance of Cholesky factorization (dpotrf) without acceleration (left) and with acceleration (right).
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and accelerators), and minimize communication costs. SLATE ad-
dresses these challenges by providing high level abstractions for
matrices and tiles, managing parallelism at different levels in large
OpenMP tasks with dependencies, and nested parallelism with
small independent OpenMP tasks or batch BLAS operations, and
using lookahead techniques to overlap communication with com-
putation. A communication-avoiding algorithm is employed for
the QR factorization, and similar communication-avoiding algo-
rithms will be used for eigenvalues and the SVD. SLATE provides
both a modern, high level C++ API, and a backwards-compatible
ScaLAPACK API to aide applications in transition. Initial results
show promising performance using multiple nodes and multiple
accelerators per node, but there are still significant opportunities
to optimize performance.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

We ran SLATE’s gemm and potrf tests on ORNL’s SummitDev

supercomputer using gcc 7.1.0, CUDA 9.0.69, IBM ESSL 5.5.0, IBM

Spectrum MPI 10.1.0.4, Netlib LAPACK 3.6.1, as described in the

paper. For comparison, we also ran ScaLAPACK’s gemm and potrf

tests using Netlib ScaLAPACK 2.0.2.

ARTIFACT AVAILABILITY

Software Artifact Availability: All author-created software arti-

facts are maintained in a public repository under an OSI-approved

license.

Hardware Artifact Availability: There are no author-created hard-

ware artifacts.

Data Artifact Availability: There are no author-created data

artifacts.

Proprietary Artifacts: None of the associated artifacts, author-

created or otherwise, are proprietary.

List of URLs and/or DOIs where artifacts are available:

http://doi.org/10.5281/zenodo.3367812

BASELINE EXPERIMENTAL SETUP, AND

MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: SummitDev

Operating systems and versions: Red Hat Enterprise Linux Server

release 7.5

Compilers and versions: gcc 7.1.0

Applications and versions: ScaLAPACK 2.0.2

Libraries and versions: CUDA 9.0.69

Key algorithms: gemm, Cholesky

Output from scripts that gathers execution environment informa-

tion.

LMOD_FAMILY_COMPILER_VERSION=16.1.1-beta6

REMOTEHOST=home2.ccs.ornl.gov

MANPATH=/sw/sources/hpss/man:/autofs/nccs-svm1_sw/su ⌋

mmitdev/.swci/1-compute/opt/spack/20180914/linux ⌋

-rhel7-ppc64le/xl-16.1.1-beta6/spectrum-mpi-10.2. ⌋

0.7-20180830-eyo7zxm2piusmyffr3iytmgwdacl67ju/sh ⌋

are/man:/sw/summitdev/xl/16.1.1-beta6/xlC/16.1.1 ⌋

/man/en_US:/sw/summitdev/xl/16.1.1-beta6/xlf/16. ⌋

1.1/man/en_US:/sw/summitdev/lmod/7.4.0/rhel7.2_g ⌋

nu4.8.5/lmod/lmod/share/man:/opt/ibm/spectrumcom ⌋

puting/lsf/10.1/man::

