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ABSTRACT 
 

SLEEP AND ACTIVITY PROBLEMS IN MOUSE MODELS OF 

NEURODEVELOPMENTAL DISORDERS 

Christopher Caleb Angelakos 

Ted Abel 

Adequate sleep is important for long-term health and day-to-day function. Compared to 

the general population, patients diagnosed with neurodevelopmental disorders have 

substantially higher prevalence of sleep, activity, and circadian problems, dramatically 

affecting their quality of life, and potentially exacerbating other adverse symptomologies. 

Despite this, the neurobiological underpinnings of sleep problems in neurodevelopmental 

disorders remain unknown, and accurate rodent models capable of recapitulating human 

sleep and activity problems are lacking. In this dissertation, I investigate sleep, activity, 

and circadian rhythms in genetic mouse models of human neurodevelopmental 

disorders, with a focus on autism spectrum disorder (ASD). In Chapter 1, I review the 

importance of—and mechanisms contributing to—sleep/wake regulation, sleep problems 

in neurodevelopmental disorders, and the utility of rodent genetic models to address 

these problems. In Chapter 2, I investigate hyperactivity and male-specific sleep deficits 

found in the 16p11.2 del/+ chromosomal copy number variation mouse model of 

neurodevelopmental disorders (Angelakos et al., 2016). In Chapter 3, I highlight REM 

sleep reductions and altered electroencephalography (EEG) spectra in the SYGNAP1+/- 

mouse model of intellectual disability and ASD. In Chapter 4, I discuss home-cage 

hypoactivity observed in four different mouse models of ASD. 
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CHAPTER 1: Mechanisms and functions of sleep and circadian rhythms 
 

Abstract 

Sleep is highly conserved across the animal kingdom. A diverse range of organisms 

including nematodes, flies, fish, reptiles, birds, and mammals exhibit sleep or sleep-like 

behavioral states. The fact that sleep is so evolutionarily conserved across phylogeny, 

and humans spend nearly one-third of their lives in this vulnerable state, supports its 

importance. Indeed, adequate sleep has been shown to be important for health, 

metabolism, learning, cognition, mood, synaptic scaling, immune system function, 

hormone release, motor performance, and more. However, in autism spectrum disorder 

and related neurodevelopmental disorders, sleep is disturbed. In this chapter, I review 

some important functions of sleep and mechanisms underlying normal sleep and circadian 

regulation. I also summarize sleep issues highly prevalent in neurodevelopmental 

disorders, with a focus on autism spectrum disorder (ASD). Finally, I address the utility 

and need for genetic mouse models of neurodevelopmental disorders capable of 

reproducing sleep, activity, and circadian problems found in human neurodevelopmental 

disorders. 
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1.1 Mechanisms of sleep and circadian regulation 
 

Sleep is a perplexing and highly conserved behavioral phenomenon. It is a 

reversible period of altered consciousness marked by behavioral quiescence, heightened 

arousal threshold, and in humans and other animals with a sufficiently developed cortex—

altered brain firing patterns that can be measured by electroencephalography (Haas, 

2003). Through polysomnography—the combination of electroencephalography (EEG) 

(brain waves), electromyography (EMG) (skeletal muscle activity), and sometimes 

electrooculography (EOG) (eye movements)—three broad sleep/wake stages can be 

ascertained: wake, non-rapid eye movement sleep (NREM), and rapid eye movement 

sleep (REM). Wake is characterized by high frequency, low amplitude waveforms in the 

EEG with frequent muscle activity in the EMG. NREM sleep is characterized by low 

frequency, high amplitude (synchronized) waveforms in the EEG and minimal muscle tone 

in the EMG. For these reasons, NREM sleep is also referred to as slow wave sleep. REM 

sleep is characterized by high frequency, low amplitude waveforms in the EEG, similar in 

its desynchronized activity to wake, but with an increase of power in the theta frequency 

(4-8Hz). Distinct from wake, however, REM sleep is also characterized by rapid eye 

movements and a complete loss of muscle tone in the EMG (Dement & Kleitman, 1957). 

Sleep and wakefulness is believed to be regulated by two distinct overarching modulators: 

circadian rhythms (also known as “Process C”) and homeostatic drive (also known as 

“process S”) (Borbély, 1982). These processes work in concert to wake us in the morning 

and drive us toward sleep in the evening. 

1.1.1 Circadian rhythms and regulation 

 Circadian rhythmicity is an ~24-hour endogenous biological process (Czeisler et  
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al., 1999) that is entrained by environmental cues to the 24-hour rhythm of the rotating 

earth (J C Dunlap, 1999). The endogenous biological clock is robust, tightly regulated, and 

persists independent of the prior amount of time spent awake/asleep. Genomics studies 

indicate that anywhere from 2% (Duffield et al., 2002) to 8-10% (Akhtar et al., 2002; Panda 

et al., 2002; Storch et al., 2002) of the genome is circadian regulated, and approximately 

40% of coding genes oscillate in at least one organ (Zhang et al., 2014). In mammals, the 

“master” circadian clock is located within the suprachiasmatic nucleus (SCN) of the 

hypothalamus (Moore & Eichler, 1972; Stephan & Zucker, 1972; Welsh et al., 1995). The 

SCN receives direct environmental light cues via the retinohypothalamic tract, and in turn 

signals circadian timing peripherally throughout the body via neural outputs, downstream 

endocrine secretion, and by SCN-driven circadian regulation of body temperature 

(Okamura, 2007; Dibner et al., 2010; Buhr & Takahashi, 2013). The molecular clock is 

driven by a transcriptional-translational feedback loop of core clock molecules. The basic 

helix-loop-helix-PAS-containing transcription factors CLOCK and BMAL1 heterodimerize 

and bind to Enhancer box sequences in the promoters of the negative regulators mPER 

and mCRY, driving their transcription. mPER and mCRY in turn feedback onto 

CLOCK:BMAL1, inhibiting their transcription (Reppert & Weaver, 2002). In addition to this 

molecular negative feedback loop, a separate feedback loop involving RAR-related 

orphan receptor alpha (RORα) and Rev-Erbα maintains the circadian regulation of BMAL1 

by activating and repressing BMAL1 transcription, respectively (Preitner, Damiola, Luis-

Lopez-Molina, et al., 2002). Numerous other transcriptional activators and repressors 

have been identified that play supplementary but important roles in maintaining precise 

circadian timing (for recent reviews, see: Golombek & Rosenstein, 2010; Buhr & 

Takahashi, 2013; Partch et al., 2014). 
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1.1.2 Sleep homeostat (Process S) 

A second process known as the sleep homeostat (or Process S), is dependent 

upon prior time spent awake or asleep (A A Borbély, 1982). The longer we stay awake, 

the more intense is the drive to sleep. This is evident after sleep disruption, chronic sleep 

restriction, or total sleep deprivation following an all-nighter (Klerman & Dijk, 2005; A. C. 

Reynolds & Banks, 2010). Conversely, the need to sleep decreases as the prior duration 

of sleep increases. Behavioral and physiological correlates following sleep deprivation 

provide evidence for the existence of a sleep homeostat. Following sleep deprivation, 

there is an increase of sleep time and slow wave activity (0.5-4.0Hz) relative to the non-

sleep restricted baseline day. Even without sleep deprivation, slow wave activity is 

modulated as a function of prior wakefulness. Slow wave activity increases as a function 

of time spent awake, and declines progressively over subsequent NREM bouts (Borbély 

et al., 1981; Dijk et al., 1991; Achermann et al., 1993; Dijk et al., 1993; Campbell et al., 

2006). In addition to physiological correlates, there are also molecular homeostatic 

correlates. Interstitial concentration of the molecule adenosine increases with 

wakefulness, and decreases with sleep. Following sleep deprivation, adenosine tone 

increases in the basal forebrain and cortex relative to baseline levels, and declines during 

recovery sleep (Porkka-Heiskanen et al., 1997; Porkka-Heiskanen et al., 2000). In rats, 

stimulation of the Gi-coupled adenosine A1 receptor increases NREM slow wave activity, 

mimicking the effects observed following sleep deprivation (Ticho & Radulovacki, 1991; 

Benington et al., 1995), while A1 receptor antagonism reduces recovery sleep and slow 

wave activity (Gass et al., 2009). Caffeine, the world’s most widely consumed 

psychoactive drug due to its wake-promoting effects, is a potent adenosine receptor 
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antagonist (Smits et al., 1987; Fredholm, 1995). Numerous other molecules, including 

glucocorticoids and peptide hormones likely influence the sleep homeostat; however, at 

present time, adenosinergic contribution is the most extensively studied. 

1.1.3 Sleep-state switching 

In addition to circadian rhythms and homeostatic drive, which regulate sleep and 

wakefulness broadly, myriad interconnected circuits and transmitter systems work in 

interplay to regulate the transitions between wake, NREM sleep, and REM sleep 

(reviewed in Fort et al., 2009; Saper et al., 2010). Briefly, and certainly not exclusively, 

arousal networks include nuclei of the reticular formation of the brainstem (Moruzzi & 

Magoun, 1949), cholinergic neurons of the pedunculopontine tegmental nuclei (PPT), 

laterodorsal tegmental nuclei (LDT), and basal forebrain (el Mansari et al., 1989; Cape & 

Jones, 2000; Lee et al., 2005a; Kaur et al., 2008; Boucetta & Jones, 2009; Hassani et al., 

2009a), noradrenergic projections from the locus coeruleus (Aston-Jones & Bloom, 1981), 

serotonergic efferents from the dorsal and median raphe (Monti, 2011), dopaminergic 

neurons in the ventral periaqueductal gray (Lu et al., 2006a), dorsal raphe (Cho et al., 

2017) and ventral tegmental area (Eban-Rothschild et al., 2016), histaminergic neurons 

of the tuberomammillary nucleus (Steininger et al., 1999; Takahashi et al., 2006), and 

orexinergic neurons of the lateral hypothalamus (Lin et al., 1999; Lee et al., 2005b; 

Adamantidis et al., 2007; Carter et al., 2009). NREM sleep-promoting networks include a 

subset of GABAergic neurons of the parafacial zone of the brainstem (Anaclet et al., 2012, 

2014) and the ventrolateral preoptic nucleus (Nauta, 1946; McGinty & Sterman, 1968; 

Sherin et al., 1996; Lu et al., 2000; Chung et al., 2017) and median preoptic nucleus of 

the hypothalamus (Suntsova et al., 2002; Gvilia et al., 2006; Chung et al., 2017), which 
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project to and receive extensive inputs from many of the wake-promoting regions 

mentioned above (Chou et al., 2002; Uschakov et al., 2007). Finally, REM promoting 

circuitry includes subset of GABAergic neurons in the ventral medulla (Weber et al., 2015), 

as well as the reciprocally interacting REM-ON sublaterodorsal nucleus (SLD) and REM-

OFF GABAergic neurons of the ventrolateral periaqueductal gray and lateral pontine 

tegmentum (vlPAG-LPT) (Sastre et al., 1996; Boissard et al., 2002; Lu et al., 2006b; Luppi 

et al., 2006). Additional REM sleep-modulating networks exist in the cholinergic neurons 

of the PPT and LDT (Webster & Jones, 1988; el Mansari et al., 1989), as well as melanin-

concentrating hormone-expressing neurons of the lateral and posterior hypothalamus 

(Verret et al., 2003; Hassani, Lee, & Jones, 2009; Jego et al., 2013). Clearly, the regulation 

of sleep and wake is an intricate and complicated process resulting from the delicate 

interaction of dozens of brain regions and transmitter systems. Aberrant neural signaling 

in a number of brain regions can lead to misregulation of sleep and circadian rhythms. 

Consequences of altered sleep and circadian rhythms are discussed in the next section. 

1.2 Functions of sleep and circadian rhythms, and consequences of their 

dysfunction 

The function of sleep is still debated. In truth, functions of sleep are likely multi-

faceted, situation-dependent, and different across development. Sleep is less 

energetically demanding than wake, bringing about decreased body temperature, heart 

rate, and oxygen consumption  (Kleitman & Ramsaroop, 1948). Thus, sleep has been 

proposed to be restorative, allowing for the clearance of detrimental oxygen free radicals 

and β-amyloid that may accumulate during the metabolically taxing state of an active, 

awake brain (Reimund, 1994; Xie et al., 2013). Sleep is intimately connected with immune 
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system function (Besedovsky et al., 2012), is affected and modulated by cytokines (Opp, 

2005), and is believed to play an important role in recovery from illness (Toth et al., 1993; 

Imeri & Opp, 2009).  Sleep also plays a role in growth and development. Slow wave sleep 

promotes release of growth hormone, which curtails with age (Takahashi et al., 1968; Van 

Cauter et al., 2000). Adequate sleep in infants is related to cognitive performance and 

language-learning (Gómez et al., 2006; Touchette et al., 2007; Beebe, 2011). Moreover, 

sleep is crucial for the consolidation of both procedural and declarative memories 

(Diekelmann & Born, 2010; Abel et al., 2013). During the subsequent sleep episode 

following explorative learning, hippocampal place cells increase their firing rate and 

“replay” the pattern of place cell activity experienced during exploration, suggesting a role 

for sleep in spatial consolidation (Pavlides & Winson, 1989; Skaggs & McNaughton, 1996). 

At the synaptic level, sleep is believed to modulate spine growth and connectivity, allowing 

for the remembering of useful information and the forgetting of non-essential material 

(Tononi & Cirelli, 2006; G. Yang et al., 2014). Still, the most striking evidence for the 

function and importance of sleep and circadian rhythms comes from the severe 

consequences resulting from their disruption. 

1.2.1 Consequences of inadequate sleep 

Insufficient sleep, a common problem in modern society, is concomitant with 

numerous health and cognitive issues. Chronic sleep loss is associated with an increased 

prevalence for obesity, diabetes, hypertension, and heart attacks (Taheri et al., 2004; 

Spiegel et al., 2005; Mullington et al., 2009), as well as shorter lifespans (Kripke et al., 

2002; Patel et al., 2004; Tamakoshi et al., 2004). Insufficient sleep increases plasma 

concentrations of cortisol and pro-inflammatory cytokines, alters glucose metabolism and 
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impacts insulin sensitivity, and modifies levels of leptin and ghrelin (Vgontzas et al., 1997; 

Spiegel et al., 1999; Knutson et al., 2007). Psychologically, long-term sleep deficit is 

positively correlated with depression, anxiety, and alcohol abuse (Pilcher & Huffcutt, 

1996). Total sleep deprivation, partial sleep deprivation, and chronic sleep restriction all 

impair performance on a number of neurocognitive tasks of executive function and working 

memory. Moreover, performance generally worsens proportional to the amount of sleep 

deprivation and the length of the cognitive task (Van Dongen et al., 2003; Durmer & 

Dinges, 2005). Following learning, restricted sleep and total sleep deprivation impairs 

memory consolidation and subsequent recall (Walker, 2008; Diekelmann & Born, 2010; 

Abel et al., 2013). Clearly, the effects of insufficient sleep in humans are substantial and 

widespread. 

 Work from our lab, in mice, has uncovered cellular and molecular consequences 

of acute sleep deprivation, especially as it relates to the consolidation of hippocampus-

dependent memories. Six hours of sleep deprivation following learning impairs spatial 

object recognition and contextual fear memory 24 hours later (Graves et al., 2003; Halassa 

et al., 2009). Sleep deprivation decreases levels of cAMP—a second messenger 

important for protein synthesis and long-term memory formation—by increasing levels of 

phosphodiesterase isoform 4A5 (PDE4A45), an enzyme that breaks down cAMP (Vecsey 

et al., 2009). During sleep deprivation, pharmacogenetic augmentation of cAMP or 

blockade of hippocampal PDE4A5 function prevents spatial memory impairments (Vecsey 

et al., 2009; Havekes et al., 2014). Moreover, acute sleep deprivation attenuates 

translational mechanisms by interfering with the mammalian target of rapamycin (mTOR) 

pathway, preventing normal memory consolidation (Tudor et al., 2016). At the cellular 

level, acute sleep deprivation elevates cofilin activity and decreases dendritic spine length 
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and density in hippocampus region CA1, which is normalized by recovery sleep (Havekes 

et al., 2016). Further, 6 hours of sleep deprivation impairs certain forms of long-term 

potentiation in the hippocampus, the presumptive cellular correlate for learning (Vecsey 

et al., 2009). Thus, even one night of acute sleep deprivation has molecular consequences 

and is capable of altering neural structure and connectivity. 

1.2.2 Consequences of circadian dysfunction 

Proper alignment between endogenous circadian clocks and exogenous 

environmental stimuli are important for health and function. It is estimated that 15% of all 

metabolites are under circadian control (Dallmann et al., 2012), and metabolic diseases 

are associated with circadian disturbances (reviewed in: Delezie & Challet, 2011). 

Circadian disruption caused by shift work is associated with obesity, heightened levels of 

triglycerides, type 2 diabetes, and an increased risk for cancer and cardiovascular disease 

(Bøggild & Knutsson, 1999; Davis et al., 2001; Karlsson et al., 2001; Schernhammer et 

al., 2001, 2003; Pan, et al., 2011). In addition to long-term health detriments, shift work is 

also associated with fatigue resulting in significantly more work accidents (Smith et al., 

1994) and increased work errors due to sleepiness (Åkerstedt, 1988). 

Important circadian influences on metabolism and health have also been 

demonstrated in cyanobacteria, Drosophila, and rodents. Strains of cyanobacteria whose 

internal oscillator closely match the external environment out-compete strains of 

cyanobacteria that do not oscillate in tune with the environment (Woelfle et al., 2004).  

Drosophila with impaired circadian clock function have decreased reproductive success 

(Beaver et al., 2002), altered carbohydrate and lipid homeostasis (Seay & Thummel, 

2011), and are more sensitive to infection (Shirasu-Hiza et al., 2007). In mice, CLOCK 
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gene mutants are hyperphagic, have altered glucose metabolism, and become obese 

(Turek et al., 2005). Chronically “jet lagged” wildtype mice who undergo an 8 hour phase 

advance at the beginning of each week develop leptin resistance and become obese 

(Kettner et al., 2015). Moreover, mice receiving a chronic jet lag protocol of four 

consecutive weekly 6-hour phase advances have impaired immune system function, 

hypothermia, and a 4-fold increased mortality rate following LPS injection (Castanon-

Cervantes et al., 2010). Additionally, tau-shortened hamster mutants kept on a normal 

12h:12h light:dark cycle develop cardiomyopathies, renal disease, and die prematurely. 

Importantly, if the light:dark cycle is adjusted to match the endogenous circadian rhythm 

of these hamster mutants with short endogenous rhythms, no detriments were observed 

in these organs (Martino et al., 2008). 

In humans, there are five currently recognized circadian disorders: delayed sleep 

phase disorder, advanced sleep phase disorder, irregular sleep-wake disorder, non-24-

hour sleep-wake disorder, and shift work sleep disorder. Circadian disorders are comorbid 

with ADHD and depression (Bunney, 2000; Baird et al., 2012). Much of the problems 

resulting from circadian disorders are societal in nature, as afflicted individuals may have 

trouble going to school or holding jobs requiring a standard 9-5 schedule without 

constantly suffering from sleepiness, fatigue, headaches, and cognitive impairments 

(Okawa and Uchiyama, 2007). 

 

1.3 Summary of the functional importance of sleep and circadian rhythms 

In summary, adequate sleep and precisely timed circadian rhythmicity is important 

for health, metabolism, immune function, learning, cognition, mood, synaptic scaling, 
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hormone release, motor performance, and more. Sleep and circadian problems result in 

profound behavioral, cellular, and molecular consequences, affecting quality of life and 

long-term health. Much of what we know about the circuitry and molecular mechanisms 

underlying normal and deficient sleep and circadian rhythmicity comes from studies in 

rodent models. These factors motivated my dissertation work—to investigate sleep, 

activity, and circadian rhythms in mouse genetic models of neurodevelopmental 

disorders—a patient population with profoundly enhanced sleep issues relative to the 

general population. The long-term goal of these studies is to identify accurate genetic 

models capable of recapitulating some of the diverse sleep and activity issues that cause 

substantial burden to the majority of individuals diagnosed with a neurodevelopmental 

disorder. 

1.4 Sleep and circadian problems in autism spectrum disorders and related 

neurodevelopmental disorders 

Autism spectrum disorder (ASD) is a multifaceted disorder of neural development, 

affecting an estimated 1 in 68 children born today. ASD is strongly sex-biased, with males 

4.5 times more likely than females to receive an ASD diagnosis (Christensen et al., 2016), 

even with the same genetic insult (Robinson et al., 2013; Jacquemont et al., 2014). 

Patients diagnosed with ASD typically exhibit social deficits, communication problems, 

and repetitive behaviors. In addition to these “core” ASD symptomologies, it is now 

recognized that sleep problems are a hallmark of ASD, as well as other 

neurodevelopmental disorders (for reviews, see: Richdale & Schreck, 2009; Glickman, 

2010; Robinson-Shelton & Malow, 2016; Souders et al., 2017). 
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The prevalence of sleep problems in neurodevelopmental disorders are estimated 

to be as high as 80%, representing a 2-3 fold increase over the typically developing 

population (Robinson-Shelton & Malow, 2016; Souders et al., 2017). The most common 

sleep problem in ASD is insomnia, which is 10x more likely in children with ASD than in 

children without a neurodevelopmental disorder diagnosis (Sivertsen et al., 2012). Other 

sleep problems prevalent in ASDs include difficulties falling asleep, difficulties staying 

asleep (increased night awakenings), and early morning rising (Limoges et al., 2005; 

Malow et al., 2006; Miano et al., 2007; Goldman et al., 2009;  Richdale & Schreck, 2009; 

Souders et al., 2009; Picchioni et al., 2014). ASD patients have been reported to have 

decreased REM sleep time and reduced rapid-eye movements during REM sleep 

(Limoges et al., 2005; Buckley et al., 2010). On top of the direct consequences of altered 

sleep in ASD, sleep problems are correlated with the severity of other negative ASD 

symptomologies, and have been estimated to account for 22-32% of the variance in 

behavioral problems in ASD (Park et al., 2012; Mazurek & Sohl, 2016). 

Insomnia and early morning wakings in ASD suggest circadian abnormalities. 

Melatonin is a circadian-regulated hormone produced by the pineal gland that regulates 

timing of sleep and wakefulness. Indeed, numerous studies have reported altered 

melatonin synthesis, concentration, and circadian profile in ASD patients relative to 

typically developing controls (Ritvo et al., 1993; Nir et al., 1995; Kulman et al., 2000; 

Tordjman et al., 2005; Bourgeron, 2007; Melke et al., 2008; Mulder et al., 2010). Nocturnal 

melatonin has helped mitigate insomnia in some ASD patients (Rossignol & Frye, 2011; 

Cortesi et al., 2012; Cuomo et al., 2017), but may result in earlier morning awakenings 

(Gringras et al., 2012). Further, meta-analyses of randomized, double-blinded, and 

placebo-controlled studies of nocturnal melatonin therapy revealed no significant 
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improvements in night-time awakenings in ASD patients (Rossignol & Frye, 2011; Cuomo 

et al., 2017). 

 

1.5 Mouse genetic models for studying sleep and circadian rhythms 

 The benefits of using genetically-modified mice to study sleep and circadian 

rhythms are multiple. Mice have brains with similar structure, circuitry, and regional 

functionality as humans. Unlike simpler model organisms such as C. elegans and 

Drosophila, polysomnography can be performed in rodents, they exhibit REM sleep, and 

they demonstrate rebound slow wave activity and sleep time following sleep deprivation 

(Franken et al., 1991). Moreover, experimental protocols for studying sleep and circadian 

rhythms in mice are well-defined. Most importantly, among animals amenable to powerful 

genetic manipulations, mice are the closest phylogenetic relative to humans. 

 Despite the fact that dozens of genetic mouse models of ASD have been 

generated and the high prevalence of sleep problems in human patients, at the present 

time, only two studies have quantified sleep and circadian rhythms in any rodent genetic 

model of ASD (Thomas et al., 2016, 2017). In the following chapters, I will discuss my 

dissertation research outlining sleep, activity, and circadian alterations in multiple rodent 

genetic models of neurodevelopmental disorders. In Chapter 2, I describe male-specific 

sleep deficits in the 16p11.2 del/+ mouse model of neurodevelopmental disorders. In 

Chapter 3, I show altered REM sleep and cortical EEG spectra in the Syngap1+/- mouse 

model of intellectual disability and ASD. In Chapter 4, I present an unexpected, but shared 

home-cage hypoactivity phenotype across four different mouse models of ASD. Utilizing 

the models outlined in this dissertation, we eventually hope to 1) identify neural circuits 
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and molecular etiologies of the sleep, activity, and circadian alterations described herein, 

and 2) test potential treatment strategies—with the ultimate goal of improving quality of 

life for both patients diagnosed with neurodevelopmental disorders and their caretakers. 
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CHAPTER 2: Hyperactivity and male-specific sleep deficits in the 16p11.2 
deletion mouse model of autism 

 
 

Abstract 

Sleep disturbances and hyperactivity are prevalent in several neurodevelopmental 

disorders, including autism spectrum disorders (ASDs) and attention deficit-hyperactivity 

disorder (ADHD). Evidence from genome-wide association studies indicates that 

chromosomal copy number variations (CNVs) are associated with increased prevalence 

of these neurodevelopmental disorders. In particular, CNVs in chromosomal region 

16p11.2 profoundly increase the risk for ASD and ADHD, disorders that are more common 

in males than females. We hypothesized that mice hemizygous for the 16p11.2 deletion 

(16p11.2 del/+) would exhibit sex-specific sleep and activity alterations. To test this 

hypothesis, we recorded activity patterns using infrared beam breaks in the home-cage of 

adult male and female 16p11.2 del/+ and wildtype (WT) littermates. In comparison to 

controls, we found that both male and female 16p11.2 del/+ mice exhibited robust home-

cage hyperactivity. In additional experiments, sleep was assessed by polysomnography 

over a 24-hour period. 16p11.2 del/+ male, but not female mice, exhibited significantly 

more time awake and significantly less time in non-rapid-eye-movement (NREM) sleep 

during the 24-hour period than wildtype littermates. Analysis of bouts of sleep and 

wakefulness revealed that 16p11.2 del/+ males, but not females, spent a significantly 

greater proportion of wake time in long bouts of consolidated wakefulness (greater than 

42 minutes in duration) compared to genetic controls.  These changes in hyperactivity, 

wake time, and wake time distribution in the males resemble sleep disturbances observed 

in human ASD and ADHD patients, suggesting that the 16p11.2 del/+ mouse model may 
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be a useful genetic model for studying sleep and activity problems in human 

neurodevelopmental disorders. 
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Introduction 

Sleep and activity problems are extremely prevalent in autism spectrum disorders 

(ASDs) and attention-deficit/hyperactivity disorder (ADHD), yet they remain poorly 

understood. Disrupted sleep affects up to 80% of ASD patients and 55% of children with 

ADHD, compared to only 7-30% in the control population (Ivanenko & Johnson, 2008; 

Goldman et al., 2011; Cohen et al., 2014;  Kirov & Brand, 2014). The most commonly 

reported sleep issues in these neurodevelopmental disorders include insomnia, delayed 

sleep onset, and increased night awakening (Ivanenko & Johnson, 2008; Ming & Walters, 

2009; A. M. Reynolds & Malow, 2011). These subjective observations have been 

supported by objective polysomnography and actigraphy sleep recordings (Miano et al., 

2007; Cortese et al., 2009; Goldman et al., 2009; Souders et al., 2009). In addition, sleep 

problems are positively correlated with the severity of core ASD symptomology including 

communication deficits, withdrawal, and repetitive and stereotyped behavior (Cortesi et 

al., 2010; Park et al., 2012). Despite this, few well-controlled studies have addressed the 

neurobiological underpinnings of sleep problems in these disorders. The high prevalence 

of sleep problems in ASDs and ADHD and the impact of disrupted sleep on symptomology 

highlight the utility of identifying an appropriate genetic model with which to test potential 

treatments and elucidate mechanisms underlying these disorders.  

Increasing evidence from genome-wide association studies suggests that 

chromosomal copy number variations (CNVs) are significantly enhanced in many 

neurodevelopmental disorders (Sebat et al., 2007; Grayton et al., 2012). In particular, 

hemideletion in chromosomal region 16p11.2 profoundly increases the risk for several 

neurodevelopmental disorders, including ASD and ADHD, even when controlling for the 
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high comorbidity between these disorders (Hanson et al., 2014). 16p11.2 hemideletion is 

associated with an estimated 0.6% of all ASD diagnoses (Weiss et al., 2008), and 16p11.2 

hemideletion patients display cognitive deficits and other ASD symptomology even if they 

do not meet the criteria for ASD diagnosis (Stefansson et al., 2014). Unlike many factors 

believed to contribute to neurodevelopmental disorders, the 16p11.2 chromosomal region 

is highly conserved in the syntenic 7qF3 region in the mouse, and thus copy number 

variation in this region can be accurately modeled. To date, three different mouse lines of 

16p11.2 hemideletion have been created, varying in the size of the deletion as well as 

genetic background of the mice (Horev et al., 2011; Portmann et al., 2014; Arbogast et al., 

2016). Indeed, 16p11.2 hemideletion (16p11.2 del/+) mice have deficits in brain structure, 

cognition, and communication (Horev et al., 2011; Portmann et al., 2014; Pucilowska et 

al., 2015; Brunner et al., 2015; Yang et al., 2015a; Yang et al., 2015b; Arbogast et al., 

2016). 

ASDs and ADHD also show significant sex bias risk, but the mechanisms 

contributing to this remain unknown. Males are 4 times more likely than females to be 

diagnosed with ASD (Werling & Geschwind, 2013) and 3 times more likely to be diagnosed 

with ADHD (Schneider & Eisenberg, 2006). For this reason, developing genetic models 

that also demonstrate this risk bias is important for construct validity. Previous studies 

utilizing the 16p11.2 del/+ mouse model have not directly compared males and females 

(Brunner et al., 2015; Pucilowska et al., 2015; Yang et al., 2015a; Yang et al., 2015b; 

Arbogast et al., 2016).  In this study, we assessed home-cage activity using infrared beam 

breaks and sleep/wake behavior using polysomnography in both male and female adult 

16p11.2 del/+ mice. We found robust home-cage hyperactivity across the diurnal cycle in 
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both male and female 16p11.2 del/+ mice compared to sex-matched wildtype littermates. 

In addition, we found male-specific sleep/wake decrements in total sleep time and 

distribution of wakefulness. In 16p11.2 del/+ males, but not females, the proportion of 

wake time distributed in long bouts of continuous wakefulness was significantly greater 

than in sex-matched WT littermates. When compared to sex-matched controls, these 

male-specific sleep and activity alterations parallel deficits seen in human ASD and ADHD 

patients. Additionally, while no systematic analysis of sleep has been performed in a 

population of human 16p11.2 hemideletion patients, sleep disturbances have been 

reported in two 16p11.2 hemideletion and two 16p11.2 duplication patients (Fernandez et 

al., 2009; Tabet et al., 2012). To our knowledge, the present study is the first study 

showing male-specific sleep deficits in a rodent genetic model of neurodevelopmental 

disorders. These findings suggest that 16p11.2 del/+ mice are an appropriate genetic 

model for investigating treatment strategies and potential mechanisms underlying sleep 

problems, hyperactivity, and sex differences found commonly in human ASD and ADHD 

patients. 

Materials and Methods 

Animals 

16p11.2 del/+ male mice on a mixed C57BL/6J and 129S1/SvImJ background 

purchased from The Jackson Laboratory (Stock #013128) were bred with females on a 

mixed C57BL/6J and 129S1/SvImJ background (Stock #101043). All available pups were 

used for experiments, no litters were culled, and all cages were fitted with Nestlets 

(Ancare, Bellmore, NY) for enrichment. Mice were weaned at 3 weeks of age and 
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remained group housed with sex-matched littermates (4-5 mice/cage) until 

experimentation. Adult (2.5-4.5 month old) male and female 16p11.2 del/+ and WT 

littermate offspring were used for all experiments in accordance with age ranges utilized 

in previous mouse sleep experiments (Vassalli et al., 2013; Wimmer et al., 2013; Mang et 

al., 2016) and guidelines for assessment of behavior in adult mice (Crawley, 2007). The 

age distribution was consistent between the 4 experimental groups (mean ± SEM; Male 

WT: 117.3 ± 3.9 days, Male 16p11.2 del/+: 115.7 ± 3.9 days, Female WT: 118.2 ± 4.6 

days, Female 16p11.2 del/+: 117.5 ± 4.1 days). Separate cohorts of mice were used for 

all behavioral experiments. Animals were provided food and water ad libitum and 

maintained on a 12 hour light / 12 hour dark cycle with light onset at 7:00 am. All animal 

care and experiments were approved by the Institutional Animal Care and Use Committee 

of the University of Pennsylvania and conducted in accordance with the National Institutes 

of Health guidelines.  

Activity Monitoring 

Activity was monitored using an infrared beam-break system (Opto M3, Columbus 

Instruments, Columbus, OH), which provided a scaffold of high-resolution infrared lights 

and detectors. The beams were spaced 0.5 inches apart and beam breaks were sampled 

every 10 seconds. Two infrared grids at 0.75 inches and 2.75 inches from the cage floor 

measured horizontal and vertical (rearing) activity, respectively. Mice were housed 

individually in noise-attenuating chambers (22′′ × 16′′ × 19′′, Med Associates, St. Albans, 

VT) equipped with individual lights (250 lux) and fans. Cages were placed within the beam 

break system and covered with a lid to contain the mouse and to reduce brightness (80 

lux at cage floor level). To mitigate the potential impact of anxiety, mice were allowed to 
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acclimate to the lighting and social isolation of the activity chambers for 1 week before 

experimentation. Following 1 week of acclimation, activity data was collected for 1 week 

under 12-hour light / 12-hour dark conditions. Beam break counts were binned into 1 hour 

bins and averaged over the 1 week of data collection. Lighting conditions were then 

switched to 24-hour constant darkness for 2 weeks and counts of beam breaks were 

compiled every 1 minute. Circadian period (Tau) was calculated from Day 2 to Day 14 of 

constant darkness using ClockLab software (Actimetrics). Because of the circadian 

manipulations of activity experiments, and to ensure consistent age ranges between sleep 

and activity experiments, separate cohorts of mice were used for activity monitoring and 

polysomnography sleep experiments. 

Polysomnography 

 Animals were surgically implanted with electroencephalography (EEG) and 

electromyography (EMG) electrodes under isoflurane anesthesia as described previously 

(Wimmer et al., 2013). Briefly, electrodes consisted of Teflon-coated wires (Cooner wires, 

Chatsworth, CA) soldered to gold socket contacts (Plastics One, Roanoke, VA) and 

pushed into a six-pin plastic plug (MS363 plug, Plastics One). Electrodes were held in 

place with miniature screws (J.I. Morris Co, Southbridge, MA) and dental cement (Ketac, 

3M, St Paul, MN). Mice were allowed to recover from surgery for a minimum of 2 weeks. 

During the second week of recovery, animals were connected to amplifiers using 

lightweight cables (363, Plastics One) attached to a rotating commutator (SLC6, Plastics 

One). Mice were allowed to acclimate to the cables and to the noise-attenuating faraday 

recording chambers (38” x 39” x 33”, Med Associates, Georgia, VT) for one week before 

analysis of sleep/wake. All recordings were obtained using parietal (ML ± 1.5 mm, AP -2 
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mm from bregma) electrodes referenced to an electrode over the cerebellum (-1.5 mm 

from lambda). Cerebellar reference was chosen based upon a lack of signal disruption 

from either neck muscles or other brain areas, and has been previously validated by our 

lab (Wimmer et al., 2013) and others (McShane et al., 2010; Vassalli et al., 2013). 

EEG/EMG signals were sampled at 256 Hertz (Hz) and filtered at 0.3-30 Hz and 

1-100 Hz, respectively, with 12A5 amplifiers (Astro-Med, West Warwick, RI). Data 

acquisition and manual visual scoring was performed using SleepSign software (Kissei 

Comtec Inc, Japan). EEG/EMG data was collected for a total of 24 consecutive 

undisturbed hours beginning at 7:00am (onset of the light phase).  EEG/EMG data was 

analyzed in 4 second epochs as wake, non-rapid eye movement (NREM) sleep, or rapid 

eye movement (REM) sleep by a trained experimenter blind to experimental conditions. 

Wake was classified by increases in higher frequency waves (>10 Hz), decreases in 

amplitude of the EEG, and high movement in the EMG. NREM was classified by increases 

in delta power (0.5-4 Hz) and amplitude of the EEG, along with low amplitude activity in 

the EMG. REM was determined by high EEG activity in the theta range (4-8 Hz) and very 

low activity in the EMG.  One 16p11.2 del/+ male was excluded from all analyses because 

its total wake time over the 24-hour period was 236 minutes less than the group average, 

>2.5 standard deviations below the group mean. For EEG spectral analysis, fast Fourier 

transform (FFT; Hanning window; 0.5-20 Hz, 0.25 Hz resolution) was performed across 

the 24-hour period on artifact-free epochs, and wake, NREM, and REM were normalized 

and expressed as a percentage of the total spectral power. For a subset of the animals 

(15 males and 5 females), spectral analysis was not appropriate due to technical error 

with amplifier settings in initial cohorts and/or the quality of the EEG traces. 
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Bout Distributions 

Bouts of wake, NREM, and REM were classified as reported previously (Watson 

et al., 2015). Briefly, wake and NREM bouts were identified as 32 seconds (8 epochs) or 

greater of consecutive wake or NREM, respectively, while bouts of REM were identified 

as 20 seconds (5 epochs) or greater of consecutive REM. Bouts of NREM and REM were 

considered broken once interrupted by 8 epochs of any other state, while bouts of wake 

were terminated by a single epoch of any other state. Bouts of wake, NREM, and REM 

were then sorted into duration bins following a log2 pattern (30-80 s, 84-160 s, 164-320 s, 

324-640 s. 644-1280 s, 1284-2560 s, and >2560 s) in accordance with previously 

published analysis (Mochizuki et al., 2004; Kantor et al., 2013). One WT male was 

excluded from all analyses due to a bout of >7 hours of consecutive wakefulness, >2.5 

standard deviations above the group average. 

Elevated Zero-maze 

 Mice were individually placed on a 5.5 cm wide circular track with an external 

diameter measuring 45 cm, raised 40 cm above the floor (San Diego Instruments, San 

Diego, CA). The track had two open and two enclosed segments of equal dimensions. 

Mice were gently placed in the center of a closed segment to begin a 5 minute trial. Time 

spent in open arms, risk assessment (Karlsson et al., 2005), and total distance traveled 

were assessed using an automated MATLAB (Mathworks) based image analysis 

software as described previously (Patel et al., 2014). 

Open field 
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 Spontaneous activity was assessed in an open field arena (14” x 14”, San Diego 

Instruments, San Diego, CA) fitted with photocells to detect motion. Mice were gently 

placed individually into the center of the open field for a 10 minute trial. Total ambulation, 

center activity, periphery activity, and rearing behavior were recorded. Each trial was 

digitally recorded and analyzed with image analysis software (Mathworks).  Separate 

cohorts of mice were used for elevated zero-maze and open field tasks. 

Statistics 

 All statistical analyses were performed using SPSS for Windows (V. 22.0). For 

beam break activity, Mixed Design ANOVAs were used with genotype (WT or 16p11.2 

del/+) and sex (male or female) as the between-subjects factors and time as the within-

subjects factor. Two-way ANOVAs were used to compare wake, NREM and REM sleep 

times averaged over 24 hours, and to analyze elevated zero-maze and open field data.  

For 4x6-hour binned sleep state analysis, sleep state bout distribution experiments, and 

FFT spectral analysis, Mixed Design ANOVAs were used with genotype (WT or 16p11.2 

del/+) as the between-subjects factor and time (or in the case of FFT analysis, frequency 

bin) as the within-subjects factor. Post hoc multiple comparisons were performed using 

Bonferroni’s adjustment for multiple comparisons. In instances where the assumption of 

sphericity was violated, Greenhouse-Geisser corrected F values are given. Mann-Whitney 

U-tests were performed on normalized FFT data binned into low delta, delta, theta, alpha, 

and beta frequency bins. Multivariate analysis of variance (MANOVA) was used on the 

proportion of time spent in each sleep state during the light phase and the dark phase, 

with alpha corrected for multiple ANOVAs and set at α = 0.05/2, followed by post hoc 

Bonferroni’s adjustment for multiple comparisons.  
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Results 

Home-cage hyperactivity in 16p11.2 del/+ mice 

Male and female 16p11.2 del/+ mice and WT littermates were acclimated and 

assessed for home-cage activity across the diurnal cycle by breaks of infrared beams in 

the horizontal axis (Fig. 2.1a) as well as the vertical axis (Fig. 2.1b) to measure rearing 

behavior. Mixed Design ANOVAs revealed that 16p11.2 del/+ mice had significantly more 

activity than WT mice in both the horizontal (main effect of genotype; F(1,48) = 27.808, p 

< 0.001, Fig. 2.1c) and vertical axis (main effect of genotype; F(1,48) = 34.714, p < 0.001 

Fig. 2.1d). There was no effect of sex (F(1,48) = 0.814, p = 0.371) nor a sex*genotype 

interaction (F(1,48) = 0.083, p = 0.774). To test whether the hyperactive behavior 

observed in 16p11.2 del/+ mice may be related to stress/anxiety, we performed elevated 

zero-maze on a separate cohort of 16p11.2 del/+ and WT mice. There were no significant 

differences in time spent in the open arm (Two-way ANOVA, p = 0.279, Fig. 2.1e) or risk 

assessment behavior (Karlsson et al., 2005) (p = 0.54, Fig. 2.1f), demonstrating that 

16p11.2 del/+ mice display normal anxiety-like behavior. There were also no differences 

between 16p11.2 del/+ mice and WT mice in distance traveled (Two-way ANOVA, p = 

0.404, Fig. 2.1g) or time spent in the center (p = 0.501, Fig. 2.1h) in a 10 minute novel 

open field task. 