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

GPU_TARGET=sm30

XALT_ETC_DIR=/sw/summitdev/xalt/1.1.3/etc

XDG_SESSION_ID=6610

_ModuleTable003_=Ny1wcGM2NGxlL3hsLzE2LjEuMS1iZXRhNi9 ⌋

zcGVjdHJ1bS1tcGkvMTAuMi4wLjctMjAxODA4MzAubHVhIix ⌋

bImZ1bGxOYW1lIl09InNwZWN0cnVtLW1waS8xMC4yLjAuNy0 ⌋

yMDE4MDgzMCIsWyJsb2FkT3JkZXIiXT0yLHByb3BUPXt9LFs ⌋

ic3RhdHVzIl09ImFjdGl2ZSIsWyJ1c2VyTmFtZSJdPSJzcGV ⌋

jdHJ1bS1tcGkiLH0seGFsdD17WyJmbiJdPSIvc3cvc3VtbWl ⌋

0ZGV2L21vZHVsZWZpbGVzL3NpdGUvbGludXgtcmhlbDctcHB ⌋

jNjRsZS9Db3JlL3hhbHQvMS4xLjMubHVhIixbImZ1bGxOYW1 ⌋

lIl09InhhbHQvMS4xLjMiLFsibG9hZE9yZGVyIl09NCxwcm9 ⌋

wVD17fSxbInN0YXR1cyJdPSJhY3RpdmUiLFsidXNlck5hbWU ⌋

iXT0ieGFsdCIsfSx4bD17WyJmbiJdPSIvc3cvc3VtbWl0

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

HOSTNAME=summitdev-login1

HOST=summitdev-login1

TERM=xterm-256color

SHELL=/bin/tcsh

LMOD_SYSTEM_DEFAULT_MODULES=DefApps

MODULEPATH_ROOT=/sw/summitdev/lmod/7.4.0/rhel7.2_gnu ⌋

4.8.5/modulefiles֒→

SSH_CLIENT=160.91.202.153 47540 22

LIBRARY_PATH=/autofs/nccs-svm1_sw/summitdev/.swci/1- ⌋

compute/opt/spack/20180914/linux-rhel7-ppc64le/x ⌋

l-16.1.1-beta6/spectrum-mpi-10.2.0.7-20180830-ey ⌋

o7zxm2piusmyffr3iytmgwdacl67ju/lib

֒→

֒→

֒→

LMOD_PKG=/sw/summitdev/lmod/7.4.0/rhel7.2_gnu4.8.5/l ⌋

mod/lmod֒→

OLCF_XL_ROOT=/sw/summitdev/xl/16.1.1-beta6

LSF_SERVERDIR=/opt/ibm/spectrumcomputing/lsf/10.1/li ⌋

nux3.10-glibc2.17-ppc64le-csm/etc֒→

OMPI_FC=/sw/summitdev/xl/16.1.1-beta6/xlf/16.1.1/bin ⌋

/xlf2008_r֒→

LMOD_VERSION=7.4

OLCF_XLSMP_ROOT=/sw/summitdev/xl/16.1.1-beta6/xlsmp/ ⌋

5.1.1֒→

SSH_TTY=/dev/pts/39

TARG_TITLE_BAR_PAREN=

LSF_LIBDIR=/opt/ibm/spectrumcomputing/lsf/10.1/linux ⌋

3.10-glibc2.17-ppc64le-csm/lib֒→

OPAL_PREFIX=/autofs/nccs-svm1_sw/summitdev/.swci/1-c ⌋

ompute/opt/spack/20180914/linux-rhel7-ppc64le/xl ⌋

-16.1.1-beta6/spectrum-mpi-10.2.0.7-20180830-eyo7 ⌋

zxm2piusmyffr3iytmgwdacl67ju

֒→

֒→

֒→

GROUP=USER

USER=USER

LMOD_sys=Linux
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LD_LIBRARY_PATH=/autofs/nccs-svm1_sw/summitdev/.swci ⌋