Because the hyperactivity observed in 16p11.2 del/+ males and females was most 

pronounced during the dark (active) phase, and circadian problems such as increased 

latency to sleep and early night awakenings are commonly reported in ASD patients 

(Glickman, 2010b), we tested whether 16p11.2 del/+ mice have altered free-running 
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circadian rhythms. Male and female 16p11.2 del/+ mice were entrained to constant 

darkness for 2 weeks and activity was quantified via infrared beam breaks. There were no 

effects of genotype on circadian period (tau) in male (WT: 23.70 ± 0.04 hrs, 16p11.2 del/+: 

23.76 ± 0.05 hrs; p = 0.36) or female (WT: 23.57 ± 0.05 hrs, 16p11.2 del/+: 23.64 ± 0.02 

hrs; p = 0.22) mice. This indicates that 16p11.2 del/+ mice have normal circadian rhythms 

and also that the hyperactivity observed in these mice is intrinsic and not a product of 

environmental light cues. 

Male-specific sleep decrements in 16p11.2 del/+ mice 

Because 16p11.2 del/+ male and female mice exhibited robust hyperactivity, we 

assessed sleep and wake in 16p11.2 del/+ male and female mice using polysomnography 

recordings to distinguish between activity and sleep. EEG/EMG was recorded and 

assessed across a 24-hour period. Female mice were awake significantly more than male 

mice across the 24-hour day (main effect of sex; F(1,51) = 6.318, p = 0.015) consistent 

with previously published results showing sex differences in sleep time and architecture 

between male and female mice (Koehl et al., 2006; Paul et al., 2006). There was no main 

effect of genotype (F(1,51) = 2.628, p = 0.111) nor sex*genotype interaction (F(1,51) = 

2.110, p = 0.152). Because of the inherent sleep differences between male and female 

mice and the main effect of sex within our dataset, male and female 16p11.2 del/+ mice 

were analyzed separately and compared against sex-matched WT littermates in order to 

focus on the biologically relevant comparisons. Male 16p11.2 del/+ mice exhibited more 

wake across the 24-hour day compared to sex-matched WT mice (Student’s t-test, p = 

0.008; Fig. 2.2a). There was a significant difference in 16p11.2 del/+ male wake time 

compared to WTs across the light/dark cycle (MANOVA, F(2,27) = 4.628, p = 0.019; Fig. 
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2.2a). Post hoc analysis revealed that 16p11.2 del/+ males have significantly more wake 

time during the light phase (F(1,28) = 5.322, p = 0.029), but not during the dark (active) 

phase (F(1,28) = 2.780, p = 0.107) than WT males. Concordant with increased total wake 

time, 16p11.2 del/+ male mice have less NREM sleep time than WT mice across the 24-

hour period (Student’s t-test, p = 0.013; Fig. 2.2b). In contrast to differences in total wake 

and NREM time, there was no difference in REM time in 16p11.2 del/+ males relative to 

WT mice (Student’s t-test, p = 0.94; Fig. 2.2c). Sleep data was next analyzed in 6 hour 

time bins as previously published (Franken et al., 1999). Mixed Design ANOVA revealed 

that the decreased NREM time observed in 16p11.2 del/+ males (main effect of genotype; 

F(1,28) = 7.019, p = 0.013; Fig. 2.2d) was due primarily to the final 6 hours of the light 

phase (Student’s t-test, t(28) = 9.055, p = 0.005; Fig 2.2d). In contrast to the males, 

16p11.2 del/+ females exhibited no differences in wake (Student’s t-test, p = 0.92; Fig. 

2.2e), NREM (Student’s t-test, p = 0.53; Fig. 2.2f), or REM (Student’s t-test, p = 0.067; 

Fig. 2.2g) time compared to WT females across the 24-hour period. Female 16p11.2 del/+ 

mice also exhibited no differences in wake, NREM, or REM in the light or dark phases 

(wake: F(2,22) = 0.414, p = 0.67, Fig 2.2e; NREM: F(2,22) = 1.633, p = 0.218, Fig 2.2f; 

REM: F(2,22) = 3.121, p = 0.064, Fig 2.2g). Analyzing female 16p11.2 del/+ NREM sleep 

in 6 hour time bins revealed no significant main effect (F(3,69) = 0.397, p = 0.535; Fig. 2h) 

nor a significant genotype*time interaction (F(3,69) = 1.272, p = 0.29; Fig. 2.2h).  This data 

suggests that 16p11.2 del/+ males, but not females, have deficits in either sleep initiation 

or sleep maintenance. 

16p11.2 del/+ males have elongated bouts of wakefulness  
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Because 16p11.2 del/+ male mice have decreased sleep and increased 

wakefulness, we binned and analyzed the distribution of wake, NREM, and REM bout 

durations as described previously (Mochizuki et al., 2004; Kantor et al., 2013) to elucidate 

the factor(s) contributing most strongly to this phenotype. We found that 16p11.2 del/+ 

male mice have an altered distribution of wake bout length duration (genotype*bout time 

interaction; F(6,168) = 6.599, p = 0.001; Fig. 2.3a).  Post hoc comparisons indicated that 

16p11.2 del/+ males spent a higher proportion of their wake time in prolonged bouts of 

continuous wakefulness (>42 consecutive minutes: t(28) = 11.340, p = 0.002) and less 

time in bouts of shorter duration (160-320 seconds: t(28) = 5.356, p = 0.028; 320-640 

seconds: t(28) = 10.248, p = 0.003; 640-1280 seconds: t(28) = 6.480, p = 0.017). By 

contrast, females exhibited no differences in wake bout length distribution (F(6,138) = 

1.576, p = 0.22; Fig. 2.3d). There were no differences in NREM bout time distribution in 

16p11.2 del/+ males (F(6,168) = 0.500, p = 0.59; Fig 2.3b) or females (F(6,138) = 1.924, 

p = 0.16; Fig. 2.3e). Likewise, there were no differences in REM bout length distribution in 

either males (F(6,168) = 0.785, p = 0.48; Fig. 2.3c) or females (F(6,138) = 1.816, p = 0.16; 

Fig. 2.3f) Together, this data indicates that 16p11.2 del/+ males, but not females, sleep 

less than WT mice due to deficits in sleep initiation, rather than sleep maintenance. 

16p11.2 del/+ males have reduced alpha power during wake 

 Next, we performed fast Fourier transform (FFT) to analyze the EEG power spectra 

of 16p11.2 del/+ males and females during wake, NREM, and REM. There was no main 

effect of genotype for any sleep state for either sex (Males wake: F(1,13) = 2.649, p = 

0.13, Fig. 2.4a; NREM: F(1,13) = 3.851, p = 0.07, Fig. 2.4b; REM: F(1,13) = 0.760, p = 

0.40, Fig. 2.4c; Females wake: F(1,18) = 0.649, p = 0.43, Fig. 2.4d; NREM: F(1,18) = 
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1.680, p = 0.21, Fig. 2.4e; REM: F(1,18) = 0.744, p = 0.40, Fig. 2.4f). However, binning 

the data into low delta (0.5-1.5 Hz), delta (0.5-4.0 Hz), theta (4.0-8.0 Hz), alpha (8.0-12.0 

Hz), and beta (12.0-20.0 Hz) frequency bands revealed that 16p11.2 del/+ males have 

significantly increased alpha power during wake relative to WT littermates (Mann-Whitney 

U = 8, p = 0.021; Fig. 2.4a, inset), suggesting increased arousal and vigilance during quiet 

wake in 16p11.2 del/+ males (Cantero et al., 2002). Increased arousal during quiet wake, 

in concert with increases in total wake time and prolonged bouts of continuous 

wakefulness, suggests that 16p11.2 del+/ males may possibly have deficits initiating 

wake-to-sleep transitions. In contrast, there were no differences in alpha power during 

wake between 16p11.2 del/+ females and WT littermates (Mann-Whitney U = 31, p = 0.18, 

Fig. 2.4d, inset). 16p11.2 del/+ females, however, had significantly increased beta power 

during wake (Mann-Whitney U = 22, p = 0.038, Fig. 2.4d, inset). There were no differences 

in any other frequency bands apart from a decrease in low delta power during NREM in 

16p11.2 del/+ females in comparison to WT littermates (Mann-Whitney U = 16, p = 0.010, 

Fig. 2.4e, inset), which may indicate differences in sleep homeostasis. 

Discussion 

We investigated home-cage activity and sleep patterns in one mouse model of 

human 16p11.2 chromosomal hemideletion. We report robust and reliable home-cage 

hyperactivity across the light-dark cycle that is present in both males and females. These 

findings expand upon previous reports of hyperactivity in 16p11.2 del/+ mice (Horev et al., 

2011; Brunner et al., 2015; Arbogast et al., 2016) by comparing males and females, 

assessing activity in the home-cage, and quantifying activity over a week of consecutive 

diurnal cycles. Importantly, there are presently three distinct mouse models of 16p11.2 
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hemideletion differing in deletion size and genetic background, which should be 

considered when comparing findings between studies. In addition, we report the first male-

specific sleep decrements in a rodent model of ASD. Decreased total sleep time and 

prolonged bouts off wakefulness, suggesting difficulties in initiating wake-to-sleep 

transition, recapitulate common sleep and activity problems reported in human ASD 

patients (Miano et al., 2007; Krakowiak et al., 2008; Reynolds & Malow, 2011; Baker & 

Richdale, 2015). The sleep/wake deficits in 16p11.2 del/+ males, but not females relative 

to sex-matched controls support theories of female protectiveness from ASD given the 

same genetic insult (Robinson et al., 2013; Werling & Geschwind, 2013; Jacquemont et 

al., 2014). 

Additionally, compared to sex-matched controls, the sleep/wake differences 

observed only in male 16p11.2 del/+ mice are contrasted by activity differences in both 

16p11.2 del/+ males and females. This distinction suggests disparate neurobiological 

mechanisms underlying the two alterations. The etiology of sleep and activity deficits in 

ASDs remains unknown, but numerous lines of evidence strongly support a relationship 

between imbalanced excitatory/inhibitory signaling, sleep, and hyperactivity. Although 

both ADHD and ASD are associated with imbalanced excitatory/inhibitory signaling, the 

neurochemical and neuroanatomical mechanisms mediating these disorders are likely 

distinct. The sex differences in sleep/wake, but not activity in 16p11.2 del/+ mice therefore 

suggest that the 16p11.2 del/+ mouse model may be a useful rodent genetic model for 

investigating neurobiological mechanisms mediating sex differences in 

neurodevelopmental disorders.  

Neurochemical and neuroanatomical correlates in 16p11.2 hemideletion  
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The mechanisms underlying altered sleep and activity in our 16p11.2 del/+ mouse 

model may be considered in light of recent neurochemical and neuroanatomical findings 

in related models. Another mouse model of 16p11.2 hemideletion was recently shown to 

have increased GABAergic medium spiny neurons (MSNs) expressing the dopamine D2 

receptor in the striatum, and decreased dopamine D1 receptor neurons in the cortex 

(Portmann et al., 2014). During development, D1 activation increases and D2 activation 

decreases GABA neuron migration from the basal forebrain to the cortex (Crandall et al., 

2007). Further, estrogen in females has been found to downregulate D2 receptor function 

(Bazzett & Becker, 1994). In Drosophila, knock down of the E3 ubiquitin ligase Cul3, which 

interacts with the 16p11.2 region gene KCTD13 through the KCTD13-Cul3-RhoA 

pathway, results in increased dopamine signaling, reduced sleep duration, and hyper-

arousal (Stavropoulos & Young, 2011; Pfeiffenberger & Allada, 2012), similar to our 

findings in 16p11.2 del/+ mice. Hyperactivity is often thought of as a disorder of 

catecholamine dysfunction (Sharma & Couture, 2014), and the striatal dopaminergic 

system has a strong wake-promoting role (Saper et al., 2010). Together, these findings 

suggest that dysregulated dopaminergic signaling may underlie some of the sleep and 

activity alterations observed in 16p11.2 del/+ mice. 

Imaging studies of humans and mice with 16p11.2 hemideletion reveal alterations 

in structure and connectivity of the striatum and frontal cortex. Magnetic resonance 

imaging (MRI) studies show increased striatal volume and cortical surface area in 16p11.2 

hemideletion humans (Qureshi et al., 2014) and mice (Portmann et al., 2014), agreeing 

with structural changes reported more broadly in a meta-analysis of ASD patients (Nickl-

Jockschat et al., 2012). 16p11.2 hemideletion children show widespread white matter 
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abnormalities, including increased axial diffusivity of the corpus callosum, external 

capsule, and internal capsule— the last of which is comprised largely of the corticospinal 

tract, carrying projections from the primary motor cortex through the striatum to the spinal 

cord (Owen et al., 2014). Using diffusion tensor imaging (DTI), we have shown male-

specific white matter alterations in the same fiber bundles proximal to the striatum in 

16p11.2 del/+ mice (Grissom et al., 2017; Nickl-Jockschat et al., 2015). The striatum and 

frontal cortex are important brain regions mediating motor control and sleep/wake. 

Hyperactive behavior is generally believed to relate to abnormalities in corticostriatal 

connectivity (Bush, 2010), and children with ASD show reduced striatal activation in 

response to rewards (Scott-Van Zeeland et al., 2010; Kohls et al., 2013). Striatal growth 

rate is also correlated with ASD diagnosis (Langen et al., 2014). Together, these results 

may implicate corticostriatal deficits in the hyperactive behavior and increased 

wakefulness observed in 16p11.2 hemideletion mice. 

Conclusions and future directions 

Sleep and activity problems are among the most common complaints reported in 

neurodevelopmental disorders. Psychomotor stimulants are often the first-choice option 

for treating hyperactivity, but typically exacerbate sleep problems in ADHD patients (Lee 

et al., 2012; Santisteban et al., 2014). Nocturnal melatonin, which is decreased in 

insomniacs (Rodenbeck et al., 1999) and children diagnosed with ASD (Tordjman et al., 

2005), has been effective for decreasing sleep latency and increasing total sleep time in 

some studies of ASD patients (Wright et al., 2011), but has little effect on mitigating other 

sleep disturbances (Cortesi et al., 2012; Malow et al., 2012) and may even increase night 

awakenings (Rossignol & Frye, 2011; Gringras et al., 2012). Unraveling the distinct 
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neurochemical mechanisms mediating the sleep and hyperactivity phenotypes observed 

in 16p11.2 hemideletion mice is an interesting avenue of investigation that may lead to a 

greater understanding of the behavioral and cognitive deficits observed in 16p11.2 

hemideletion patients, as well as signaling mechanisms contributing to sex-biased ASD 

symptomology. Male-specific neuroanatomical and neurochemical differences in 16p11.2 

del/+ mice, such as increased white matter proximal to the striatum (Grissom et al., 2017), 

striatal hypertrophy (Portmann et al., 2014), and possibly increased D2 receptor 

expression and activity of striatal MSNs may contribute to the sex-specific differences in 

sleep. Conversely, neurochemical and neuroanatomical deficits shared between 16p11.2 

del/+ males and females, such as decreased ERK1 protein in the striatum, or decreased 

white matter integrity of the corpus callosum (Grissom et al., 2017), may underlie the 

hyperactivity observed in both 16p11.2 del/+ males and females. Future dose-response 

studies of changes in sleep and activity in 16p11.2 del/+ mice in response to dopamine 

receptor subtype-specific drugs may reveal the contributions of these receptors and 

signaling pathways to the insomnia and hyperactivity observed in 16p11.2 del/+ male 

mice. These experiments are the first steps in elucidating the signaling mechanisms 

involved in 16p11.2 hemideletion hyperactivity and insomnia, and may lead to more 

targeted brain-region or cell-type specific experiments, as well as a more complete 

understanding of the neurochemical mechanisms mediating behavior in a common CNV 

found in ASDs. Together, these findings demonstrate that the 16p11.2 del/+ mouse model 

will be useful for investigating the molecular basis of sex bias in ASDs, as well as distinct 

neural mechanisms underlying common sleep and activity problems in ASDs and related 

neurodevelopmental disorders. 
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Figure Legends 
 

Figure 2.1. 16p11.2 del/+ mice are hyperactive throughout the diurnal cycle. A,B) Infrared 

beam breaks in the XY (horizontal) (A) and Z (vertical) (B) axis plotted for all four groups, in 1 

hour bins, across the 24 hour day. Gray box indicates the dark (active) period. C,D) 16p11.2 del/+ 

mice have significantly greater activity relative to wildtype littermates, irrespective of sex, in both 

the horizontal (C) and vertical (D) axes.  E,F) There are no significant differences between 

16p11.2 del/+ and wildtype mice in elevated zero-maze time spent in open arms (E) or risk 

assessment (F). G,H)  There are no differences in open field total ambulation (G) or time spent in 

center (H) between 16p11.2 del/+ mice and wildtype controls. Mean ± standard error of the mean 

(s.e.m.)  *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001   

 

Figure 2.2. Male 16p11.2 del/+ mice sleep less than wildtype littermates.  A-C) Male 16p11.2 

del/+ mice are awake significantly more (A) and spend significantly less time in NREM sleep (B) 

than wildtype mice over the 24-hour period. The amount of REM sleep in male 16p11.2 del/+ 

mice was not significantly different from wildtype (C). D) NREM sleep time expressed in 6 hour 

bins reveals that males have significantly less sleep during the last 6 hours of the light in 

comparison to wildtype littermates. Gray box indicates the dark period. E-F) There are no 

significant differences in wake (E), NREM sleep (F,H), or REM sleep (G) time between 16p11.2 

del/+ females and controls. Mean ± s.e.m. *p < 0.05, **p < 0.01 

 

Figure 2.3. Male 16p11.2 del/+ mice spend a significantly higher proportion of wake time in 

prolonged bouts of wakefulness. Proportion of total wake time across the 24-hour period 

divided into bout lengths of 30s-80s, 80s-160s, 160s-320s, 320s-640s, 640s-1280s, 1280s-

2560s, and >2560s. A) 16p11.2 del/+ male mice spend a significantly greater proportion of their 

wake time in long bouts of wakefulness (>2560s) and a significantly lower proportion of time in 
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intermediate bouts of wakefulness (160s-1280s).  B-C) 16p11.2 del/+ males exhibit no differences 

in NREM (B) or REM (C) bout length distribution. D-F) 16p11.2 del/+ female mice do not differ 

from wildtype littermates in distribution of wake (D), NREM (E), or REM (F) bout length. Mean ± 

s.e.m. *p < 0.05, **p < 0.01 

Figure 2.4. Male 16p11.2 del/+ mice have increased alpha power during wake. A) Male 

16p11.2 del/+ mice have increased alpha power during wake (A, inset). B-C) Male 16p11.2 del/+ 

mice have no differences in EEG power spectra during NREM sleep (B) or REM sleep (C). D) 

Female 16p11.2 del/+ mice have increased beta power during wake (D, inset). E)  Female 

16p11.2 del/+ mice have decreased low delta during NREM sleep (E, inset). F) Female 16p11.2 

del/+ mice have no differences in EEG power spectra during REM sleep (F). Mean ± s.e.m. *p < 

0.05. 
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Figure 2.1 
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Figure 2.2 
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Figure 2.3 
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Figure 2.4 
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CHAPTER 3: REM sleep reductions, EEG spectra alterations, and altered 
homeostatic sleep rebound in Syngap1+/- mice 

 
 

Abstract 

Sleep problems are common in neurodevelopmental disorders, reducing quality of life for 

patients and their caretakers. Mutations in the Synaptic Ras-GTPase-activating protein 

(SYNGAP1) are strongly associated with intellectual disability (ID), autism spectrum 

disorders (ASD), and epilepsy. Patients with SYNGAP1 mutations exhibit sleep 

disruptions, seizures, and several other physical, behavioral, and cognitive 

symptomologies. Many of these behavioral and electrophysiological issues are 

recapitulated in Syngap1+/- mice. In this study, we sought to characterize sleep/wake and 

EEG spectra properties in Syngap1+/- male mice using polysomnography. We found 

significantly decreased quantities of REM sleep, NREM and REM sleep bouts, and NREM 

to REM sleep-state transitions in Syngap1+/- mice relative to WT littermates. Analysis of 

EEG spectra revealed significantly elevated EEG delta power (0.5-4.0 Hz) in NREM sleep 

and significantly attenuated alpha (8.0-12.0 Hz) and beta power (12.0-20.0 Hz) during 

wake in Syngap1+/- mice compared to WT controls. Following a six-hour sleep deprivation 

challenge, Syngap1+/- mice had abnormal homeostatic sleep rebound. Together, this study 

identifies altered sleep and EEG spectra properties in Syngap1+/- mice, suggesting that 

Syngap1+/- mice may provide an accurate rodent genetic model for studying the 

neurobiological mechanisms underlying sleep problems in SYNGAP1 mutated patients 

and neurodevelopmental disorders in general. 
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Introduction 

Disrupted sleep is one of the most commonly reported issues in a wide range of 

neurodevelopmental disorders, including autism spectrum disorder (ASD), attention-

deficit/hyperactivity disorder (ADHD), schizophrenia, and intellectual disability (ID). Sleep 

issues in neurodevelopmental disorders are widespread, manifesting as insomnia, poor 

sleep efficiency, and circadian issues (Didden et al., 2002; Robinson & Richdale, 2004; 

Richdale & Schreck, 2009; Glickman, 2010; Kirov & Brand, 2014; Picchioni et al., 2014; 

Robinson-Shelton & Malow, 2016; Souders et al., 2017). Moreover, sleep problems are 

positively correlated with the severity of other symptomologies in neurodevelopmental 

disorders and have been estimated to attribute 22-32% of the variance in behavioral 

abnormalities in ASD (Park et al., 2012; Mazurek & Sohl, 2016). Systematic and well-

controlled polysomnography data from children with neurodevelopmental disorders and 

mouse models of neurodevelopmental disorders is sparse.  