/1-compute/opt/spack/20180914/linux-rhel7-ppc64l ⌋

e/xl-16.1.1-beta6/spectrum-mpi-10.2.0.7-20180830 ⌋

-eyo7zxm2piusmyffr3iytmgwdacl67ju/lib:/sw/summitd ⌋

ev/xl/16.1.1-beta6/xlsmp/5.1.1/lib:/sw/summitdev ⌋

/xl/16.1.1-beta6/xlmass/9.1.1/lib:/sw/summitdev/ ⌋

xl/16.1.1-beta6/xlC/16.1.1/lib:/sw/summitdev/xl/ ⌋

16.1.1-beta6/xlf/16.1.1/lib:/sw/summitdev/xl/16. ⌋

1.1-beta6/lib:/opt/ibm/spectrumcomputing/lsf/10. ⌋

1/linux3.10-glibc2.17-ppc64le-csm/lib:/opt/ibm/s ⌋

pectrum_mpi/jsm_pmix/lib

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

LS_COLORS=rs=0:di=38;5;27:ln=38;5;51:mh=44;38;5;15:p ⌋

i=40;38;5;11:so=38;5;13:do=38;5;5:bd=48;5;232;38 ⌋

;5;11:cd=48;5;232;38;5;3:or=48;5;232;38;5;9:mi=0 ⌋

5;48;5;232;38;5;15:su=48;5;196;38;5;15:sg=48;5;1 ⌋

1;38;5;16:ca=48;5;196;38;5;226:tw=48;5;10;38;5;1 ⌋

6:ow=48;5;10;38;5;21:st=48;5;21;38;5;15:ex=38;5; ⌋

34:*.tar=38;5;9:*.tgz=38;5;9:*.arc=38;5;9:*.arj= ⌋

38;5;9:*.taz=38;5;9:*.lha=38;5;9:*.lz4=38;5;9:*. ⌋

lzh=38;5;9:*.lzma=38;5;9:*.tlz=38;5;9:*.txz=38;5 ⌋

;9:*.tzo=38;5;9:*.t7z=38;5;9:*.zip=38;5;9:*.z=38 ⌋

;5;9:*.Z=38;5;9:*.dz=38;5;9:*.gz=38;5;9:*.lrz=38 ⌋

;5;9:*.lz=38;5;9:*.lzo=38;5;9:*.xz=38;5;9:*.bz2= ⌋

38;5;9:*.bz=38;5;9:*.tbz=38;5;9:*.tbz2=38;5;9:*. ⌋

tz=38;5;9:*.deb=38;5;9:*.rpm=38;5;9:*.jar=38;5;9 ⌋

:*.war=38;5;9:*.ear=38;5;9:*.sar=38;5;9:*.rar=38 ⌋

;5;9:*.alz=38;5;9:*.ace=38;5;9:*.zoo=38;5;9:*.cp ⌋

io=38;5;9:*.7z=38;5;9:*.rz=38;5;9:*.cab=38;5;9:* ⌋

.jpg=38;5;13:*.jpeg=38;5;13:*.gif=38;5;13:*.bmp= ⌋

38;5;13:*.pbm=38;5;13:*.pgm=38;5;13:*.ppm=38;5;1 ⌋

3:*.tga=38;5;13:*.xbm=38;5;13:*.xpm=38;5;13:*.ti ⌋

f=38;5;13:*.tiff=38;5;13:*.png=38;5;13:*.svg=38; ⌋

5;13:*.svgz=38;5;13:*.mng=38;5;13:*.pcx=38;5;13: ⌋

*.mov=38;5;13:*.mpg=38;5;13:*.mpeg=38;5;13:*.m2v ⌋

=38;5;13:*.mkv=38;5;13:*.webm=38;5;13:*.ogm=38;5 ⌋

;13:*.mp4=38;5;13:*.m4v=38;5;13:*.mp4v=38;5;13:* ⌋

.vob=38;5;13:*.qt=38;5;13:*.nuv=38;5;13:*.wmv=38 ⌋

;5;13:*.asf=38;5;13:*.rm=38;5;13:*.rmvb=38;5;13: ⌋

*.flc=38;5;13:*.avi=38;5;13:*.fli=38;5;13:*.flv= ⌋

38;5;13:*.gl=38;5;13:*.dl=38;5;13:*.xcf=38;5;13: ⌋

*.xwd=38;5;13:*.yuv=38;5;13:*.cgm=38;5;13:*.emf= ⌋

38;5;13:*.axv=38;5;13:*.anx=38;5;13:*.ogv=38;5;1 ⌋

3:*.ogx=38;5;13:*.aac=38;5;45:*.au=38;5;45:*.fla ⌋

c=38;5;45:*.mid=38;5;45:*.midi=38;5;45:*.mka=38; ⌋

5;45:*.mp3=38;5;45:*.mpc=38;5;45:*.ogg=38;5;45:* ⌋

.ra=38;5;45:*.wav=38;5;45:*.axa=38;5;45:*.oga=38 ⌋

;5;45:*.spx=38;5;45:*.xspf=38;5;45:

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

LMOD_MPI_NAME=spectrum-mpi

LSF_CONFDIR=/opt/ibm/spectrumcomputing/lsf/conf

_ModuleTable004_=ZGV2L21vZHVsZWZpbGVzL3NpdGUvbGludXg ⌋

tcmhlbDctcHBjNjRsZS9Db3JlL3hsLzE2LjEuMS1iZXRhNi5 ⌋

sdWEiLFsiZnVsbE5hbWUiXT0ieGwvMTYuMS4xLWJldGE2Iix ⌋

bImxvYWRPcmRlciJdPTEscHJvcFQ9e30sWyJzdGF0dXMiXT0 ⌋

iYWN0aXZlIixbInVzZXJOYW1lIl09InhsIix9LH0sbXBhdGh ⌋

BPXsiL2F1dG9mcy9uY2NzLXN2bTFfc3cvc3VtbWl0ZGV2L21 ⌋

vZHVsZWZpbGVzL3NpdGUvbGludXgtcmhlbDctcHBjNjRsZS9 ⌋

zcGVjdHJ1bS1tcGkvMTAuMi4wLjctMjAxODA4MzAtZXlvN3p ⌋

4bS94bC8xNi4xLjEtYmV0YTYiLCIvc3cvc3VtbWl0ZGV2L21 ⌋

vZHVsZWZpbGVzL3NpdGUvbGludXgtcmhlbDctcHBjNjRsZS9 ⌋

4bC8xNi4xLjEtYmV0YTYiLCIvc3cvc3VtbWl0ZGV2L21v

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

CPATH=/autofs/nccs-svm1_sw/summitdev/.swci/1-compute ⌋

/opt/spack/20180914/linux-rhel7-ppc64le/xl-16.1. ⌋

1-beta6/spectrum-mpi-10.2.0.7-20180830-eyo7zxm2p ⌋

iusmyffr3iytmgwdacl67ju/include

֒→

֒→

֒→

HOSTTYPE=ppc64le-linux

OLCF_XLMASS_ROOT=/sw/summitdev/xl/16.1.1-beta6/xlmas ⌋

s/9.1.1֒→

OLCF_LMOD_ROOT=/sw/summitdev/lmod/7.4.0/rhel7.2_gnu4 ⌋

.8.5֒→

PROJWORK=/gpfs/alpine/proj-shared

LMOD_FAMILY_MPI_VERSION=10.2.0.7-20180830

LMOD_PREPEND_BLOCK=normal

NLSPATH=/sw/summitdev/xl/16.1.1-beta6/msg/en_US/%N:/ ⌋

sw/summitdev/xl/16.1.1-beta6/xlC/16.1.1/msg/en_U ⌋

S/%N:/sw/summitdev/xl/16.1.1-beta6/xlf/16.1.1/ms ⌋

g/en_US/%N

֒→

֒→

֒→

_ModuleTable001_=X01vZHVsZVRhYmxlXz17WyJNVHZlcnNpb24 ⌋

iXT0zLFsiY19yZWJ1aWxkVGltZSJdPWZhbHNlLFsiY19zaG9 ⌋

ydFRpbWUiXT1mYWxzZSxkZXB0aFQ9e30sZmFtaWx5PXtbImN ⌋

vbXBpbGVyIl09InhsIixbIm1waSJdPSJzcGVjdHJ1bS1tcGk ⌋

iLH0sbVQ9e0RlZkFwcHM9e1siZm4iXT0iL3N3L3N1bW1pdGR ⌋

ldi9tb2R1bGVmaWxlcy9zaXRlL2xpbnV4LXJoZWw3LXBwYzY ⌋

0bGUvQ29yZS9EZWZBcHBzLmx1YSIsWyJmdWxsTmFtZSJdPSJ ⌋

EZWZBcHBzIixbImxvYWRPcmRlciJdPTYscHJvcFQ9e30sWyJ ⌋

zdGF0dXMiXT0iYWN0aXZlIixbInVzZXJOYW1lIl09IkRlZkF ⌋

wcHMiLH0saHNpPXtbImZuIl09Ii9zdy9zdW1taXRkZXYvbW9 ⌋

kdWxlZmlsZXMvc2l0ZS9saW51eC1yaGVsNy1wcGM2NGxl

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

MAIL=/var/spool/mail/USER

PATH=/sw/sources/lsf-tools/2.0/summitdev/bin:/sw/sum ⌋

mitdev/xalt/1.1.3/bin:/sw/sources/hpss/bin:/auto ⌋

fs/nccs-svm1_sw/summitdev/.swci/1-compute/opt/sp ⌋

ack/20180914/linux-rhel7-ppc64le/xl-16.1.1-beta6 ⌋

/spectrum-mpi-10.2.0.7-20180830-eyo7zxm2piusmyff ⌋

r3iytmgwdacl67ju/bin:/sw/summitdev/xl/16.1.1-bet ⌋

a6/xlC/16.1.1/bin:/sw/summitdev/xl/16.1.1-beta6/ ⌋

xlf/16.1.1/bin:/opt/ibm/spectrumcomputing/lsf/10 ⌋

.1/linux3.10-glibc2.17-ppc64le-csm/etc:/opt/ibm/ ⌋

spectrumcomputing/lsf/10.1/linux3.10-glibc2.17-p ⌋

pc64le-csm/bin:/usr/local/bin:/usr/bin:/usr/loca ⌋

l/sbin:/usr/sbin:/opt/ibm/flightlog/bin:/opt/ibu ⌋

tils/bin:/opt/ibm/spectrum_mpi/jsm_pmix/bin:/opt ⌋

/puppetlabs/bin:/usr/lpp/mmfs/bin:/ccs/home/USER ⌋

/.local/bin:/ccs/home/USER/bin

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→



SLATE: Design of a Modern Distributed and Accelerated Linear Algebra Library

OPAL_LIBDIR=/autofs/nccs-svm1_sw/summitdev/.swci/1-c ⌋

ompute/opt/spack/20180914/linux-rhel7-ppc64le/xl ⌋

-16.1.1-beta6/spectrum-mpi-10.2.0.7-20180830-eyo7 ⌋

zxm2piusmyffr3iytmgwdacl67ju/lib

֒→

֒→

֒→

OLCF_XLC_ROOT=/sw/summitdev/xl/16.1.1-beta6/xlC/16.1 ⌋

.1֒→

LMOD_SETTARG_CMD=:

OMPI_DIR=/autofs/nccs-svm1_sw/summitdev/.swci/1-comp ⌋

ute/opt/spack/20180914/linux-rhel7-ppc64le/xl-16 ⌋

.1.1-beta6/spectrum-mpi-10.2.0.7-20180830-eyo7zx ⌋

m2piusmyffr3iytmgwdacl67ju

֒→

֒→

֒→

PWD=/ccs/home/USER

_LMFILES_=/sw/summitdev/modulefiles/site/linux-rhel7 ⌋

-ppc64le/Core/xl/16.1.1-beta6.lua:/sw/summitdev/m ⌋

odulefiles/site/linux-rhel7-ppc64le/xl/16.1.1-be ⌋

ta6/spectrum-mpi/10.2.0.7-20180830.lua:/sw/summi ⌋

tdev/modulefiles/site/linux-rhel7-ppc64le/Core/h ⌋

si/5.0.2.p5.lua:/sw/summitdev/modulefiles/site/l ⌋

inux-rhel7-ppc64le/Core/xalt/1.1.3.lua:/sw/summi ⌋

tdev/modulefiles/site/linux-rhel7-ppc64le/Core/l ⌋

sf-tools/2.0.lua:/sw/summitdev/modulefiles/site/ ⌋

linux-rhel7-ppc64le/Core/DefApps.lua

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

OLCF_MODULEPATH_ROOT=/sw/summitdev/modulefiles

MODULEPATH=/autofs/nccs-svm1_sw/summitdev/modulefile ⌋

s/site/linux-rhel7-ppc64le/spectrum-mpi/10.2.0.7 ⌋

-20180830-eyo7zxm/xl/16.1.1-beta6:/sw/summitdev/m ⌋

odulefiles/site/linux-rhel7-ppc64le/xl/16.1.1-be ⌋

ta6:/sw/summitdev/modulefiles/site/linux-rhel7-p ⌋

pc64le/Core:/sw/summitdev/modulefiles/core:/sw/s ⌋

ummitdev/lmod/7.4.0/rhel7.2_gnu4.8.5/modulefiles ⌋

/Linux:/sw/summitdev/lmod/7.4.0/rhel7.2_gnu4.8.5 ⌋

/modulefiles/Core:/sw/summitdev/lmod/7.4.0/rhel7 ⌋

.2_gnu4.8.5/lmod/lmod/modulefiles/Core

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

LOADEDMODULES=xl/16.1.1-beta6:spectrum-mpi/10.2.0.7- ⌋

20180830:hsi/5.0.2.p5:xalt/1.1.3:lsf-tools/2.0:D ⌋

efApps

֒→

֒→

_ModuleTable_Sz_=6

LMOD_SYSTEM_NAME=summitdev

OLCF_XLF_ROOT=/sw/summitdev/xl/16.1.1-beta6/xlf/16.1 ⌋

.1֒→

_ModuleTable005_=ZHVsZWZpbGVzL3NpdGUvbGludXgtcmhlbDc ⌋

tcHBjNjRsZS9Db3JlIiwiL3N3L3N1bW1pdGRldi9tb2R1bGV ⌋

maWxlcy9jb3JlIiwiL3N3L3N1bW1pdGRldi9sbW9kLzcuNC4 ⌋

wL3JoZWw3LjJfZ251NC44LjUvbW9kdWxlZmlsZXMvTGludXg ⌋

iLCIvc3cvc3VtbWl0ZGV2L2xtb2QvNy40LjAvcmhlbDcuMl9 ⌋

nbnU0LjguNS9tb2R1bGVmaWxlcy9Db3JlIiwiL3N3L3N1bW1 ⌋

pdGRldi9sbW9kLzcuNC4wL3JoZWw3LjJfZ251NC44LjUvbG1 ⌋

vZC9sbW9kL21vZHVsZWZpbGVzL0NvcmUiLH0sWyJzeXN0ZW1 ⌋

CYXNlTVBBVEgiXT0iL3N3L3N1bW1pdGRldi9sbW9kLzcuNC4 ⌋

wL3JoZWw3LjJfZ251NC44LjUvbW9kdWxlZmlsZXMvTGludXg ⌋

6L3N3L3N1bW1pdGRldi9sbW9kLzcuNC4wL3JoZWw3LjJf

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

LMOD_CMD=/sw/summitdev/lmod/7.4.0/rhel7.2_gnu4.8.5/l ⌋

mod/lmod/libexec/lmod֒→

LSF_BINDIR=/opt/ibm/spectrumcomputing/lsf/10.1/linux ⌋

3.10-glibc2.17-ppc64le-csm/bin֒→

WORLDWORK=/gpfs/alpine/world-shared

MEMBERWORK=/gpfs/alpine/scratch/USER

SHLVL=2

HOME=/ccs/home/USER

OMPI_CC=/sw/summitdev/xl/16.1.1-beta6/xlC/16.1.1/bin ⌋

/xlc_r֒→

OSTYPE=linux

_ModuleTable002_=L0NvcmUvaHNpLzUuMC4yLnA1Lmx1YSIsWyJ ⌋

mdWxsTmFtZSJdPSJoc2kvNS4wLjIucDUiLFsibG9hZE9yZGV ⌋

yIl09Myxwcm9wVD17fSxbInN0YXR1cyJdPSJhY3RpdmUiLFs ⌋

idXNlck5hbWUiXT0iaHNpIix9LFsibHNmLXRvb2xzIl09e1s ⌋