Mutation of the Synaptic Ras-GTPase-activating protein (SYNGAP1) is 

consistently identified as one of the highest single-gene risk factors associated with 

neurodevelopmental disorders (Hoischen et al., 2014; Zhu et al., 2014; Deciphering 

Developmental Disorders Study, 2015). Humans with SYNGAP1 mutations frequently 

receive diagnoses of intellectual disability, autism, and epilepsy. Like many genes 

associated with increased prevalence for developing a neurodevelopmental disorder, 

SYNGAP1 is enriched in the postsynaptic density (PSD) and plays a role in 

excitatory/inhibitory balance. SYNGAP1 is a negative regulator of RAS-GTPase in the 

PSD, and reduction of SYNGAP1 results in increased ERK signaling, increased AMPA 

receptor trafficking to the membrane, hyperexcitability, and precocious spine development 
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in heterozygous mice (Syngap1+/- mice) (Vazquez et al., 2004; Rumbaugh et al., 2006; 

Clement et al., 2012; Clement et al., 2013; Aceti et al., 2015). To date, Syngap1+/- mice 

have provided both face and construct validity for numerous behaviors associated with 

SYNGAP1 mutation, including lower seizure threshold, cognitive deficits, stereotypies, 

and social abnormalities (Ozkan et al., 2014; Jeyabalan & Clement, 2016; Ogden et al., 

2016). 

 Humans with SYNGAP1 mutation frequently report disrupted sleep (Berryer et al., 

2013; M. J. Parker et al., 2015). Despite this, quantitative analyses of sleep/wake and 

EEG power spectra have not been performed in Syngap1+/- mice or humans. Given the 

associations between impaired sleep, neurodevelopmental disorders, and epilepsy, as 

well as the presence of sleep problems in SYNGAP1 mutated humans, we investigated 

numerous parameters of sleep and wake in Syngap1+/- mice. We found REM sleep 

reductions, altered sleep/wake state transitions, EEG spectral abnormalities, and impaired 

homeostatic response to sleep deprivation in Syngap1+/- male mice compared to WT 

controls. These findings suggest that the Syngap1+/- mouse model may be a useful genetic 

model for studying the neurobiological underpinnings of sleep problems in SYNGAP1 

mutation and other neurodevelopmental disorders. 

Materials and Methods 

Animals 

Syngap1+/- mice were generated as previously described (Kim et al., 2003) and bred and 

maintained on a BL6/B129sv/ev hybrid background at The Scripps Research Institute 

(Jupiter, FL). Mice were shipped to the University of Pennsylvania (Philadelphia, PA) 
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between 2-3 months of age. Following 7 weeks of quarantine, mice were allowed to 

acclimate to the rodent colony room for at least 1 week before undergoing 

polysomnography surgery. All mice were between 4.5 and 6 months old during baseline 

and recovery sleep recordings and experimental data was collected for 12 WT males and 

16 Syngap1+/- males. Animals were provided food and water ad libitum and maintained on 

a 12 hour: 12 hour light:dark (12h:12h LD) cycle with light onset at 7:00 am, except where 

noted for circadian period assessment in constant darkness, which occurred after the 

completion of all other experiments. All animal care and experiments were approved by 

the Institutional Animal Care and Use Committee of the University of Pennsylvania, the 

Institutional Animal Care and Use Committee at The Scripps Research Institute, and 

conducted in accordance with the National Institutes of Health guidelines. 

Polysomnography 

 Animals were surgically implanted with electroencephalography (EEG) and 

electromyography (EMG) electrodes under isoflurane anesthesia as described previously 

(Angelakos et al., 2016; Wimmer et al., 2013). Briefly, electrodes consisted of Teflon-

coated wires (Cooner wires, Chatsworth, CA) soldered to gold socket contacts (Plastics 

One, Roanoke, VA) and pushed into a six-pin plastic plug (MS363 plug, Plastics One). 

Electrodes were held in place with miniature screws (J.I. Morris Co, Southbridge, MA) and 

dental cement (Ketac, 3M, St Paul, MN). After one week of recovery from surgery, mice 

were connected to amplifiers using lightweight cables (363, Plastics One) attached to a 

rotating commutator (SLC6, Plastics One). Mice were allowed to acclimate to the cables 

and to the noise-attenuating faraday recording chambers (38” x 39” x 33”, Med Associates, 

Georgia, VT) for one week before a 24-hour undisturbed recording of baseline sleep/wake 
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beginning at 7:00am (light onset). All recordings were obtained using parietal (ML ± 1.5 

mm, AP -2 mm from bregma) electrodes referenced to an electrode over the cerebellum 

(-1.5 mm from lambda).  

EEG/EMG signals were sampled at 256 Hertz (Hz) and filtered at 0.3-30 Hz and 

1-100 Hz, respectively, with 12A5 amplifiers (Astro-Med, West Warwick, RI). Data 

acquisition and manual visual scoring was performed using SleepSign software (Kissei 

Comtec Inc, Japan). EEG/EMG data was analyzed in 4 second epochs as wake, non-

rapid eye movement (NREM) sleep, or rapid eye movement (REM) sleep by a trained 

experimenter blind to experimental conditions. For EEG spectral analysis, fast Fourier 

transform (FFT; Hanning window; 0.5-20 Hz, 0.25 Hz resolution) was performed across 

the 24-hour period on artifact-free epochs, and wake, NREM, and REM were normalized 

and expressed as a percentage of the total wake, NREM, and REM power, respectively.  

Bout classifications and distributions 

Bouts of wake, NREM, and REM were classified as reported previously (Watson 

et al., 2015; Angelakos et al., 2016). Briefly, wake and NREM bouts were identified as 32 

seconds (8 epochs) or greater of consecutive wake or NREM, respectively. Bouts of REM 

were identified as 20 seconds (5 epochs) or greater of consecutive REM. Bouts of NREM 

and REM were considered broken once interrupted by 8 epochs of any other state, while 

bouts of wake were terminated by a single epoch of any other state. Bouts of wake, NREM, 

and REM were then sorted into duration bins following a log2 scale in accordance with 

previously published analysis (Mochizuki et al., 2004; Kantor et al., 2013; Angelakos et 

al., 2016).  
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Sleep deprivation and recovery sleep 

Following 24-hours of undisturbed baseline recording, all mice were manually 

sleep deprived by gentle handling for six hours starting at 7:00am (light onset), as 

previously described (Vecsey et al., 2009; Havekes et al., 2016; Tudor et al., 2016). The 

movement, behavior, and posture of mice were monitored and sleep deprivation was 

maintained by tapping lightly on the cage with a ruler and/or disturbing the Nestlet/bedding 

material when the mice appeared to be falling asleep. EEG analysis during the six hours 

of sleep deprivation revealed >96% efficiency sleep deprivation for both Syngap1+/- and 

WT mice, with no group differences between genotypes. Following sleep deprivation, mice 

were left undisturbed for 18 hours of recovery sleep, culminating at the onset of the light 

cycle (7:00am) the following morning.  

Activity Monitoring 

Following the recovery sleep day, mice were transferred into a home-cage infrared 

beam-break activity monitoring system (Opto M3, Columbus Instruments, Columbus, OH) 

and individually housed inside light- and noise-attenuating chambers (22” x 16” x 19”, Med 

Associates, St. Albans, VT) equipped with a 250 lux light source (80 lux at cage floor) and 

fan for ventilation.   Infrared beams spaced 0.5 inches apart provided two horizontal grids 

of infrared beams and detectors at 0.75 inches and 2.75 inches above the cage floor, 

quantifying horizontal and vertical (rearing) activity, respectively. Mice were allowed to 

acclimate to the activity chambers for one week, ensued by one week of continuous 

activity monitoring, as previously described (Angelakos et al., 2016). Activity counts were 

compiled every 10s and binned into 1-hour bins, averaged over the seven days of activity 
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monitoring. After the final day of activity monitoring in 12h:12h LD, lights were switched 

off and one cohort of animals (n=8 WT and n=7 Syngap1+/-) were allowed to free-run in 

24-hour constant darkness (DD) for 2 weeks, with activity counts compiled every minute. 

Circadian period (tau) was calculated from Day 2 to day 14 of DD using ClockLab software 

(Actimetrics). 

Statistics 

 All statistical analyses were performed using SPSS for Windows (V. 24.0). 

Student’s T-test was used to compare 24-hour sleep/wake state time, bout counts, bout 

durations, transitions, activity counts, 18-hour recovery sleep time, and circadian period 

(tau) between Syngap1+/- mice and WT.  Multivariate analysis of variance (MANOVA) was 

used to compare sleep state time, bout counts, bout durations, state transitions, and 

activity beam breaks divided by light/dark cycle, with alpha corrected for multiple ANOVAs 

and set at α = 0.05/2, followed by post hoc Bonferroni’s adjustment for multiple 

comparisons. Mixed Design ANOVAs were utilized to compare binned sleep/wake state 

time, bout counts, bout distributions, activity counts, NREM slow wave activity, recovery 

sleep time, and EEG spectra, with genotype (WT or Syngap1+/-) as the between-subjects 

factor and time (or in the case of EEG spectra, frequency) as the within-subjects factor. 

Post hoc multiple comparisons were performed using Bonferroni’s adjustment for multiple 

comparisons. In instances where the assumption of sphericity was violated, Greenhouse-

Geisser corrected F values are given. Mann-Whitney U-tests were performed on 

normalized FFT data binned into low delta, delta, theta, alpha, beta, and gamma frequency 

bins. 2-hour binned baseline and recovery delta power data was normalized to the slow 

wave activity (SWA) during the last four hours of the baseline light (inactive) period, as 
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previously described (Franken et al., 2001). Bins with less than 10 minutes of NREM sleep 

over the 2-hour interval were excluded from binned SWA analyses. 

Results 

REM sleep time and bout reductions in Syngap1+/- mice 

Sleep and wakefulness was quantified in Syngap1+/- mice and WT littermates 

across an undisturbed 24-hour baseline period. There were no differences in time spent 

awake (Student’s T-test, p = 0.11; Fig. 3.1a,b) or in NREM sleep (Student’s T-test, p = 

0.35, Fig. 3.1c,d) over the 24-hour day between WT and Syngap1+/- mice. Analysis by 

light/dark cycle revealed significantly less NREM sleep during the dark (active) phase in 

Syngap1+/- mice relative to WT (MANOVA, F(2,25) = 4.339, p = 0.024; Fig. 3.1c,d). 

Quantification of REM sleep time revealed significant REM sleep reductions in Syngap1+/- 

mice compared to WT controls over the 24-hour day (Student’s T-Test, p = 0.004; Fig. 

3.1e,f), and during both the light and dark cycles (MANOVA, F(2,25) = 4.902, p = 0.016; 

Fig. 3.1e,f). Interestingly, reduction in REM sleep time is commonly reported in 

polysomnography studies of human ASD patients (Limoges et al., 2005; Buckley et al., 

2010). 

  Next, we quantified the number of wake, NREM, and REM bouts and the 

distribution of their durations in Syngap1+/- and WT mice. There were no differences in the 

number of wake bouts (p = 0.23; Fig. 3.2a), or the distribution of their durations (p = 0.33; 

Fig. 3.2b) between Syngap1+/- and WT mice. Analysis of NREM bout counts revealed 

significant reductions in the number of NREM bouts across the 24-day (Student’s T-test, 

p =0.009; Fig. 3.2c) and in both the light and dark cycles (MANOVA, F(2,25) = 5.595, p = 
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0.10; Fig. 3.2c). Analyzing the distribution of NREM bout durations indicated reduced 

quantities of the shortest duration NREM bouts (30-80s and 80-160s in duration) in 

Syngap1+/- mice compared to WT (F(1,26) = 7.027, p = 0.013; Fig. 3.2d). Similarly, 

Syngap1+/- mice displayed substantially less REM bouts than WT mice over the 24-hour 

day (Student’s T-test, p = 0.007; Fig. 3.2e) and in both the light and dark phases 

(MANOVA, F(2,25) = 6.337, p = 0.006; Fig. 3.2e). Analysis of the distribution of REM bouts 

of varying durations revealed that Syngap1+/- mice have significantly less REM bouts of 

the shortest duration (20-40s) than WT mice (F(1,26) = 10.111, p = 0.004; Fig. 3.2f). There 

were no significant differences in mean bout duration for any sleep/wake state between 

Syngap1+/- mice and WT (Supplementary Figure 3.1). 

Syngap1+/- mice have less NREM to REM transitions than WT controls 

 Because of the alterations of REM sleep time and NREM and REM sleep bouts in 

Syngap1+/- mice compared to WT, we next investigated the transitions between 

sleep/wake states in Syngap1+/- and WT mice. Unsurprisingly, Syngap1+/- mice displayed 

significantly less NREM to REM transitions than WT mice over the 24-hour recording 

(Student’s T-test, p = 0.005; Fig. 3.3a) and during both the light and dark phases 

(MANOVA, F(2,25) = 5.816, p = 0.008; Fig. 3.3a). There were no differences in the number 

of NREM to wake transitions (p = 0.51; Fig. 3.3b), Wake to NREM transitions (p = 0.21; 

Fig. 3.3c), or REM to wake transitions (p = 0.25, Fig. 3.3d) between Syngap1+/- mice and 

WT. 

Syngap1+/- mice have elevated delta power in NREM sleep and decreased alpha and 

beta power in wake in comparison to WT mice 
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 SYNGAP1 mutation alters excitatory/inhibitory balance by increasing AMPA 

receptor trafficking to the postsynaptic membrane, altering NMDA:AMPA ratio, and 

modifying spine development (Vazquez et al., 2004; Rumbaugh et al., 2006; Clement et 

al., 2012; Clement et al., 2013; Aceti et al., 2015). We performed fast Fourier transform 

analysis to generate EEG power spectra of cortical brain waves in Syngap1+/- and WT 

mice during wake, NREM, and REM sleep. During wake, Syngap1+/- mice exhibted 

attenuated power in the alpha (8-12 Hz) and beta (12-20 Hz) frequency bands (main effect 

of genotype, F(1,23) = 20.007, p = 0.0002; Fig. 3.4a,b). In NREM sleep, Syngap1+/- mice 

display significantly elevated delta power (main effect of genotype: F(1,23) = 5.338, p = 

0.030; Fig. 3.4c, genotype*frequency interaction: F(77,1771) = 8.598, p = 0.0002; Fig. 

3.4c), particularly in the low delta frequency band (0.5-1.5 Hz) (Mann-Whittney U = 5, p = 

0.00008; Fig. 3.4d) compared to WT littermates. In REM sleep, Syngap1+/- mice have 

significantly reduced beta power (main effect of genotype, F(1,23) = 5.946, p = 0.023; Fig. 

3.4e); however, there are no differences in theta power (4-8 Hz)—the most prominent 

wave form in REM sleep—between Syngap1+/- and WT mice (p = 0.83; Fig. 3.4f). Despite 

the epileptic seizures observed in SYNGAP1 patients and the decreased seizure threshold 

of Syngap1+/- mice (Ozkan et al., 2014), we did not observe seizures in any of the mice 

during sleep or sleep deprivation. 

Syngap1+/- mice have less fluctuation of SWA activity across baseline, and have 

blunted homeostatic response following six hours of sleep deprivation 

 Elevated NREM delta power in Syngap1+/- mice suggests that they may have 

abnormal homeostatic slow wave activity (SWA), an indicator of sleep depth that increases 

as a function of prior wakefullness (Borbély et al., 1981; Dijk et al., 1991; Achermann et 



52 

 

 

al., 1993; Dijk et al., 1993; Campbell et al., 2006). Indeed, across the 24-hour baseline, 

Syngap1+/- mice have less variance of delta power (0.5-4.0 Hz) (genotype*time interaction, 

F(11,253) = 2.684, p = 0.022; Fig. 3.5a) and low delta power (0.5-1.5 Hz) (main effect of 

genotype, F(1,23) = 5.089, p = 0.034; Fig. 3.5b) across the day than WT mice. Following 

six hours of sleep deprivation by gentle handling, compared to WT mice, Syngap1+/1 mice 

had significantly blunted homeostatic increase of delta (main effect of genotype, F(1,22) 

= 13.336, p = 0.001; Fig. 3.5c) and low delta SWA (main effect of genotype, F(1,22) = 

6.599, p = 0.018; Fig. 3.5d), relative to baseline values. Blunted homeostatic SWA 

rebound in Syngap1+/- mice was contrasted by a larger increase in sleep time in Syngap1+/- 

mice during the first six hours following sleep deprivation, relative to baseline, compared 

to WT mice (genotype*time interaction, F(2,52) = 3.466, p = 0.039; Fig. 3.5e). In the 18 

hours following the culmination of sleep deprivation, there were no recovery sleep time 

differences, relative to baseline, between Syngap1+/- mice and WT controls (Student’s t-

test, p = 0.24; Fig. 3.5f). Together, these data indicate that Syngap1+/- mice have abnormal 

homeostatic rebound following a sleep deprivation challenge. 

Syngap1+/- mice exhibit slight home-cage hyperactivity and normal circadian 

periodicity 

 Following recovery from sleep deprivation, all mice were transferred into individual 

home-cage beam break activity monitoring chambers. After one week of acclimation to 

the activity chambers, home-cage activity counts were binned into one-hour bins across 

the diurnal cycle and averaged over the week of recording. Relative to WT mice, 

Syngap1+/- mice were slightly but significantly hyperactive over the 24-hour day in both the 

horizontal (main effect of genotype, F(1,33) = 4.274, p = 0.047; Supplementary Fig. 3.2a) 
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and vertical direction (main effect of genotype, F(1,33) = 4.190, p = 0.049; Supplementary 

Fig. 3.2c). Analysis of activity counts separately in the light and dark parts of the cycle 

revealed no statistically significant activity differences between Syngap1+/- mice and WT 

littermates in either the horizontal (p = 0.10; Supplementary Fig. 3.2b) or vertical axis (p = 

0.17; Supplementary Fig. 3.2d). After the last day of activity monitoring, one cohort of mice 

(n = 8 WT and n = 7 Syngap1+/-) remained in the activity monitoring chambers for 2 weeks 

of continuous darkness in order to access intrinsic circadian periodicity. There were no 

circadian period (tau) differences between Syngap1+/- and WT mice (p = 0.85). 

Discussion 

In this study, we investigated baseline sleep/wake, homeostatic recovery from 

sleep deprivation, and home-cage activity in male Syngap1+/- mice and WT littermates. 

Relative to WT, Syngap1+/- mice exhibited reductions in REM sleep time, quantities of 

NREM and REM bouts, and NREM to REM sleep transitions. EEG power spectra analysis 

revealed heightened delta power in NREM sleep and attenuated alpha and beta power 

during wake in comparison to WT mice. Following six hours of sleep deprivation, 

Syngap1+/- mice had less homeostatic rebound as measured by the change in NREM slow 

wave activity, relative to baseline. Finally, home-cage activity monitoring revealed slight 

home-cage hyperactivity in Syngap1+/- mice, but no circadian periodicity differences 

between Syngap1+/- mice and WT. 

Reduced REM sleep total time and REM sleep bouts in Syngap1+/- mice is 

interesting for several reasons. REM sleep time reduction is one of the most commonly 

reported polysomnography findings in human ASD patients (Limoges et al., 2005; Buckley 
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et al., 2010), suggesting that the Syngap1+/- mouse model captures aspects of human 

ASD. Biochemical and slice physiology work in the mouse hippocampus suggests that 

REM sleep may be important for the consolidation of memories (Abel et al., 2013). 

Syngap1+/- mice have impaired hippocampal long-term potentiation (LTP), the 

presumptive cellular correlate of learning, following theta burst stimulation (Kim et al., 

2003), which occurs physiologically during REM sleep. A recent study abrogating medial 

septal theta rhythms specifically during REM sleep impaired the consolidation of 

contextual fear memory in mice (Boyce et al., 2016). Interestingly, Syngap1+/- mice have 

normal 24-hour contextual fear memory, but have impaired remote contextual fear 

memory one week and one month after training (Gavin Rumbaugh, personal 

communications). These findings may be explained in part by the REM sleep reductions 

observed in Syngap1+/- mice in the present study, which may impair systems memory 

consolidation—a purported function of sleep. 

EEG spectra alterations in Syngap1+/- mice are also fascinating for several 

reasons. Beta power is thought to be related to cognition, as beta power is increased in 

humans during sensory perception, motor planning, and mentally engaging tasks requiring 

attention and concentration (Sherman et al., 2016). SYNGAP1 mutant humans and 

Syngap1+/- mice exhibit cognitive deficits. Perhaps more interesting is the elevated delta 

power in Syngap1+/- mice, particularly in the low delta (0.5-1.5 Hz) frequencies. Delta 

rhythms are generated by the reciprocal interaction of thalamic reticular nucleus T-Type 

Ca2+ channels and Ca2+-dependent small-conductance (SK)-type K+ channels (Cueni et 

al., 2008; Lee et al., 2004). However, a second delta rhythm (<1.0 Hz), persists in the 

cortex of cats after thalamectomy, in cortical islands in vivo, and in cortical slices in vitro 
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(Steriade et al., 1993; Sanchez-Vives & McCormick, 2000; Timofeev et al., 2000). Slow 

wave delta activity is a measure of homeostatic drive and increases as a function of prior 

wakefulness (Borbély et al., 1981; Dijk et al., 1991; Achermann et al., 1993; Dijk et al., 

1993; Campbell et al., 2006). Heightened delta power in baseline may suggest a “sleep 

deprived” brain in Syngap1+/- mice, and blunted homeostatic rebound following sleep 

deprivation may indicate difficulties responding to a sleep challenge. Chronically “sleep 

deprived” brain states in Syngap1+/- mice may model the default state observed in 

neurodevelopmental disorders, where insomnia and chronic insufficient sleep are 

frequent. Finally, elevated delta power in the basal state may be responsible for the REM 

sleep decrements observed in Syngap1+/- mice. The transition period from NREM to REM 

is marked by an increase in brain wave frequency (Saper et al., 2010) and transitions from 

deep NREM sleep (stage 3) to REM sleep are virtually non-existent in humans (Kishi et 

al., 2008). Thus, increased NREM delta power in Syngap1+/-, which is indicative of deeper 

sleep, may be inhibiting the ability to transition from NREM to REM sleep. 

 The diversity of sleep phenotypes in Syngap1+/- mice allows for promising future 

directions using spatially- and temporally- restricted SYNGAP1 hemideletion. REM sleep 

is thought to originate in brainstem nuclei, particularly the sublaterodorsal nucleus, 

ventrolateral periaqueductal gray, lateral pontine tegmentum, and ventral medulla (Sastre 

et al., 1996; Boissard et al., 2002; Lu et al., 2006; Luppi et al., 2006; Weber et al., 2015). 

Delta rhythms are generated in the thalamus (Cueni et al., 2008; Lee et al., 2004); 

however, a second delta rhythm in the lowest frequency bands (<1.0Hz), where the most 

significant delta power alterations in Syngap1+/- are observed, is generated locally in the 

cortex (Steriade et al., 1993). Thus, through conditional hemideletion of the Syngap1+/- 

protein using Cre-loxP technology, specific brain regions and circuits contributing to the 
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various sleep phenotypes outlined in this paper can be elucidated. Future sleep studies in 

conditional deletion mice, based on the findings from our present study, are likely to 

generate novel insight into the neurobiological mechanisms contributed to sleep problems 

reported in SYNGAP1 mutated humans, and possibly even to mechanisms underlying 

sleep disruptions in neurodevelopmental disorders more broadly. 
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Figure Legends 

Figure 3.1. Syngap1+/- mice have REM sleep reductions in comparison to wildtype (WT) mice. 

A,B) There are no differences in time spent awake between Syngap1+/- mice and WT. Expressed 

by light /dark cycle (A) and in 1-hour bins (B). C,D) Syngap1+/- mice have reduced NREM sleep 

relative to WT in the dark (active) phase. Expressed by light / dark cycle (C) and in 1-hour bins (D). 

E,F) Syngap1+/- mice have significantly reduced REM sleep relative to WT across the 24-hour day. 

Expressed by light /dark cycle (E) and in 1-hour bins (F). Mean ± standard error of the mean (s.e.m.)  

*p < 0.05, **p < 0.01 

 

Figure 3.2. Syngap1+/- mice have decreased quantities of NREM and REM bouts compared 

to WT. A) There are no differences in the number of wake counts between Syngap1+/- and WT 

mice. B) There are no differences in the distribution of wake bout count duration between 

Syngap1+/- and WT. C) Syngap1+/- mice have significantly less NREM bouts that WT mice across 

the 24-hour day. D) Syngap1+/- mice have significantly less NREM bouts of the shortest duration 

(30s-80s and 80s-160s) compared to WT controls. E) Syngap1+/- mice have significantly reduced 

quantities of REM bouts relative to WT across the 24-hour day. F) Syngap1+/- mice have 

significantly fewer REM bouts of the shortest duration (20s-40s) in comparison to WT littermates. 

Mean ± standard error of the mean (s.e.m.)  *p < 0.05, **p < 0.01 

 

Figure 3.3. Syngap1+/- mice display less NREM to REM transitions than WT littermates.  A) 

Across the diurnal cycle, Syngap1+/- mice exhibit fewer transitions from NREM to REM sleep than 

WT controls. B) There are no differences in the number of NREM to wake transitions between 

Syngap1+/- mice and WT littermates. C) There are no differences in the number of wake to NREM 

transitions between Syngap1+/- mice and WT. D) There are no differences in the number of REM 
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to Wake transitions between Syngap1+/- mice and WT. Mean ± standard error of the mean (s.e.m.)  

*p < 0.05, **p < 0.01 

Figure 3.4. Syngap1+/- mice exhibit lower alpha and beta power during wake, and elevated 

delta power during NREM sleep than WT mice. Left: 0.25 Hz bins from 0.5-20.0 Hz. Right: 

Binned into low delta (0.5-1.5Hz), delta (1.5-4.0Hz), theta (4.0-8.0Hz), alpha (8.0-12.0Hz), beta 

(12.0-20.0Hz), and gamma frequency bands (20.0-100.0Hz). A,B) Syngap1+/- mice have 

significantly reduced alpha and beta power during wake in comparison to WT mice. C,D) Syngap1+/- 

mice have significantly increased delta power during NREM sleep relative to WT controls. E,F) 

There are no significant differences in REM power spectra between Syngap1+/- mice and WT 

littermates, apart from a light reduction in beta power than it also observed during Wake and NREM 

sleep. Mean ± standard error of the mean (s.e.m.)  *p < 0.05, **p < 0.01, ***p < 0.001 

 

Figure 3.5. Syngap1+/- mice have altered homeostatic sleep drive during both baseline sleep 

and following 6 hours of sleep deprivation. A,B) Syngap1+/- mice have less fluctuation of NREM 

delta power (0.5-4.0Hz) (A) and low delta power (0.5-1.5Hz) (B) across the 24-hour baseline diurnal 

cycle than WT mice. C,D) Syngap1+/- mice have significantly less slow wave activity (C: delta power; 

D: low delta power) rebound following 6 hours of sleep deprivation than WT mice. E) Compared to 

WT, Syngap1+/- mice exhibit a significantly lower increase of NREM sleep time, relative to baseline, 

during the first 6 hours of recovery following sleep deprivation. F) There are no differences in 

recovery NREM sleep time, relative to baseline, between WT and Syngap1+/- over the course of 

the 18 hours following sleep deprivation. Mean ± standard error of the mean (s.e.m.)  *p < 0.05, **p 

< 0.01, ***p < 0.001 
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Supplementary Figure Legends 

 

Supplemental Figure 3.1. Syngap1+/- mice have normal mean durations of Wake, NREM, and 

REM sleep bouts. A,B) There are no differences in mean wake bout duration (A) or temporal 

distribution of wake bouts (B) between Syngap1+/- and WT mice. C,D) There are no differences in 

mean NREM bout duration (C) or temporal distribution of NREM bouts (D) between Syngap1+/- and 

WT mice. E) There are no differences in mean REM bout duration between SYGNAP1+/- and WT 

mice. F) Relative to WT mice, SYGAP1+/- mice have a slightly altered temporal distribution of REM 

bouts, spending a lower % of REM sleep time in bouts of the shortest duration (20s-40s) and a 

slightly higher proportion of REM sleep time in bouts 40s-60s in duration. Mean ± standard error of 

the mean (s.e.m.)  *p < 0.05. 

 

Supplemental Figure 3.2. Syngap1+/- are hyperactive in the home-cage in comparison to WT 

mice. A,B) SYNGAP2+/- exhibit home-cage ambulatory hyperactivity in the XY (horizontal) axis, 

relative to WT. Expressed in 1-hour bins (A) and binned by light / dark cycle (B). C,D) Syngap1+/- 

mice exhibit significantly more rearing (vertical) activity than WT mice. Expressed in 1-hour bins 

(C) and binned by light / dark cycle (D). Mean ± standard error of the mean (s.e.m.)  *p < 0.05. 

 

Supplemental Figure 3.3. Normal circadian rhythms in Syngap1+/- mice. A) There are no 

differences in free-running circadian period (tau) between SYGNAP1+/- mice and WT littermates. 

B,C) Representative actograms across the two weeks of constant darkness for WT mice (B) and 

Syngap1+/- mice (C). Mean ± standard error of the mean (s.e.m.) 
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Figure 3.1 
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Figure 3.2 
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Figure 3.3 
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Figure 3.4 
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Figure 3.5 

 

 

 



66 

 

 

Supplemental Figure 3.1 
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Supplemental Figure 3.2 
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Supplemental Figure 3.3 
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CHAPTER 4: Home-cage hypoactivity in four mouse models of autism 
spectrum disorder 

 

Abstract 

Genome-wide association studies from Autism Spectrum Disorder (ASD) patient 

populations have implicated numerous risk factor genes whose mutation or deletion 

results in significantly increased prevalence of ASD. Behavioral studies of monogenic 

mutant mouse models of ASD-associated genes have been useful for identifying aberrant 

neural circuitry. However, behavioral results often differ from lab to lab, and direct 

comparisons between males and females are often not performed despite the significant 

sex-bias of ASD. In this study, we sought to investigate the simple, passive behavior of 

home-cage activity monitoring across multiple 24-hour days in four different monogenetic 

mouse models of ASD: Shank3B-/-, CNTNAP2-/-, Pcdh10+/-, and Fmr1 KO mice. Relative 

to sex-matched WT littermates, we discovered significant home-cage hypoactivity, 

particularly in the dark (active) phase of the light/dark cycle in male mice of all four ASD-

associated transgenic models. For CNTNAP2-/- and Pcdh10+/- mice, these activity 

alterations were sex-specific, as female mice did not exhibit home-cage activity 

differences relative to sex-matched WT controls. These home-cage hypoactivity 

alterations differ from, and in some cases, contradict activity findings previously reported 

using short-term activity measurements in a novel arena. Despite circadian problems 

reported in human ASD patients, none of the mouse models studied had alterations in 

free-running circadian period. Together, these findings highlight a shared phenotype 

across several monogenic mouse models of ASD, outline the importance of methodology 
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on behavioral interpretation, and in some cases, parallel the male-enhanced phenotypic 

presentation found in human ASDs. 
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Introduction 

Autism spectrum disorder (ASD) has an estimated prevalence of 1 in 68 births and 

is substantially sex-biased, with males 4.5 times more likely than females to receive an 

ASD diagnosis (Christensen et al., 2016). Mouse genetic models have been an invaluable 

tool for studying behavioral, electrophysiological, and molecular mechanisms contributing 

to ASD (see Bey & Jiang, 2014; Ellegood & Crawley, 2015; Hulbert & Jiang, 2016 for 

recent reviews). Behavioral phenotypes in rodent models of neurodevelopmental 

disorders help pinpoint potential brain regions and circuitry underlying symptomology. 

Unfortunately, behavioral methodologies and results within the same genetic model often 

differ from lab to lab, confounding interpretation (Wahlsten et al., 2003).  

In this study, we quantified home-cage activity and circadian rhythms across 

multiple 24-hour days in males and females of four transgenic mouse models of ASD: 

Shank3B-/-, CNTNAP2-/-, Pcdh10+/-, and Fmr1 KO. SH3 and multiple Ankyrin repeat 

domains 3 (Shank3) is a scaffolding protein in the postsynaptic density whose deletion 

contributes to Phelan-McDermind syndrome, intellectual disability, and ASD-like 

behaviors in humans (Durand et al., 2007) and social deficits and repetitive behaviors in 

mice (Peça et al., 2011a). Contactin associated protein-like 2 (CNTNAP2) is a member of 

the neurexin superfamily and is associated with potassium channels, myelination, and 

neuron-glia interaction (Poliak et al., 1999). Its deletion results in cortical dysplasia-focal 

epilepsy, seizures, and ASD in humans (Strauss et al., 2006), and seizures, social deficits, 

motor stereotypies, communication abnormalities, and interneuron reductions in mice 

(Peñagarikano et al., 2011). Procadherin-10 is a member of the cadherin superfamily of 

cell-adhesion molecules whose reduction has been associated with ASD in human 
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genome-wide association studies (Morrow et al., 2008; Bucan et al., 2009), and altered 

communication, male-specific social deficits, and dendritic spine morphology alterations 

of the lateral / basolateral amygdala in Pcdh10+/- mice (Schoch et al., 2017a). Fmr1 

encodes for the Fragile X mental retardation protein and is one of the leading single-gene 

causes of autism and intellectual disability (Turner et al., 1996; Hagerman et al., 2008). 

Fragile X patients display intellectual impairment, social deficits, communication problems, 

anxiety, hyperarousal, and hyperactivity (Garber et al., 2008; Yu & Berry-Kravis, 2014) 

and Fmr1 KO mice have learning deficits, abnormal social behavior, anxiety, altered 

dendritic spine development, and aberrant cortical synchrony (Bakker et al., 1994; Comery 

et al., 1997; Spencer et al., 2005; Gonçalves et al. 2013). 

The goals of this home-cage activity monitoring study were three-fold: 1) To 

investigate the same behavior in multiple ASD models in the same lab environment, using 

consistent methodologies. 2) To examine both males and females given the pronounced 

sex-bias in ASD diagnoses (Christensen et al., 2016). 3) To compare findings with 

published activity results— specifically comparing and contrasting continuous home-cage 

activity across multiple diurnal days with brief activity monitoring in a novel environment. 

Materials and Methods 

Animals 

Shank3B-/- mice were generated as previously described (Peça et al., 2011). Briefly, exons 

13-16 of Shank3 were replaced with a neo cassette. B6.129-Shank3tm2Gfng/J (Stock 

#017688) heterozygous males and females were purchased from The Jackson Laboratory 

and mated together to generate Shank3B-/- offspring and WT controls. Pcdh10+/- mice 
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were generated as previously described (Uemura et al., 2007; Schoch et al., 2017). 

Pcdh10+/- mice in which the first exon of Pcdh10 was replaced with a lacZ-neo cassette 

were created by Lexicon Pharmaceuticals, Inc. (Basking Ridge, NJ). Founders were back 

crossed for more than 15 generations before male Pcdh10+/- mice were mated with 

C57Bl/6J female mice purchased from the Jackson Laboratory (Stock #000664) to 

produce heterozygous Pcdh10+/- experimental animals and Pcdh10+/+ wildtype controls. 

Fmr1 KO mice were generated as previously described (Bakker et al., 1994). Briefly, exon 

5 of Fmr1 was replaced with a neo cassette and resulting males were backcrossed with 

C57Bl/6J females for many generations. B6.129P2-Fmr1tm1Cgr/J female mice (Stock 

#003025) were purchased from The Jackson Laboratory and mated with C57Bl/6J (stock 

#000664) males. Because Fragile X is an X-linked condition, and females display much 

milder and more variable symptoms than males due to random X-inactivation, (Loesch et 

al., 2004; Yu & Berry-Kravis, 2014), only male Fmr1 KO mice were studied. CNTNAP2-/- 

mice were generated as previously described (Poliak et al., 2003). Exon 1 of Caspr2 was 

replaced with a neo cassette and resulting males were backcrossed to C57Bl/6J for 10-

12 generations (Peñagarikano et al., 2011). Heterozygous B6.129(Cg)-Cntnap2tm1Pele/J 

males and females from The Jackson Laboratory (Stock #017482) were mated together 

to produce experimental CNTNAP2-/- males and females and WT controls. Mice for all 

lines were weaned at 21 days old in cages of 3-5 sex-matched littermates. All mice were 

between 2 and 4.5 months old at the beginning of activity monitoring experimentation. All 

animals were maintained on a 12 hour light: 12 hour dark cycle (lights on at 7:00am), 

except where indicated otherwise for circadian studies in constant darkness, with food and 

water provided ad libitum. All experiments were approved by the University of 
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Pennsylvania Institutional Care and Use Committee and conducted in accordance to 

National Institute of Health guidelines. 

Activity Monitoring 

 Activity monitoring was performed as previously described (Angelakos et al., 

2016). Mice were single housed within individual noise- and light-attenuating chambers 

(22” x 16” x 19”, Med Associates, St. Albans, VT) equipped with a 250 lux light source (80 

lux at cage floor), ventilation fan, and an infrared beam break system which surrounded 

the mouse cage on all four sides and provided a high-resolution scaffold of infrared beams 

and detectors. Infrared beams were spaced 0.5” apart and provided two horizontal grids 

at 0.75” and 2.75” from the cage floor to quantify horizontal and vertical (rearing) activity, 

respectively. Mice were allowed to acclimate to the chambers for one week before 

experimental testing. Following acclimation, activity counts (beam breaks) were tabulated 

in 10 second intervals in both the XY (vertical) and Z (vertical) direction continuously for 7 

days in 12 hour light: 12 hour dark (12h:12h LD). Activity counts were pooled into 1 hour 

bins across the entire diurnal cycle and averaged over the course of the 7 days. After 7 

days of activity monitoring in 12h:12h LD, lights were switched off for 2 consecutive weeks 

of constant darkness (DD) to quantify free-running circadian period (tau). Circadian tau 

was calculated from Day 2 to Day 14 of DD using Clocklab software (Actimetrics). 

Statistics 

 All statistical analysis was performed using SPSS for Windows (V. 24.0). To 

analyze home-cage activity (1-hour bins), Mixed Design ANOVAs were utilized with 

genotype as the between-subjects factor (WT or transgenic) and time as the within-
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subjects factor. Post hoc multiple comparisons were performed using Bonferroni’s 

adjustment for multiple comparisons. Where the assumption of sphericity was violated, 

Greenhouse-Geisser corrected F values are given. Multivariate ANOVAs (MANOVAs) 

were performed to analyze activity counts in the light cycle and dark cycle, with alphas 

corrected for multiple ANOVAs and set at α = 0.05/2, followed by post hoc Bonferroni’s 

adjustment for multiple comparisons. Student’s T-test was used to compare Circadian Tau 

values between WT and transgenic mice. 

Results 

Home-cage hypoactivity in male Shank3B-/-, CNTNAP2-/-, Pcdh10+/-, and Fmr1 KO 

mice 

Home-cage beam break counts were tabulated over 7 days of continuous 

monitoring in 12h:12h LD in male experimental mice and sex-matched WT controls of the 

four transgenic models of autism spectrum disorder: Shank3B-/-, CNTNAP2-/-, Pcdh10+/-, 

and Fmr1 KO. In the horizontal (XY) direction, compared to WT, ASD-associated genetic 

deletion resulted in decreased home-cage activity for male Shank3B-/- (main effect of 

genotype; F(1,18) = 14.466, p = 0.001, Fig. 4.1a), CNTNAP2-/- (time*genotype interaction: 

F(23,467) = 4.409, p = 0.003, Fig. 4.1c), Pcdh10+/- (main effect of genotype: F(1,20) = 

10.562, p = 0.004, Fig. 4.1e), and Fmr1 KO mice (main effect of genotype: F(1,25) = 8.125, 

p = 0.009, Fig. 4.1g). Analysis by light / dark cycle revealed significantly reduced activity 

specifically in the dark (active) phase for Shank3B-/- (MANOVA, F(2,17) = 8.093, p = 0.003, 

Fig. 4.1b), Pcdh10+/- (MANOVA, F(2,19) = 6.331, p = 0.008, Fig. 4.1f), and Fmr1 KO males 

(MANOVA: F(2,24) = 26.801, p < 0.000001, Fig. 4.1h), relative to WT littermates. The 
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magnitude of activity differences between male WT and ASD model littermates was even 

larger in the vertical (Z) direction for all lines studied (Supplementary Figure 4.1). Thus, 

reduction of four different ASD-associated genes resulted in decreased home-cage 

ambulatory and rearing activity in male mutant mice relative to sex-matched controls. 

 

Shank3B-/- female mice exhibit home-cage hypoactivity, but female CNTNAP2-/- and 

Pcdh10+/- have normal activity levels 

Because ASD is a male-biased disorder and females often exhibit less severe 

symptomology than males even under the same genetic insult  (Robinson et al., 2013; 

Werling & Geschwind, 2013; Jacquemont et al., 2014), we also quantified home-cage 

activity behavior in female mice and sex-matched littermates to look for potential sex 

differences. Female Fmr1 KO mice were not studied because Fragile X is an X-linked 

condition and phenotypes in females are less severe, more variable, and less predictable 

than males due to random X-inactivation (Loesch et al., 2004; Yu & Berry-Kravis, 2014). 

Similar to Shank3B-/- male mice, Shank3B-/- females exhibited robust home-cage 

hypoactivity relative to WT (main effect of genotype: F(1,18) = 20.447, p < 0.001, Fig. 

4.2a). Analysis by light / dark cycle indicated that Shank3B-/- females were less active than 

WT females in both the light and dark phases (MANOVA, F(2,17) = 9.699, p = 0.002, dark 

phase: Fig. 4.2b). Interestingly, unlike male CNTNAP2-/- and Pcdh10+/- mice, there were 

no activity differences relative to sex-matched WT littermates in female CNTNAP2-/- mice 

(F(1,19) = 0.033, p = 0.86, Fig. 4.2c,d) or Pch10+/- mice (F(1,20) = 1.960, p = 0.18, Fig. 