iZm4iXT0iL3N3L3N1bW1pdGRldi9tb2R1bGVmaWxlcy9zaXR ⌋

lL2xpbnV4LXJoZWw3LXBwYzY0bGUvQ29yZS9sc2YtdG9vbHM ⌋

vMi4wLmx1YSIsWyJmdWxsTmFtZSJdPSJsc2YtdG9vbHMvMi4 ⌋

wIixbImxvYWRPcmRlciJdPTUscHJvcFQ9e30sWyJzdGF0dXM ⌋

iXT0iYWN0aXZlIixbInVzZXJOYW1lIl09ImxzZi10b29scyI ⌋

sfSxbInNwZWN0cnVtLW1waSJdPXtbImZuIl09Ii9zdy9zdW1 ⌋

taXRkZXYvbW9kdWxlZmlsZXMvc2l0ZS9saW51eC1yaGVs

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

֒→

OLCF_HSI_ROOT=/sw/sources/hpss

BASH_ENV=/sw/summitdev/lmod/7.4.0/rhel7.2_gnu4.8.5/l ⌋

mod/lmod/init/bash֒→

VENDOR=apple

LESS=-deij4R

PYTHONPATH=/sw/summitdev/xalt/1.1.3/site:/sw/summitd ⌋

ev/xalt/1.1.3/libexec֒→

MPI_ROOT=/autofs/nccs-svm1_sw/summitdev/.swci/1-comp ⌋

ute/opt/spack/20180914/linux-rhel7-ppc64le/xl-16 ⌋

.1.1-beta6/spectrum-mpi-10.2.0.7-20180830-eyo7zx ⌋

m2piusmyffr3iytmgwdacl67ju

֒→

֒→

֒→

MACHTYPE=ppc64le

LOGNAME=USER

OLCF_SPECTRUM_MPI_ROOT=/autofs/nccs-svm1_sw/summitde ⌋

v/.swci/1-compute/opt/spack/20180914/linux-rhel7 ⌋

-ppc64le/xl-16.1.1-beta6/spectrum-mpi-10.2.0.7-20 ⌋

180830-eyo7zxm2piusmyffr3iytmgwdacl67ju

֒→

֒→

֒→

CVS_RSH=ssh

XLSF_UIDDIR=/opt/ibm/spectrumcomputing/lsf/10.1/linu ⌋

x3.10-glibc2.17-ppc64le-csm/lib/uid֒→

SSH_CONNECTION=160.91.202.153 47540 128.219.141.227

22֒→

MODULESHOME=/sw/summitdev/lmod/7.4.0/rhel7.2_gnu4.8. ⌋

5/lmod/lmod֒→

OMP_NUM_THREADS=16

OMPI_CXX=/sw/summitdev/xl/16.1.1-beta6/xlC/16.1.1/bi ⌋

n/xlc++_r֒→

LESSOPEN=||/usr/bin/lesspipe.sh %s

__Init_Default_Modules=1

LMOD_MPI_VERSION=10.2.0.7-20180830-eyo7zxm

LMOD_FAMILY_COMPILER=xl

LMOD_FULL_SETTARG_SUPPORT=no

XL_LINKER=/sw/summitdev/xalt/1.1.3/bin/ld

XALT_OLCF=1

CMAKE_PREFIX_PATH=/autofs/nccs-svm1_sw/summitdev/.sw ⌋

ci/1-compute/opt/spack/20180914/linux-rhel7-ppc6 ⌋

4le/xl-16.1.1-beta6/spectrum-mpi-10.2.0.7-201808 ⌋

30-eyo7zxm2piusmyffr3iytmgwdacl67ju

֒→

֒→

֒→

XDG_RUNTIME_DIR=/run/user/11670



Gates, et al.

LMOD_Priority_PATH=/sw/sources/lsf-tools/2.0/summitd ⌋

ev/bin:-9999;/sw/summitdev/xalt/1.1.3/bin:-9999֒→

_ModuleTable006_=Z251NC44LjUvbW9kdWxlZmlsZXMvQ29yZTo ⌋

vc3cvc3VtbWl0ZGV2L2xtb2QvNy40LjAvcmhlbDcuMl9nbnU ⌋

0LjguNS9sbW9kL2xtb2QvbW9kdWxlZmlsZXMvQ29yZSIsfQ==

֒→

֒→

LMOD_DIR=/sw/summitdev/lmod/7.4.0/rhel7.2_gnu4.8.5/l ⌋

mod/lmod/libexec֒→

LSF_ENVDIR=/opt/ibm/spectrumcomputing/lsf/conf

LMOD_FAMILY_MPI=spectrum-mpi

LMOD_COLORIZE=yes

_=/usr/bin/env

LSB Version: :core-4.1-noarch:core-4.1-ppc64le

Distributor ID: RedHatEnterpriseServer

Description: Red Hat Enterprise Linux Server

release 7.5 (Maipo)֒→

Release: 7.5

Codename: Maipo

Linux summitdev-login1 3.10.0-862.14.4.el7.ppc64le #1

SMP Fri Sep 21 09:14:00 UTC 2018 ppc64le ppc64le

ppc64le GNU/Linux

֒→

֒→

Architecture: ppc64le

Byte Order: Little Endian

CPU(s): 160

On-line CPU(s) list: 0-159

Thread(s) per core: 8

Core(s) per socket: 10

Socket(s): 2

NUMA node(s): 2

Model: 1.0 (pvr 004c 0100)