4.2e,f). These female activity findings were similar in rearing behavior (Supplementary 

Figure 4.2). Altogether, activity alterations were male-specific for two of the four ASD-
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associated mouse models studied, consistent with heightened ASD symptomology in 

males compared to females with the same genetic insult. 

Circadian rhythms are unaltered in the four ASD mouse models 

Circadian issues are common in ASD patients, who often have difficulties falling 

asleep and have more frequent night awakenings than the control population (Richdale & 

Prior, 1995; Glickman, 2010). Because of this, we sought to investigate intrinsic circadian 

period of the ASD-associated transgenic mouse lines. Following two weeks of continuous 

activity monitoring, lights were shut off and mice were allowed to free-run in continuous 

darkness for two weeks. Despite activity alterations found in the ASD mouse models, there 

were no differences in free-running circadian period between male and female transgenic 

mice and sex-matched littermates for any of the four ASD-associated lines studied 

(Student’s T-Test, p > 0.25 for all comparisons, Supplementary Fig. 4.3).  

Discussion 

In this study, we performed home-cage activity monitoring and circadian behavioral 

analysis in male and female mice of four transgenic mouse models of ASD. Surprisingly, 

male mice of all four lines studied—Shank3B-/-, CNTNAP2-/-, Pcdh10+/-, and Fmr1 KO—

exhibited home-cage hypoactivity, particularly in the dark (active) phase of the diurnal 

cycle, relative to sex-matched WT controls. Interestingly, for CNTNAP2-/- and Pcdh10+/- 

mice, the activity alterations were sex-specific, as female mice of these lines displayed 

activity levels similar to sex-matched WT littermates. The enhanced activity alterations in 

males for these lines parallels sex differences in phenotypic presentation in human ASD 

patients (Werling & Geschwind, 2013) and supports findings that females require a larger 
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mutational burden than males to manifest similar ASD-related symptomology (Robinson 

et al., 2013; Jacquemont et al., 2014). To our knowledge, this is the first study to include 

and directly compare male and female home-cage activity in these ASD mouse lines 

across the diurnal cycle. 

 Another major finding from this study is the importance of dissociating continuous, 

undisturbed home-cage activity from novelty-induced, brief activity measurements that 

may contain anxiogenic elements, such as those obtained in an open field test. Fmr1 KO 

mice have been described as hyperactive in the open field in numerous publications 

(Bakker et al., 1994; Peier et al., 2000; Mineur et al., 2002; Restivo et al., 2005; Spencer 

et al., 2005; Dahlhaus & El-Husseini, 2010; Yuskaitis et al., 2010; Liu et al., 2011; 

Pietropaolo et al., 2011; Ding et al., 2014; Gholizadeh et al., 2014; Uutela et al., 2014). 

Likewise, CNTNAP2-/- mice have been reported as hyperactive in brief (<1 hour) activity 

monitoring sessions ( Peñagarikano et al., 2011; Brunner et al., 2015). However, longer 

activity studies across multiple undisturbed days corroborate our findings of hypoactivity 

in Fmr1 KO (Bonasera et al., 2017) and CNTNAP2-/- male mice (Thomas et al., 2016). 

Shank3B-/- mice have previously been reported to be hypoactive (Kouser et al., 2013; Lee 

et al., 2015; Bidinosti et al., 2016; Mei et al., 2016; Copping et al., 2017; Dhamne et al., 

2017), however numerous other labs have reported no open field activity differences 

between Shank3B-/- males and WT controls (Peça et al., 2011; Drapeau et al., 2014; 

Duffney et al., 2015; Jaramillo et al., 2016). In some instances investigating both Shank3B-

/- males and females in the open field, males were found to be hypoactive, but females 

were not (Wang et al., 2011; M. Yang et al., 2012). Finally, activity has not previously been 

studied in Pcdh10+/- mice except during social behavior (Schoch et al., 2017), but we have 
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not observed activity differences in the open field (data not shown). Clearly, these results 

highlight the differences between undisturbed home-cage activity over multiple days and 

brief activity measures in a novel environment, and caution against the use and reliability 

of open field to determine whether an animal has altered basal activity. 

 Our findings also present a shared phenotype across multiple mouse models of 

ASD, performed in one lab using consistent methodologies. While human Fragile X 

patients and those with CNTNAP2 mutation are hyperactive (Baumgardner et al., 1995; 

Strauss et al., 2006; Sullivan et al., 2006; Tranfaglia, 2011), the consistent phenotype of 

activity alterations in ASD patients and mouse models may suggest aberrant corticostriatal 

connectivity. Corticostriatal circuits play a role in coordinated movement, and alterations 

in this circuitry are believed to be one of major structural regions contributing to attention-

deficit hyperactivity disorder (Cubillo et al., 2012; Curatolo et al.,2010; Nakao et al., 2011) 

and ASD (Langen et al., 2012; Shepherd, 2013), which are highly comorbid (Antshel et 

al., 2013). One limitation of our study is that all activity and circadian measurements were 

performed in adult mice, and ASD is a neurodevelopmental disorder. Future studies 

investigating activity across development may shed light into the precise circuitry and 

mechanisms underlying activity alterations, and perhaps other behavioral deficits common 

between Shank3B, CNTNAP2+-/-, Pcdh10+/-, and Fragile X mice and humans. 
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Figure Legends 

Figure 4.1. Male Shank3B-/-, CNTNAP2-/-, Pcdh10+/-, and Fmr1 KO mice are hypoactive in the 

home-cage relative to sex-matched WT controls. A,B) Shank3B-/- males exhibit significantly 

reduced horizontal activity compared to WT littermates. Expressed in 1 hour bins (A) and by light 

/ dark cycle (B). C,D) CNTNAP2-/- males have decreased horizontal activity compared to WT 

controls. Expressed in 1 hour bins (C) and by light / dark cycle (D). E,F) Pcdh10+/- males display 

significantly less horizontal activity than WT littermates. Expressed in 1 hour bins (E) and by light 

/ dark cycle (F). G,H) Fmr1 KO males demonstrate significantly lower horizontal activity than WT 

controls. Expressed in 1 hour bins (G) and by light / dark cycle (H). Mean ± standard error of the 

mean (s.e.m.)  *p < 0.05, **p < 0.01, ***p < 0.001 

 

Figure 4.2. Female Shank3B-/- are hypoactive, but female CNTNAP2+/- and Pcdh10+/- display 

no home-cage activity differences, relative to sex-matched WT controls. A,B) Shank3B-/- 

females exhibit significantly reduced horizontal activity compared to WT littermates. Expressed in 

1 hour bins (A) and by light / dark cycle (B). C,D) CNTNAP2-/- females have no differences in 

horizontal activity compared to WT controls. Expressed in 1 hour bins (C) and by light / dark cycle 

(D). E,F) Pcdh10+/- females display no differences in horizontal activity in comparison to WT 

littermates. Expressed in 1 hour bins (E) and by light / dark cycle (F). Mean ± standard error of 

the mean (s.e.m.)  *p < 0.05, **p < 0.01, ***p < 0.001 
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Supplementary Figure Legends 

 

Supplemental Figure 4.1. Male Shank3B-/-, CNTNAP2-/-, Pcdh10+/-, and Fmr1 KO mice 

display less home-cage rearing behavior than sex-matched WT controls. A,B) Shank3B-/- 

males exhibit significantly reduced vertical activity compared to WT littermates. Expressed in 1 

hour bins (A) and by light / dark cycle (B). C,D) CNTNAP2-/- males have decreased vertical 

activity compared to WT controls. Expressed in 1 hour bins (C) and by light / dark cycle (D). E,F) 

Pcdh10+/- males display significantly less vertical activity than WT littermates. Expressed in 1 hour 

bins (E) and by light / dark cycle (F). G,H) Fmr1 KO males demonstrate significantly lower vertical 

activity than WT controls. Expressed in 1 hour bins (G) and by light / dark cycle (H). Mean ± 

standard error of the mean (s.e.m.)  *p < 0.05, **p < 0.01, ***p < 0.001 

 

Supplemental Figure 4.2. Female Shank3B-/- have reduced rearing behavior, but female 

CNTNAP2+/- and Pcdh10+/- display no vertical activity differences, relative to sex-matched 

WT controls. A,B) Shank3B-/- females exhibit significantly reduced vertical activity compared to 

WT littermates. Expressed in 1 hour bins (A) and by light / dark cycle (B). C,D) CNTNAP2-/- 

females have no differences in vertical activity compared to WT controls. Expressed in 1 hour 

bins (C) and by light / dark cycle (D). E,F) Pcdh10+/- females display no differences in vertical 

activity in comparison to WT littermates. Expressed in 1 hour bins (E) and by light / dark cycle (F). 

Mean ± standard error of the mean (s.e.m.)  *p < 0.05, **p < 0.01, ***p < 0.001 

 

Supplemental Figure 4.3. Normal circadian rhythms in Shank3B-/-, CNTNAP2-/-, Pcdh10+/-, 

and Fmr1 KO mice. A-D) There are no differences in free-running circadian period (tau) between 

Shank3B-/- (A), CNTNAP2-/- (B), Pcdh10+/- (C), Fmr1 KO (D) mice and their sex-matched WT 

controls. 
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Figure 4.1 
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Figure 4.2 
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Supplementary Figure 4.1
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Supplementary Figure 4.2 
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Supplementary Figure 4.3 
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CHAPTER 5: Conclusions and future directions 
 

5.1 Conclusions 

In this dissertation, I described sleep, home-cage activity, and circadian rhythms 

in various genetic mouse models of neurodevelopmental disorders, with a particular focus 

on models of ASD. In Chapter 2, I presented male-specific sleep reductions in the 16p11.2 

del/+ mouse model of neurodevelopmental disorders, recapitulating phenotypic sex 

differences and total sleep time reductions commonly reported in ASD (Sivertsen et al., 

2012; Robinson-Shelton & Malow, 2016; Souders et al., 2017). In Chapter 3, I described 

REM sleep reductions, a common polysomnographic finding in human ASD patients 

(Limoges et al., 2005; Buckley et al., 2010), and altered EEG spectra properties in the 

Syngap1+/- mouse model of intellectual disability, ASD, and epilepsy. In Chapter 4, I 

depicted the shared phenotype of home-cage hypoactivity in male mice of four different 

mouse models of ASD: Shank3B-/-, CNTNAP2-/-, Pcdh10+/-, and FMR1 KO. Interestingly, 

there were no home-cage activity differences in female mice for two of the four lines 

studied, recapitulating male-enhanced phenotypic presentation in human ASD patients in 

spite of the same genetic insult (Robinson et al., 2013; Werling & Geschwind, 2013; 

Jacquemont et al., 2014). 

Accurate genetic models demonstrating face validity are important for testing 

potential treatment strategies and elucidating neurobiological mechanisms underlying 

sleep and circadian problems in neurodevelopmental disorders. Despite this, prior to this 

thesis work, there was a paucity of published studies investigating sleep and circadian 

rhythms in mouse models of neurodevelopmental disorders. The possibility of 
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recapitulating some of the diverse sleep and circadian problems found in human 

neurodevelopmental disorders in accurate rodent genetic models motivated this work. 

Indeed, throughout various genetic models, we discovered a male-enhanced insomnia-

like phenotype (Chapter 2), REM sleep reductions (Chapter 3), sex differences (Chapter 

2 and Chapter 4), and a shared activity phenotype that may be indicative of 

thalamocorticostraial circuitry aberrations germane to the disorder (Chapter 4). The long-

term goal in undertaking this thesis work was to provide a basis for future research to 

identify brain region- or cell type-specific mechanisms mediating various sleep and 

circadian disruptions in ASD, allowing for more targeted and tailored treatment strategies. 

It is our hope that the diversity of sleep, activity, and circadian phenotypes presented 

herein will inspire future investigations into the precise circuitries and mechanisms 

underlying specific sleep and circadian disruptions in human ASDs. 

5.2 Genetics of ASD 

Evidence from twin studies, family studies, and genome-wide association studies 

has revealed a strong genetic component to ASD (Persico & Napolioni, 2013; Smalley et 

al., 1988; Weiss et al., 2009). However, ASD is an exceptionally diverse and complex 

spectrum of disorders, grouped together by common phenotypes such as social deficits, 

communication problems, and restricted or repetitive behaviors (Geschwind, 2011; 

Persico & Napolioni, 2013a). Rather than a few common genetic variants resulting in ASD, 

numerous rare genetic variants with low individual penetrance, and even the synergistic 

effect of many common genetic variations, can contribute to symptomology ultimately 

classified as ASD. Highlighting this, risk factor genes associated with ASD represent a 

wide array of biochemical classes and functions, including genes known to be involved in 
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mRNA translation, DNA methylation, chromatin remodeling, synaptic excitability, cell 

adhesion, growth-regulation and cell proliferation, Ca2+ signaling, and more (Reviewed in: 

Persico & Napolioni, 2013). In addition to single-gene risk factors, numerous copy number 

variations, including in chromosomal region 16p11.2 (Chapter 2), have been shown to be 

strongly associated with increased prevalence of neurodevelopmental disorders (Levy et 

al., 2011; Sanders et al., 2011). Thus, rather than treating ASD-associated behavioral 

symptomologies such as insomnia, hyperactivity, social impairments, and communication 

problems as monolithic, perhaps individualized genetics-based treatment strategies 

aimed at targeting specific molecular mechanisms and circuitry would be more effective. 

Genetics-based treatment approaches may alleviate issues such as administering 

psychomotor stimulants to patients with comorbid ADHD and ASD, which may help 

assuage hyperactivity, but is likely to exacerbate sleep problems. Discovering 

neurobiological mechanisms underlying phenotypic abnormalities is one of the main 

benefits and utilities of rodent genetic models. The disparate phenotypes observed in the 

different ASD mouse models investigated in this thesis work highlights the need for more 

genetic models of neurodevelopmental disorders capable of recapitulating the 

symptomologies of their human homologs. Fortunately, with recent advancements in 

genome engineering,  

generating novel transgenic mouse models is easier than ever. 

5.3 Sex differences in ASD 

ASDs and related neurodevelopmental disorders such as ADHD are highly sex-biased. 

Males are 4.5 times more likely than females to be diagnosed with ASD (Werling & 

Geschwind, 2013; Christensen et al., 2016), and 3 times more likely to be diagnosed 
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with ADHD (Schneider & Eisenberg, 2006). Moreover, males often present more severe 

symptomologies than do females, given the same genetic insult (Robinson et al., 2013; 

Jacquemont et al., 2014). Reasons behind these strong sex differences in ASD and 

related neurodevelopmental disorders are not known. The vast majority of studies 

performed in rodent models of ASD do not directly compare males and females. In the 

only other studies to date investigating sleep in rodent models of ASD, comparisons 

between males and females were not made (Cusmano & Mong, 2014; Thomas et al., 

2016). Thus, the male-specific sleep time reductions and wake bout duration alterations 

in 16p11.2 del/+ mice presented in Chapter 2 are the first demonstrated sex differences 

in sleep in a rodent genetic model of autism. We also found sex differences in activity, 

relative to sex-matched WT littermates, in two of the four ASD-associated monogenic 

models studied in Chapter 4. Further rodent models recapitulating the sex differences 

observed in ASD are greatly needed in order to understand the contributing 

mechanisms. Thus, one hopeful future direction as a consequence of this research is the 

enhancement of studies directly comparing males and females when investigating 

rodent models of ASD and other sex-biased neurodevelopmental disorders. 

5.4 Targeted genetic manipulations of ASD-associated genes and CNVs 

One of the main advantages of rodent models is the capacity they have for 

spatially- and temporally-restricted genetic manipulation (reviewed in: Angelakos & Abel, 

2015). The findings presented in this dissertation were all performed in mice expressing 

constitutive genetic deletion, reduction, or mutation. These results provide an exciting 

preliminary step in identifying sleep, activity, and circadian alterations in various mouse 

models. Even more exciting are the future directions of restricting genetic manipulation in 
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time and space. For example, bout distribution analysis in Chapter 2 suggests that 

16p11.2 del/+ male mice may have an overactive wake-promoting system, maintaining 

unusually long bouts of continuous wakefulness. This data, in concert with the robust 

hyperactivity observations, and findings from other labs in 16p11.2 del/+ mice, suggests 

irregular dopaminergic signaling (Portmann et al., 2014; Grissom et al., 2017). Therefore, 

one interesting potential avenue of future investigation is to study sleep and activity in 

16p11.2 hemideletion restricted to only dopamine D1- or dopamine D2-receptor 

expressing cells. As another example, in Chapter 3, I show REM sleep reductions and 

elevated baseline NREM delta in Syngap1+/- mice, relative to WT. REM sleep is thought 

to be generated by reciprocal interactions of brainstem nuclei (Sastre et al., 1996; 

Boissard et al., 2002; Lu et al., 2006; Luppi et al., 2006). Conversely, two different delta 

rhythms are known to exist: one generated by T-Type Ca2+ channels and Ca2+-dependent 

small-conductance (SK)-type K+ channels in the thalamic reticular nucleus (Cueni et al., 

2008; Lee et al., 2004), and another generated locally in the cortex (Steriade et al., 1993; 

Sanchez-Vives & McCormick, 2000; Timofeev et al., 2000). Thus, using mouse Cre lines 

restricting SYNGAP1 reduction to the cortex, or viral Cre delivery to brainstem nuclei in 

Syngap1 floxed mice, may prove extremely useful in identifying the particular neural 

circuits and mechanisms underlying the sleep phenotypes observed in Syngap1+/- mice. 

5.5 Reversal of phenotypes and impact of development 

Another potential future direction based upon the findings presented in this 

dissertation is the reversal of phenotypes using pharmacological or genetic manipulation. 

Rodent models provide the ideal opportunity to test potential treatment strategies before 

proceeding to clinical trials in humans. For instance, our findings in Chapter 2 suggest 
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that dopamine subtype-specific drugs may ameliorate the hyperactivity and overactive 

wake system of 16p11.2 del/+ mice. One potential drug to test might be risperidone, a 

dopamine D2 antagonist that is already approved for use in human ASD patients. In 

addition to pharmacological treatment, genetic manipulations could be employed in an 

attempt to reverse some of the sleep, activity, and circadian alterations presented in this 

dissertation. Viral-mediated enhancement of SYGNAP1, Shank3B, CNTNAP2, or Pcdh10, 

or inducible Cre recombination using a FLEx switch (Schnütgen et al., 2003; Atasoy et al., 

2008), may normalize some of the phenotypes observed in these mouse models. 

 One limitation of these studies is that all of the experiments were performed in 

adult mice, but ASD is a developmental disorder. Technical limitations prevented us from 

implanting and recording sleep in juvenile mice. Future studies employing innovative 

technologies to characterize sleep and activity across development would be beneficial. 

For the time being, adult-restricted restoration of these ASD-associated genes or 

chromosomal regions using temporally-restricted promoters, tamoxifen-inducible Cre, or 

viral-mediated FLEx Cre technologies may provide useful insight into the potential 

reversibility of phenotypes beyond a critical period of neural development. For example, 

do the activity alterations observed in the seven mouse models studied in this dissertation 

persist following genetic restoration in adult mice? If so, the phenotype may not be 

reversible beyond a certain developmental time point. 

5.6 Summary and future directions 

In summary, the work presented in this thesis highlights novel sleep, activity, and 

circadian alterations in multiple genetic mouse models of human neurodevelopmental 

disorders. In some instances, the phenotypes observed were male-specific, recapitulating 
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sex-biases observed in human ASD. These studies provide a foundation for modeling 

various sleep problems commonly reported in individuals diagnosed with 

neurodevelopmental disorders. Future directions involving more spatially- and temporally-

restricted genetic mutation are likely to provide further insight into the neurobiological 

mechanisms mediating the phenotypes reported in this dissertation. Another potential 

benefit of the findings from these studies is the possibility to exploit these mouse models 

to test pharmacologic interventions and potential treatment strategies for the amelioration 

of these phenotypes. Finally, these studies emphasize the utility of transgenic mice for 

modeling human disorders. An important implication of this work is the continued 

development of novel genetic models, and the insistence on performing well-controlled 

and direct comparisons between male and female mice in models of sex-biased disorders. 
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APPENDIX: Circadian gene expression alterations and prolonged free-
running period in CBPKix/Kix mice 

 

Abstract 

The molecular circadian clock is controlled by core clock genes participating in 

transcription-translation feedback loops to maintain precise temporal rhythms. The 

transcription factor cAMP response element-binding protein (CREB) and the CREB-

binding protein (CBP) are both known regulators of Period (Per) transcription and 

circadian rhythmicity. CBP overexpression enhances CLOCK/BMAL1-mediated Per1 

activation, while CBP knockdown decreases circadian clock induction and oscillation.  