Model name: POWER8NVL (raw), altivec

supported֒→

CPU max MHz: 4023.0000

CPU min MHz: 2061.0000

L1d cache: 64K

L1i cache: 32K

L2 cache: 512K

L3 cache: 8192K

NUMA node0 CPU(s): 0-79

NUMA node1 CPU(s): 80-159

MemTotal: 266798272 kB

MemFree: 143127168 kB

MemAvailable: 193878272 kB

Buffers: 0 kB

Cached: 90067136 kB

SwapCached: 0 kB

Active: 49730432 kB

Inactive: 56105792 kB

Active(anon): 19571904 kB

Inactive(anon): 36473536 kB

Active(file): 30158528 kB

Inactive(file): 19632256 kB

Unevictable: 4110464 kB

Mlocked: 4110464 kB

SwapTotal: 0 kB

SwapFree: 0 kB

Dirty: 0 kB

Writeback: 128 kB

AnonPages: 19889472 kB

Mapped: 4591616 kB

Shmem: 40276352 kB

Slab: 5640192 kB

SReclaimable: 2401728 kB

SUnreclaim: 3238464 kB

KernelStack: 47984 kB

PageTables: 29440 kB

NFS_Unstable: 0 kB

Bounce: 0 kB

WritebackTmp: 0 kB

CommitLimit: 133399104 kB

Committed_AS: 62669888 kB

VmallocTotal: 8589934592 kB

VmallocUsed: 5147200 kB

VmallocChunk: 8584406720 kB

HardwareCorrupted: 0 kB

AnonHugePages: 180224 kB

CmaTotal: 13434880 kB

CmaFree: 13434880 kB

HugePages_Total: 0

HugePages_Free: 0

HugePages_Rsvd: 0

HugePages_Surp: 0

Hugepagesize: 16384 kB

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 1 0 disk

sdb 8:16 1 0 disk

sdc 8:32 1 0 disk

sdd 8:48 1 0 disk

sde 8:64 1 0 disk

sdf 8:80 1 0 disk

sdg 8:96 1 0 disk

sdh 8:112 1 0 disk

sr0 11:0 1 1024M 0 rom

sr1 11:1 1 1024M 0 rom

sr2 11:2 1 1024M 0 rom

sr3 11:3 1 1024M 0 rom

nvme0n1 259:0 0 1.5T 0 disk

Thu Apr 11 03:16:14 2019

+--------------------------------------------------- ⌋

--------------------------+֒→

| NVIDIA-SMI 396.44 Driver Version:

396.44 |֒→

|-------------------------------+------------------- ⌋

---+----------------------+֒→

| GPU Name Persistence-M| Bus-Id Disp.A

| Volatile Uncorr. ECC |֒→

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage

| GPU-Util Compute M. |֒→

|===============================+=================== ⌋

===+======================|֒→

| 0 Tesla P100-SXM2... On | 00000002:01:00.0 Off

| 0 |֒→
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| N/A 32C P0 30W / 300W | 0MiB / 16280MiB

| 0% E. Process |֒→

+-------------------------------+------------------- ⌋

---+----------------------+֒→

| 1 Tesla P100-SXM2... On | 00000003:01:00.0 Off

| 0 |֒→

| N/A 28C P0 31W / 300W | 0MiB / 16280MiB

| 0% E. Process |֒→

+-------------------------------+------------------- ⌋

---+----------------------+֒→

| 2 Tesla P100-SXM2... On | 00000006:01:00.0 Off

| 0 |֒→

| N/A 33C P0 29W / 300W | 0MiB / 16280MiB

| 0% E. Process |֒→

+-------------------------------+------------------- ⌋

---+----------------------+֒→

| 3 Tesla P100-SXM2... On | 00000007:01:00.0 Off

| 0 |֒→

| N/A 30C P0 30W / 300W | 0MiB / 16280MiB

| 0% E. Process |֒→

+-------------------------------+------------------- ⌋

---+----------------------+֒→

+--------------------------------------------------- ⌋

--------------------------+֒→

| Processes:

GPU Memory |֒→

| GPU PID Type Process name

Usage |֒→

|=================================================== ⌋

==========================|֒→

| No running processes found

|֒→

+--------------------------------------------------- ⌋

--------------------------+֒→

0000:00:00.0 PCI bridge: IBM POWER8 Host Bridge (PHB3)