Despite this, the mechanisms underlying the relationship between CREB, CBP, and 

circadian rhythms are not fully understood. We performed RNA sequencing in the 

hippocampus of mice carrying an inactivating triple point mutation in the CREB-binding 

(Kix) domain of CBP (CBPKix/Kix mice), which blocks phospho-CREB binding to CBP. We 

found altered expression of the circadian clock mediator genes Gm129 (Chrono) and Dbp 

in CBPKix/Kix mice, which we validated with quantitative PCR. Activity monitoring of 

CBPKix/Kix mice across the diurnal cycle in 12 hour: 12 hour light:dark revealed delayed 

activity onset as well as delayed peak activity in both male and female CBPKix/Kix mice 

compared to sex-matched wildtype littermates. Similar to prolonged circadian periods 

found in Chrono knockout mice, CBPKix/Kix mice exhibited a 23-minute increase in free-

running circadian period relative to wildtype littermates; however phase shifting in 

response to 15-minute light pulses at CT14 and CT22 did not differ between CBPKix/Kix 

mice and controls. Together, these studies help to further elucidate the molecular 

machinery regulating the circadian clock by highlighting a novel role for CREB-mediated 

transcription through CBP in maintaining accurate circadian rhythmicity. 
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Introduction 

Nearly all organisms exhibit intrinsic circadian rhythms, which are entrained by 

environmental stimuli to the 24-hour diurnal cycle of the rotating earth (Jay C Dunlap, 

1999; Edgar et al., 2012). In mammals, light entering the retina sets off a molecular 

cascade via the retinohypothalamic tract, leading to the master circadian clock in the 

suprachiasmatic nucleus (SCN) (Moore & Eichler, 1972; Stephan & Zucker, 1972.; Welsh 

et al., 1995). These circadian rhythms are maintained via the bidirectional transcription-

translation activity of core clock genes. Brain and muscle aryl hydrocarbon receptor 

nuclear translocator-like protein 1 (BMAL1) heterodimerizes with CLOCK in the nucleus 

and binds to E-box enhancer sequences in the promoters of numerous genes, including 

the transcriptional repressors Period (PER) and Cryptochrome (CRY), initiating their 

transcription. PER and CRY in turn inhibit transcription of BMAL1 and CLOCK (Gekakis 

et al., 1998; Reppert & Weaver, 2002), creating a feedback loop controlling circadian 

rhythmicity. In addition to these core genes, many other transcriptional activators and 

repressors have been identified as important circadian regulatory elements (see Buhr & 

Takahashi, 2013; Golombek & Rosenstein, 2010; Partch et al., 2014 for recent reviews). 

 One molecule long known to play a critical role in circadian regulation is the 

transcription factor cAMP response element-binding protein (CREB). Phosphorylated 

CREB levels oscillate in a circadian manner in the SCN, and light pulses during the night 

rapidly induce CREB phosphorylation and cAMP response element (CRE)-mediated gene 

expression (Ginty et al., 1993; Obrietan et al., 1999; von Gall et al., 1998). Both the Per1 

and Per2 promoters contain CREs capable of binding p-CREB in SCN extracts, and 

mutation of the CRE in the Per1 promoter abolishes the promoter’s responsiveness to 

various forms of cellular induction (Travnickova-Bendova et al., 2002). Moreover, a S142A 
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mutation of CREB in mice, preventing phosphorylation at Ser142, attenuates light-induced 

behavioral phase shifts and significantly reduces Per1 expression (Gau et al., 2002). 

 In addition to CREB, the CREB-binding protein (CBP) is a known circadian 

regulator (Hung et al., 2007). CBP is recruited by and heterodimerizes with the 

CLOCK/BMAL1 complex, directly interacting with BMAL1 (Hosoda et al., 2009; Takahata 

et al., 2000). CBP overexpression increases CLOCK/BMAL1-mediated Per1 transcription, 

and this is dependent on functional E-box elements within the Per1 promoter. Conversely, 

siRNA knockdown of CBP significantly diminishes circadian oscillation in cultured cells, 

whereas knockdown of p300 or CREB do not (Y. Lee et al., 2010). Interestingly, CBP has 

been shown to bind to E-boxes at both CT4 and CT16, suggesting that it may have 

disparate transcriptional co-activator and co-repressor roles. In fact, CBP also interacts 

with the transcriptional repressor PER2 (Nobuya Koike et al., 2012). 

 Although CREB and CBP have both been shown to be key regulators of circadian 

rhythms, much is unknown about the underlying mechanisms. To investigate the direct 

relationship between CREB, CBP, and circadian rhythms, we utilized mice expressing an 

inactivating triple point mutation in the p-CREB-interacting (Kix) domain of CBP (CBPKix/Kix 

mice) (Kasper et al., 2002), which blocks phospho-CREB-mediated transcription through 

CBP (Kwok et al., 1994). Previously, CBPKix/Kix mice have been shown to have disrupted 

long-term memory (Wood et al., 2006; Stefanko et al., 2009); however their circadian 

behavior has not been studied. In the present study, we studied the transcriptional profile 

as well as the circadian behavior of CBPKix/Kix mice. Through RNA-seq and qPCR, we 

found altered expression of circadian regulatory genes in CBPKix/Kix mice relative to WT 

littermates. Activity monitoring in 12 hour: 12 hour light:dark (12h:12h LD) revealed 

temporally delayed circadian behavior in CBPKix/Kix mice compared to WT controls. In 
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constant darkness (DD), CBPKix/Kix mice exhibited a lengthened free-running circadian 

period relative to WT. Together, this data highlights a novel mechanism by which CREB-

mediated transcription through CBP impacts circadian rhythmicity, further advancing our 

knowledge of the contributions of these important circadian regulators to the maintenance 

and resetting of circadian rhythms. 

Materials and Methods 

Animals 

CBPKix/Kix mice were previously generated with an inactivating triple-point mutation 

of Tyr650Ala, Ala654Gln, and Tyr658Ala of CBP, preventing CREB binding to the Kix 

domain of CBP (Kasper et al., 2002b). CBPKix/Kix mice were backcrossed on a C57Bl/6 

background for over ten generations, and heterozygous (CBPKix/+) breeders were used for 

the generation of experimental animals, with sibling wildtype littermates serving as 

controls. Mice were group housed in cages of 3-5 littermates and were maintained on a 

12h:12h LD cycle with light onset at 7:00am, except where indicated otherwise. Separate 

animals were used for RNA-seq/qPCR experiments and the activity monitoring/circadian 

behavior experiments. All mice were between 3 and 5 months old at the time of tissue 

collection or the beginning of activity monitoring experimentation. One mouse was 

excluded from behavioral experiments due to unusually high levels of activity (>2.5 

standard deviations above the group mean). Food and water was provided ad libitum. All 

experiments were approved by the Institutional Animal Care and Use Committee of the 

University of Pennsylvania and conducted in accordance with National Institutes of Health 

guidelines. 
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Fear Conditioning 

Contextual fear conditioning was performed as previously described (Vecsey et 

al., 2007) with mice handled 1 minute per day for 3 consecutive days prior to fear 

conditioning training. On the training day, mice received a single 2s, 1.5mA footshock, 

culminating 2.5min after placement into the chambers. 30s after the footshock, mice were 

removed from the chambers and returned to their home-cages. A separate group serving 

as home-cage controls was handled, but did not receive fear conditioning training.  

RNA Isolation 

30 minutes after fear conditioning or home-cage control, mice were sacrificed 

between ZT3.5-ZT4 and hippocampi were rapidly dissected into RNAlater (Thermo Fisher 

Scientific, Waltham, MA) and immediately frozen on dry ice. Tissue was homogenized and 

lysed in Qiazol and RNA was isolated using the RNeasy Mini Kit (Qiagen, Valencia, CA). 

Trace genomic DNA was removed by treating with RNase-Free DNase (Qiagen) off-

column. Subsequently, RNA was precipitated in ethanol and resuspended in nuclease free 

water. 

RNA Sequencing 

Library preparation was performed using the TruSeq RNA Sample Prep Kit with 

polyA selection (Illumina San Diego, CA) according to manufacturer’s instructions. 

Samples were sequenced at the PGFI Sequencing Core at the University of 

Pennsylvania using the HiSeq 2000 (Illumina San Diego, CA) and 100 bp paired-end 

reads. The quality of the sequencing data was checked using FASTQC (Andrews, 2010) 

and all samples had Phred quality scores > 30. Sequencing files were aligned to the 
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most recent mouse genome, mm10, using GSNAP/GMAP (Wu & Watanabe, 2005; Wu 

& Nacu, 2010) (http://research-pub.gene.com/gmap/). Only the concordant and unique 

reads were then annotated and reads were counted using the R program, featureCounts 

(Liao et al., 2014) (http://bioinf.wehi.edu.au/featureCounts/). Removal of Unwanted 

Variation (RUV) sequencing was then implemented to control for unknown variables, as 

previously described (Risso et al., 2014; Peixoto et al., 2015; Gerstner et al., 2016; 

Poplawski et al., 2016). Normalized read counts were compared between CBPKix/Kix 

home-cage samples and CBPKix/Kix fear-conditioned samples.  

 

cDNA preparation and qPCR 

RNA concentration was determined using a NanoDrop spectrophotometer 

(Thermo Fisher Scientific, Waltham, MA) and cDNA was prepared using a RETROscript 

kit (Ambion, Austin, TX) from 1 µg total RNA. Real-time PCR (qPCR) was performed 

with ViiA 7 PCR system (Applied Biosystems, Waltham, Massachusetts) using 3 

housekeeper genes for normalization (ActinG, Tuba4a, and Hprt). Differential gene 

expression was quantified using a ΔΔCt method. The primers used for the analysis 

were:  

Gm129 FW 5' CATCCTATGTCCGCCTGTCC 3' 

Gm129 Rev 5' ACTGGGGGATGGCTAGTCAT 3' 

Dbp FW 5' CCTTTGAACCTGATCCCGCT 3' 

Dbp Rev 5' CTCTGAGAAGCGGTGTCTCC 3' 

Hprt5 FW 5’-TTGCTGACCTGCTGGATTACA-3’ 

Hprt5 Rev 5’-CCCCGTTGACTGATCATTACA-3’ 

Tuba4a FW 5’-ATGCGCGAGTGCATTTCAG-3’ 

http://research-pub.gene.com/gmap/
http://bioinf.wehi.edu.au/featureCounts/
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Tuba4a Rev 5’-CACCAATGGTCTTATCGCTGG-3’ 

ActinG FW 5’-CCGATCGCAATGGAAGAAG-3’ 

ActinG Rev 5’-CGTATGAGTCTTTCTGGCCCA-3’ 

Activity Monitoring 

Activity monitoring was performed as previously described in a separate group of 

mice from the RNA-seq / qPCR experiments (Angelakos et al., 2016). Briefly, mice were 

individually housed inside light- and noise-attenuating chambers (22” x 16” x 19”, Med 

Associates, St. Albans, VT) equipped with a 250 lux light source (80 lux at cage floor) and 

fan for ventilation. Each cage was placed within a system of infrared beams spaced 0.5 

inches apart, which provided two horizontal infrared grids at 0.75” and 2.75” above the 

cage floor. Mice were allowed to acclimate to the activity monitoring chambers for one 

week before experimentation. Following acclimation, infrared beam break counts were 

acquired at 10 second intervals for 7 days on a 12 hour light / 12 hour dark (12h:12h LD) 

schedule to measure both horizontal and vertical (rearing) activity across the entire diurnal 

cycle. Activity counts were binned into 1-hour intervals and averaged over the 7 days. 

After the final day of activity monitoring in 12h:12h LD, lights were switched off and animals 

were allowed to free-run in 24-hour constant darkness (DD) for 4 weeks, with activity 

counts compiled every minute. Circadian period (tau) was calculated from Day 2 until the 

end of DD using ClockLab software (Actimetrics). 

Light Pulses 

Following 4 weeks of 24-hour constant darkness, one cohort of mice (n=8 WT and 

n=5 CBPKix/Kix) received a 15-minute phase delaying 250 lux (80 lux at cage floor) light 
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pulse at CT14. Mice were allowed to recover for 8 days in 24-hour constant darkness and 

tau was recalculated. After the 8 days in continuous darkness, a second 15-minute phase 

advancing light pulse was given at CT22. 8 days later, tau was recalculated. The phase 

angles of activity delay and advancement were calculated using ClockLab software 

(Actimetrics). 

Statistics 

All statistical analysis was performed using SPSS for Windows (V. 24.0). Two-way 

ANOVAs were performed for qPCR studies with genotype and fear condition as the 

independent variables, as well as for circadian tau analysis in DD, with genotype and sex 

as the independent variables. Mixed-Design ANOVAs were utilized for beam-break activity 

analysis, with genotype (CBPKix/Kix or WT) as the between-subjects factor and time as the 

within-subjects factor. Post hoc multiple comparisons were performed using Bonferroni’s 

adjustment for multiple comparisons. Multivariate ANOVAs (MANOVA) was used to 

analyze the activity counts in the light and dark phases, with alpha corrected for multiple 

ANOVAs and set at α = 0.05/2. For total activity over the 24-hour day and light pulse 

analysis, Student’s t-test was applied. 

Results 

CBPKix/Kix mice have decreased Gm129 and Dbp expression at ZT4 

 RNA-sequencing was performed in the hippocampi of CBPKix/Kix mice and WT 

littermates. Because CBPKix/Kix mice have previously been shown to have contextual fear 

memory deficits (Wood et al., 2006), we sequenced RNA isolated from the hippocampi of 

CBPKix/Kix and WT mice sacrificed 30-minutes after contextual fear conditioning as well as 
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from mice that were undisturbed in the home-cage, resulting in four experimental groups 

(Table A.1 and Fig. A.1). Removal of Unwanted Variation (RUV) normalization was 

performed as previously described  (Risso et al., 2014; Peixoto et al., 2015; Gerstner et 

al., 2016; Poplawski et al., 2016). Comparing the home-cage housed CBPKix/Kix mice to 

home-cage housed WT mice, we identified at FDR < 0.05, 127 genes downregulated 

(Table A.2) and 62 genes upregulated (Table A.3) in CBPKix/Kix mice relative to WT. 

Comparing the two genotypes after contextual fear conditioning, we identified 358 

downregulated genes (Table A.4) and 125 upregulated genes (Table A.5) in CBPKix/Kix 

mice relative to WT. Interestingly, two of the genes downregulated in CBPKix/Kix mice in 

both the home-cage and fear conditioning groups, gene model 129 (Gm129/Chrono) and 

D site albumin promoter binding protein (Dbp), are known regulators of the mammalian 

circadian clock. Chrono was recently identified through ChIP-seq and machine learning 

as a repressor of CLOCK/BMAL1 function through direct binding to the CLOCK/BMAL1 

complex (Anafi, Lee, Sato, Venkataraman, Ramanathan, Kavakli, Hughes, Baggs, et al., 

2014; Annayev et al., 2014a; Goriki et al., 2014). Dbp is highly rhythmic in the SCN during 

both light-dark and dark-dark conditions (Lopez-Molina et al., 1997), binds to the mPer1 

promoter, increasing mPer1 transcription, and is transcriptionally regulated by the core 

circadian CLOCK/BMAL1  complex (Yamaguchi et al., 2000). 

 The differential expression of Chrono and Dbp was validated with qPCR in the 

same cohort of mice used for RNA-sequencing. In line with the RNA-sequencing results, 

Chrono and Dbp RNA levels were decreased in CBPKix/Kix mice relative to WT mice in both 

home-cage and fear conditioned conditions at ZT4 (main effects of genotype, Chrono: 

F(1,12) = 15.39, p=0.002; Dbp: F(1,12) = 6.23, p=0.028, Fig. A.2). There was no main 
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effect of fear conditioning (Chrono: F(1,12) = 0.04, p=0.85; Dbp: F(1,12) = 0.08, p=0.78) 

nor a genotype*fear condition interaction (Chrono: F(1,12) = 0.38, p=0.55; Dbp: F(1,12) = 

2,28, p=0.16). Thus, altered Chrono and Dbp expression is an intrinsic property of 

CBPKix/Kix mice. 

CBPKix/Kix mice have delayed activity onset and peak activity in the light-dark cycle 

 Because CBPKix/Kix mice have altered expression of genes known to impact the 

circadian clock, we sought to behaviorally profile the activity patterns of CBPKix/Kix mice 

and WT controls. Home-cage activity was first quantified via infrared beam breaks over 

one week of continuous monitoring in 12h:12h LD, as previously described (Angelakos et 

al., 2016). Male and female activity was analyzed separately due to the known sex-

differences in mouse activity (Nishi et al., 2010; Angelakos et al., 2016). Mixed Design 

ANOVAs revealed a significant time*genotype interaction between male CBPKix/Kix and WT 

mice (F(23,368) = 6.13, p = 0.002; Fig. A.3a). Post hoc comparisons indicated that 

CBPKix/Kix males had significantly lower activity during the first hour of the dark(active) 

phase (t(16) = 19.54, p < 0.001) and reached peak activity levels 3 hours later than WT 

males.  There was no difference in total activity across the 24-hour day (Student’s t-test, 

t(16) = 1.16, p= 0.307; Fig. A.3b), nor during the light or dark phases (MANOVA, F(2,15) 

= 2.47, p = 0.118; Fig. A.3b) between CBPKix/Kix and WT males. Likewise, there was also 

a significant time*genotype interaction between female CBPKix/Kix mice and WT littermates 

(F(2,23) = 7.95, p < 0.001; Fig. A.3c). CBPKix/Kix females had decreased activity relative to 

WT littermates each of the first 3 hours of the dark(active) phase (all p < 0.01), and also 

reached peak activity of the initial activity wave 3 hours later than WT females. However, 

unlike the males, CBPKix/Kix females reached maximum activity levels following their siesta 
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at ZT21. There were no differences in activity counts between CBPKix/Kix females and WT 

littermates over the 24-hour day (Student’s t-test: (t(10) = 1.11, p = 0.316; Fig. A.3d), nor 

in the light or dark phases (MANOVA, F(2,9) = 0.62, p = 0.56; Fig. A.3d). These data 

indicate that in comparison to WT mice, CBPKix/Kix mice have delayed activity patterns in 

12h:12h LD while maintaining normal total locomotor activity. 

CBPKix/Kix mice have increased circadian tau in constant darkness 

 Given the temporally shifted activity patterns of CBPKix/Kix mice observed in 12h:12h 

LD, we next free-ran CBPKix/Kix and WT mice in constant darkness for 4 weeks to gauge 

free-running circadian period. There was no effect of sex on tau (p=0.33), nor a 

sex*genotype interaction (Two-way ANOVA, p = 0.78; Fig. A.4a). Thus, sexes were 

combined for analysis of circadian tau. On average, CBPKix/Kix mice had a circadian period 

(24.05 ± 0.03 hrs) that was ~22.9 minutes longer than that of their WT counterparts (23.66 

± 0.01 hrs) (main effect of genotype, F(1,26) = 126.183, p = 0.00000000002; Fig. A.4b, 

see Fig. A.4c and A.4d for representative traces closest to the group means for WT and 

CBPKix/Kix, respectively). This ~30 minute shift in circadian tau is roughly similar to the shifts 

observed in knockouts of core circadian clock genes, including CLOCK (DeBruyne et al., 

2006), Per1 (Cermakian et al., 2001), Per3 (Shearman et al., 2000), Nr1d1 (Preitner, 

Damiola, Lopez-Molina, et al., 2002), Dbp (Lopez-Molina et al., 1997), Rora (Sato et al., 

2004), Rorb (André et al., 1998), and Npas2 (Dudley et al., 2003) [summarized in (Ko & 

Takahashi, 2006)]. Thus, the Kix domain of CBP is an integral modulator of circadian 

timing. 

CBPKix/Kix mice have normal phase shifts to light pulses 
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 To further probe the role of the Kix domain of CBP in the circadian clock, after 4 

weeks in continuous darkness, one cohort of CBPKix/Kix mice and WT controls was given a 

15-minute, 250 lux (80 lux at cage floor) phase delaying light pulse at CT14 for maximal 

phase delay (Jud et al., 2005). Mice were allowed to again free-run in constant darkness 

for 8 days before receiving another light pulse at CT22. Circadian tau was recalculated 

and the phase shift in hours was calculated for each animal. There were no differences in 

response to the delaying (CT14) or advancing (CT22) phase shifts between CBPKix/Kix mice 

and WT controls (Student’s t-test, phase delaying: (t(11) = 1.15, p = 0.27; phase 

advancing: (t(11) = 0.93, p = 0.37; Fig. A.5a). This data suggests that p-CREB-mediated 

transcription through CBP is not necessary for circadian clock resetting, but rather is a 

modulator and plays a role in ensuring accurate timing of circadian transcriptional 

oscillations. 

Discussion 

 In this study, we investigated gene transcription and the circadian behavioral 

profile of mice deficient for CREB-mediated transcription through CBP. RNA-seq and 

qPCR validation revealed altered expression of the circadian regulatory genes Chrono 

and Dbp in CBPKix/Kix mice relative to WT littermates. In 12h:12h LD diurnal activity 

monitoring, CBPKix/Kix mice have delayed activity onset and peak activity compared to sex-

matched controls. In constant darkness, CBPKix/Kix mice exhibit prolonged free-running 

circadian periods. Despite the temporally delayed circadian activity of CBPKix/Kix mice, they 

respond normally to clock resetting light pulses, suggesting that CREB-mediated 

transcription through the Kix domain of CBP is necessary for modulating the circadian 

clock, but is not required for entrainment. Altogether, this data identifies a novel 
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mechanism for the regulation of circadian timing through CBP-dependent CREB-mediated 

transcription. 