0000:01:00.0 Ethernet controller: Broadcom Limited

NetXtreme II BCM57800 1/10 Gigabit Ethernet (rev

10)

֒→

֒→

0000:01:00.1 Ethernet controller: Broadcom Limited

NetXtreme II BCM57800 1/10 Gigabit Ethernet (rev

10)

֒→

֒→

0000:01:00.2 Ethernet controller: Broadcom Limited

NetXtreme II BCM57800 1/10 Gigabit Ethernet (rev

10)

֒→

֒→

0000:01:00.3 Ethernet controller: Broadcom Limited

NetXtreme II BCM57800 1/10 Gigabit Ethernet (rev

10)

֒→

֒→

0001:00:00.0 PCI bridge: IBM POWER8 Host Bridge (PHB3)

0001:01:00.0 Non-Volatile memory controller: HGST,

Inc. Ultrastar SN100 Series NVMe SSD (rev 05)֒→

0002:00:00.0 PCI bridge: IBM POWER8 Host Bridge (PHB3)

0002:01:00.0 3D controller: NVIDIA Corporation

GP100GL [Tesla P100 SXM2 16GB] (rev a1)֒→

0003:00:00.0 PCI bridge: IBM POWER8 Host Bridge (PHB3)

0003:01:00.0 3D controller: NVIDIA Corporation

GP100GL [Tesla P100 SXM2 16GB] (rev a1)֒→

0004:00:00.0 PCI bridge: IBM POWER8 Host Bridge (PHB3)

0004:01:00.0 Infiniband controller: Mellanox

Technologies MT27700 Family [ConnectX-4]֒→

0004:01:00.1 Infiniband controller: Mellanox

Technologies MT27700 Family [ConnectX-4]֒→

0005:00:00.0 PCI bridge: IBM POWER8 Host Bridge (PHB3)

0005:01:00.0 PCI bridge: PLX Technology, Inc. PEX

8718 16-Lane, 5-Port PCI Express Gen 3 (8.0 GT/s)

Switch (rev ab)

֒→

֒→

0005:02:01.0 PCI bridge: PLX Technology, Inc. PEX

8718 16-Lane, 5-Port PCI Express Gen 3 (8.0 GT/s)

Switch (rev ab)

֒→

֒→

0005:02:02.0 PCI bridge: PLX Technology, Inc. PEX

8718 16-Lane, 5-Port PCI Express Gen 3 (8.0 GT/s)

Switch (rev ab)

֒→

֒→

0005:02:03.0 PCI bridge: PLX Technology, Inc. PEX

8718 16-Lane, 5-Port PCI Express Gen 3 (8.0 GT/s)

Switch (rev ab)

֒→

֒→

0005:02:04.0 PCI bridge: PLX Technology, Inc. PEX

8718 16-Lane, 5-Port PCI Express Gen 3 (8.0 GT/s)

Switch (rev ab)

֒→

֒→

0005:03:00.0 USB controller: Texas Instruments

TUSB73x0 SuperSpeed USB 3.0 xHCI Host Controller

(rev 02)

֒→

֒→

0005:04:00.0 SATA controller: Marvell Technology

Group Ltd. 88SE9235 PCIe 2.0 x2 4-port SATA 6 Gb/s

Controller (rev 11)

֒→

֒→

0005:05:00.0 PCI bridge: ASPEED Technology, Inc.

AST1150 PCI-to-PCI Bridge (rev 03)֒→

0005:06:00.0 VGA compatible controller: ASPEED

Technology, Inc. ASPEED Graphics Family (rev 30)֒→

0005:07:00.0 Ethernet controller: Broadcom Limited

NetXtreme BCM5719 Gigabit Ethernet PCIe (rev 01)֒→

0005:07:00.1 Ethernet controller: Broadcom Limited

NetXtreme BCM5719 Gigabit Ethernet PCIe (rev 01)֒→

0006:00:00.0 PCI bridge: IBM POWER8 Host Bridge (PHB3)

0006:01:00.0 3D controller: NVIDIA Corporation

GP100GL [Tesla P100 SXM2 16GB] (rev a1)֒→

0007:00:00.0 PCI bridge: IBM POWER8 Host Bridge (PHB3)

0007:01:00.0 3D controller: NVIDIA Corporation

GP100GL [Tesla P100 SXM2 16GB] (rev a1)֒→

0008:00:00.0 Bridge: IBM Device 04ea

0008:00:00.1 Bridge: IBM Device 04ea

0008:00:01.0 Bridge: IBM Device 04ea

0008:00:01.1 Bridge: IBM Device 04ea

0009:00:00.0 Bridge: IBM Device 04ea

0009:00:00.1 Bridge: IBM Device 04ea

0009:00:01.0 Bridge: IBM Device 04ea

0009:00:01.1 Bridge: IBM Device 04ea
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