 The CBP is a large 265 kDa protein containing multiple interaction domains 

(nuclear hormone receptor binding domain, zinc fingers, Kix domain, bromodomain, 

histone acetyltransferase domain, glutamine-rich (Q) domain) and is believed to interact 

with hundreds of transcription factors (Goodman & Smolik, 2000; Vo & Goodman, 2001; 

Kalkhoven, 2004). Our data help pin down a specific mechanism by which CBP can 

regulate circadian gene transcription and behavior. The relationship between CREB, CBP, 

and circadian rhythms is likely complex. CREB phosphorylation at both Ser-133 and Ser-

142 is circadian regulated and driven by light (Ginty et al., 1993; C von Gall et al., 1998; 

Obrietan et al., 1999; Gau et al., 2002); however Ser-133 and Ser-142 phosphorylation 

exhibit opposing effects on CBP transcriptional activity. Phosphorylation of Ser-133 

promotes CREB interaction and transcription via the Kix domain of CBP, while Ser-142 

phosphorylation inhibits this interaction (D. Parker et al., 1998). Since CBPKix/Kix abolishes 

transcription though the Kix domain of CBP, mice expressing an inactivating mutation of 

Ser-133, or mice with a constitutively phosphorylated Ser-142, may be expected to exhibit 

circadian phenotypes similar to those observed in CBPKix/Kix mice. 

 The reduction of Chrono in CBPKix/Kix mice relative to WT is particularly interesting 

considering recent findings. Chrono is a transcriptional repressor of the CLOCK/BMAL1 

complex, acting phenotypically similarly to Cry2, albeit via distinct repressive mechanisms 

(Anafi et al., 2014; Annayev et al., 2014b; Goriki et al., 2014). Interestingly, Chrono 

knockout mice display an ~25 minute lengthening of free-running circadian period (Anafi 

et al., 2014), which is almost identical to the ~22.9 minute prolonged circadian period 

found in CBPKix/Kix mice relative to WT. Moreover, Chrono binds to the E-box of Dbp 
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reducing Dbp promoter activity, and in Chrono-/- mice, the peak expression of Dbp is 

extended (Annayev et al., 2014; Goriki et al., 2014). Since Dbp is a pure E-box gene 

indicative of CLOCK/BMAL1 activity, the lengthening of peak Dbp expression through a 

Chrono-dependent mechanism may explain the altered Dbp levels and circadian 

behavioral delays in CBPKix/Kix mice. 

 Interestingly, Anafi et al. recently showed that Chrono abrogates the binding of 

CBP to the CLOCK/BMAL1 complex, a very likely mechanism of Chrono’s repressive 

effects on the circadian clock (Anafi et al., 2014). Our data in the present study shows that 

mutation of the Kix domain of CBP in turn alters Chrono expression (Table 1, Figure 1). 

The mechanism underlying this bidirectional relationship between CBP (specifically 

CREB-mediated transcription through CBP) and Chrono requires further study. It should 

be noted that both CBP and Chrono also interact with the transcriptional repressor Per2 

(Koike et al., 2012; Anafi et al., 2014; Annayev et al., 2014), indicating that the relationship 

between Chrono and CBPKix/Kix may be multifaceted, and may exert different and possibly 

opposing effects depending on the time of the circadian cycle. 

 Some limitations exist in our study of the circadian behavior and gene expression 

of CBPKix/Kix mice. Due to CBPKix/Kix mice being poor breeders, it was not possible to 

generate sufficient mice to obtain a transcriptional profile of CBPKix/Kix mice at numerous 

time points across the circadian cycle. Additionally, we performed RNA-sequencing in the 

hippocampus of CBPKix/Kix mice given their well-established deficits in hippocampus-

dependent long-term memory ( Wood et al., 2006; Stefanko et al., 2009), however the 

circadian phenotypes described herein are likely to be mediated by the SCN. Finally, 

CBPKix/Kix mice are full body knock-ins expressing mutant CBP throughout development. 

Our findings describe a previously unknown mechanism by which phospho-CREB-
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mediated transcription through CBP modulates circadian gene transcription and behavior. 

Future studies quantifying Chrono and Dbp expression across the circadian cycle in mice 

expressing regionally-restricted adult knock-in of CBPKix/Kix will likely shed further insight 

into the mechanisms underlying the relationship between CREB, CBP, and circadian 

rhythms. 
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Figure Legends 

 

Table A.1. CBPKix/Kix gene expression experimental groups. Table outlining the four 

experimental groups utilized in gene expression studies and their respective manipulations. 

 

Table A.2. Home-cage RNA-seq downregulated genes in CBPKix/Kix mice. Table of all 

downregulated genes (FDR < 0.05) in the hippocampus of CBPKix/Kix mice, relative to WT 

controls, in the home-cage (sorted by FDR). Circadian genes Chrono and Dbp are among the 

genes most significantly downregulated in CBPKix/Kix mice relative to wildtype littermates 

(FDR<0.05). Abbreviations: logFC = log2 fold change, logCPM = log2 counts per million reads, LR 

= likelihood ratio, FDR = false discovery rate 

 

Table A.3. Home-cage RNA-seq upregulated genes in CBPKix/Kix mice. Table of all 

upregulated genes (FDR < 0.05) in the hippocampus of CBPKix/Kix mice, relative to WT controls, in 

the home-cage (sorted by FDR). Abbreviations: logFC = log2 fold change, logCPM = log2 counts 

per million reads, LR = likelihood ratio, FDR = false discovery rate 

 

Table A.4. Fear conditioned RNA-seq downregulated genes in CBPKix/Kix mice. Table of all 

downregulated genes (FDR < 0.05) in the hippocampus of CBPKix/Kix mice, relative to WT 

controls, after fear conditioning (sorted by FDR). Circadian genes Chrono and Dbp are among the 

genes most significantly downregulated in CBPKix/Kix mice relative to wildtype littermates 

(FDR<0.05). Abbreviations: logFC = log2 fold change, logCPM = log2 counts per million reads, LR 

= likelihood ratio, FDR = false discovery rate 

 

Table A.5. Fear conditioned RNA-seq upregulated genes in CBPKix/Kix mice. Table of all 
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upregulated genes (FDR < 0.05) in the hippocampus of CBPKix/Kix mice, relative to WT controls, 

after fear conditioning (sorted by FDR). Abbreviations: logFC = log2 fold change, logCPM = log2 

counts per million reads, LR = likelihood ratio, FDR = false discovery rate 

 

Figure A.1. CBPKix/Kix gene expression experimental setup. Schematic of experimental design 

for gene expression studies. 

 

Figure A.2. Altered expression of circadian regulatory genes in CBPKix/Kix mice. CBPKix/Kix 

mice have decreased Chrono and Dbp RNA levels in the hippocampus relative to WT at ZT3-4. 

*p<0.05, **p<0.01 

 

Figure A.3. Altered diurnal rhythms in CBPKix/Kix mice. A) CBPKix/Kix males have delayed 

activity onset and peak activity in 12h:12h LD compared to wildtype littermates, without exhibiting 

differences in total ambulation (B). C) CBPKix/Kix females also have delayed diurnal activity 

patterns compared to wildtype (left), while total movement is unaltered between CBPKix/Kix females 

and wildtype controls (D). *p<0.05, **p<0.01. ***p<0.001 

 

Figure A.4. Lengthened circadian Tau in CBPKix/Kix mice relative to WT. A,B) CBPKix/Kix males 

(A) and females (B) have prolonged free-running circadian period in constant darkness compared 

to wildtype mice. This parallels observations in Chrono-/- mice (Anafi et al., 2014). C,D) 

Representative actograms after 1 month of continuous darkness for wildtype (C) and CBPKix/Kix 

mice (D). ***p<0.001, # p=0.00000000002 
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Figure A.5. CBPKix/Kix mice have normal circadian entrainment. A) CBPKix/Kix and WT mice 

display normal phase shifts when given either a phase delaying (CT14) or phase advancing 

(CT22) light pulse. B) Representative actograms from CT14 and C22 light-pulsed WT and 

CBPKix/Kix mice. 
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Table A.1. CBPKix/Kix gene expression experimental groups. 

Group Name Genotype 
ZT time RNA 
isolation 

Manipulation 
Biological 
replicates (n) 

Wildtype  
home-cage Wildtype ZT 3.5 – ZT 4 Undisturbed N = 4 

CBPKix/Kix  
home-cage CBPKix/Kix ZT 3.5 – ZT 4 Undisturbed N = 4 

Wildtype fear 
conditioned Wildtype ZT 3.5 – ZT 4 

Fear 
conditioning 

(ZT 3 – ZT 3.5) 
N = 4 

CBPKix/Kix fear 
conditioned CBPKix/Kix ZT 3.5 – ZT 4 

Fear 
conditioning 

(ZT 3 – ZT 3.5) 
N = 4 
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Table A.2. Home-cage RNA-seq downregulated genes in CBPKix/Kix mice. 

GeneID Gene name logFC logCPM LR PValue FDR 

ENSMUSG00000032572 Col6a4 -2.598 2.733 237.135 1.66E-53 2.93E-49 

ENSMUSG00000036972 Zic4 -1.181 3.254 107.659 3.19E-25 2.82E-21 

ENSMUSG00000032368 Zic1 -1.218 4.838 90.978 1.45E-21 8.55E-18 

ENSMUSG00000024899 Papss2 -1.041 3.930 74.218 6.99E-18 3.09E-14 

ENSMUSG00000040740 Slc25a34 -1.160 1.773 64.122 1.17E-15 4.13E-12 

ENSMUSG00000111971 AC158232.1 -2.074 0.349 46.999 7.10E-12 1.57E-08 

ENSMUSG00000048126 Col6a3 -0.875 3.846 43.591 4.05E-11 7.94E-08 

ENSMUSG00000019966 Kitl -0.658 4.535 39.644 3.05E-10 5.38E-07 

ENSMUSG00000009376 Met -0.807 2.546 39.044 4.14E-10 6.65E-07 

ENSMUSG00000068696 Gpr88 -1.777 3.071 38.371 5.85E-10 8.61E-07 

ENSMUSG00000059824 Dbp -0.526 5.216 36.382 1.62E-09 2.20E-06 

ENSMUSG00000061524 Zic2 -0.608 3.912 29.086 6.92E-08 7.64E-05 

ENSMUSG00000033007 Asic4 -0.550 3.071 27.463 1.60E-07 1.66E-04 

ENSMUSG00000021765 Fst -1.055 0.467 27.237 1.80E-07 1.77E-04 

ENSMUSG00000068874 Selenbp1 -0.529 3.203 26.765 2.30E-07 2.13E-04 

ENSMUSG00000023084 Lrrc71 -0.863 1.229 25.978 3.45E-07 2.54E-04 

ENSMUSG00000038115 Ano2 -0.998 2.654 26.037 3.35E-07 2.54E-04 

ENSMUSG00000021032 Ngb -1.111 1.819 24.724 6.62E-07 4.29E-04 

ENSMUSG00000002324 Rec8 -0.771 1.946 24.134 8.99E-07 5.47E-04 

ENSMUSG00000049892 Rasd1 -0.564 5.150 23.924 1.00E-06 5.90E-04 

ENSMUSG00000043439 Epop -0.867 4.454 23.640 1.16E-06 6.62E-04 

ENSMUSG00000040373 Cacng5 -0.620 3.741 23.323 1.37E-06 7.56E-04 

ENSMUSG00000052221 Ppp1r36 -0.791 1.069 22.984 1.63E-06 8.74E-04 

ENSMUSG00000027716 Trpc3 -0.506 2.993 22.851 1.75E-06 9.09E-04 

ENSMUSG00000051000 Fam160a1 -0.735 3.165 22.627 1.97E-06 9.92E-04 

ENSMUSG00000036578 Fxyd7 -0.421 4.982 21.866 2.92E-06 1.36E-03 

ENSMUSG00000028463 Car9 -1.034 0.253 21.803 3.02E-06 1.37E-03 

ENSMUSG00000087075 A230065H16Rik -1.562 1.138 21.239 4.06E-06 1.75E-03 

ENSMUSG00000039021 Ttc16 -0.681 1.411 20.743 5.25E-06 2.21E-03 

ENSMUSG00000026874 Hc -1.079 -0.135 20.345 6.47E-06 2.60E-03 

ENSMUSG00000043164 Tmem212 -0.626 1.848 20.339 6.48E-06 2.60E-03 

ENSMUSG00000021238 Aldh6a1 -0.343 6.174 20.204 6.96E-06 2.73E-03 

ENSMUSG00000031636 Pdlim3 -0.940 0.244 20.123 7.26E-06 2.79E-03 

ENSMUSG00000065922 n-R5-8s1 -3.871 3.828 20.068 7.48E-06 2.81E-03 

ENSMUSG00000058135 Gstm1 -0.425 7.347 19.862 8.32E-06 3.00E-03 
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ENSMUSG00000029334 Prkg2 -0.582 2.210 19.491 1.01E-05 3.43E-03 

ENSMUSG00000090737 Gm6788 -1.443 -0.440 19.308 1.11E-05 3.71E-03 

ENSMUSG00000028339 Col15a1 -0.498 3.145 19.053 1.27E-05 4.16E-03 

ENSMUSG00000029155 Spata18 -0.865 0.540 18.984 1.32E-05 4.23E-03 

ENSMUSG00000106827 Gm7556 -0.937 0.319 18.924 1.36E-05 4.29E-03 

ENSMUSG00000024292 Cyp4f14 -0.439 3.113 18.501 1.70E-05 5.24E-03 

ENSMUSG00000038550 Ciart -0.467 3.089 18.475 1.72E-05 5.24E-03 

ENSMUSG00000102260 D330025C20Rik -0.853 0.694 18.427 1.77E-05 5.28E-03 

ENSMUSG00000084890 A830036E02Rik -0.518 4.306 18.129 2.06E-05 5.98E-03 

ENSMUSG00000032303 Chrna3 -1.434 0.045 18.096 2.10E-05 5.98E-03 

ENSMUSG00000029917 C130060K24Rik -1.280 -0.294 17.944 2.28E-05 6.09E-03 

ENSMUSG00000082778 Gm15191 -1.361 -0.231 17.970 2.24E-05 6.09E-03 

ENSMUSG00000084989 Crocc2 -0.663 2.428 17.967 2.25E-05 6.09E-03 

ENSMUSG00000039179 Tekt5 -0.537 2.783 17.727 2.55E-05 6.72E-03 

ENSMUSG00000070867 Trabd2b -0.650 1.343 17.379 3.06E-05 7.63E-03 

ENSMUSG00000083116 Gm13410 -0.836 0.462 17.375 3.07E-05 7.63E-03 

ENSMUSG00000069911 Fam196b -0.827 0.820 17.013 3.71E-05 8.86E-03 

ENSMUSG00000026347 Tmem163 -0.420 3.314 16.978 3.78E-05 8.90E-03 

ENSMUSG00000055653 Gpc3 -0.494 2.554 16.919 3.90E-05 9.06E-03 

ENSMUSG00000035783 Acta2 -0.506 4.237 16.694 4.39E-05 1.01E-02 

ENSMUSG00000021775 Nr1d2 -0.382 6.418 16.582 4.66E-05 1.02E-02 

ENSMUSG00000079466 Prdm12 -1.158 -0.200 16.544 4.75E-05 1.02E-02 

ENSMUSG00000092837 Rpph1 -2.723 1.423 16.638 4.52E-05 1.02E-02 

ENSMUSG00000096780 Tmem181b-ps -0.535 5.831 16.571 4.69E-05 1.02E-02 

ENSMUSG00000042816 Gpr151 -1.047 1.320 16.445 5.01E-05 1.07E-02 

ENSMUSG00000024027 Glp1r -0.764 1.044 16.293 5.43E-05 1.14E-02 

ENSMUSG00000009097 Tbx1 -0.922 0.804 16.233 5.60E-05 1.16E-02 

ENSMUSG00000038756 Ttll6 -0.699 1.189 16.175 5.77E-05 1.17E-02 

ENSMUSG00000068877 Selenbp2 -0.773 0.511 16.175 5.77E-05 1.17E-02 

ENSMUSG00000025784 Clec3b -0.671 1.114 16.135 5.90E-05 1.18E-02 

ENSMUSG00000037003 Tns2 -0.368 4.604 15.998 6.34E-05 1.25E-02 

ENSMUSG00000064280 Ccdc146 -0.648 1.153 15.996 6.35E-05 1.25E-02 

ENSMUSG00000055214 Pld5 -0.665 2.072 15.937 6.55E-05 1.27E-02 

ENSMUSG00000005994 Tyrp1 -1.322 -1.042 15.847 6.87E-05 1.30E-02 

ENSMUSG00000044772 Sntn -0.931 -0.028 15.695 7.44E-05 1.37E-02 

ENSMUSG00000022025 Cnmd -1.006 1.313 15.605 7.80E-05 1.41E-02 

ENSMUSG00000062372 Otof -0.598 3.268 15.554 8.02E-05 1.42E-02 

ENSMUSG00000035775 Krt20 -0.704 0.711 15.523 8.15E-05 1.43E-02 
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ENSMUSG00000056947 Mab21l1 -2.215 -0.621 15.450 8.47E-05 1.47E-02 

ENSMUSG00000039349 C130074G19Rik -0.427 4.447 15.129 1.00E-04 1.67E-02 

ENSMUSG00000031075 Ano1 -0.494 2.887 15.027 1.06E-04 1.68E-02 

ENSMUSG00000032394 Igdcc3 -0.562 1.592 15.048 1.05E-04 1.68E-02 

ENSMUSG00000056972 Magel2 -0.683 2.273 14.686 1.27E-04 1.90E-02 

ENSMUSG00000041703 Zic5 -0.517 2.517 14.619 1.32E-04 1.95E-02 

ENSMUSG00000023064 Sncg -0.514 2.060 14.528 1.38E-04 2.03E-02 

ENSMUSG00000029177 Cenpa -0.667 0.860 14.355 1.51E-04 2.15E-02 

ENSMUSG00000041596 Nlrp5-ps -1.001 -0.221 14.319 1.54E-04 2.16E-02 

ENSMUSG00000021943 Gdf10 -0.392 3.738 14.245 1.61E-04 2.23E-02 

ENSMUSG00000023267 Gabrr2 -0.836 -0.032 14.127 1.71E-04 2.36E-02 

ENSMUSG00000041849 Card6 -0.487 2.124 13.948 1.88E-04 2.55E-02 

ENSMUSG00000073424 Cyp4f15 -0.396 3.768 13.814 2.02E-04 2.64E-02 

ENSMUSG00000026525 Opn3 -0.878 -0.108 13.792 2.04E-04 2.65E-02 

ENSMUSG00000028011 Tdo2 -0.734 2.886 13.678 2.17E-04 2.80E-02 

ENSMUSG00000082876 Gm11889 -0.610 1.050 13.659 2.19E-04 2.80E-02 

ENSMUSG00000004328 Hif3a -0.774 2.187 13.623 2.23E-04 2.84E-02 

ENSMUSG00000023868 Pde10a -0.322 6.294 13.594 2.27E-04 2.84E-02 

ENSMUSG00000028661 Epha8 -0.738 1.949 13.576 2.29E-04 2.84E-02 

ENSMUSG00000066058 Cldn19 -0.889 -0.123 13.568 2.30E-04 2.84E-02 

ENSMUSG00000031789 Cngb1 -1.098 -0.376 13.545 2.33E-04 2.86E-02 

ENSMUSG00000029754 Dlx6 -0.518 2.045 13.373 2.55E-04 3.09E-02 

ENSMUSG00000093460 Six3os1 -0.938 0.442 13.330 2.61E-04 3.11E-02 

ENSMUSG00000063704 Mapk15 -0.476 2.261 13.278 2.69E-04 3.16E-02 

ENSMUSG00000090523 Gypc -0.656 0.891 13.188 2.82E-04 3.29E-02 

ENSMUSG00000018830 Myh11 -0.378 3.882 13.157 2.87E-04 3.31E-02 

ENSMUSG00000024810 Il33 -0.270 5.983 13.133 2.90E-04 3.33E-02 

ENSMUSG00000028971 Cort -0.576 2.418 13.051 3.03E-04 3.43E-02 

ENSMUSG00000078776 9530053A07Rik -0.994 -0.546 13.053 3.03E-04 3.43E-02 

ENSMUSG00000047139 Cd24a -0.429 3.595 13.031 3.06E-04 3.45E-02 

ENSMUSG00000022441 Efcab6 -0.415 3.311 12.944 3.21E-04 3.56E-02 

ENSMUSG00000078958 Atp6ap1l -0.788 0.643 12.950 3.20E-04 3.56E-02 

ENSMUSG00000050157 Gm867 -0.617 1.071 12.896 3.29E-04 3.63E-02 

ENSMUSG00000020889 Nr1d1 -0.401 6.255 12.828 3.41E-04 3.72E-02 

ENSMUSG00000039634 Zfp189 -0.377 3.319 12.727 3.60E-04 3.86E-02 

ENSMUSG00000048416 Mlf1 -0.650 0.890 12.740 3.58E-04 3.86E-02 

ENSMUSG00000093880 Tmem181c-ps -0.549 1.446 12.725 3.61E-04 3.86E-02 

ENSMUSG00000067860 Zic3 -0.513 2.093 12.706 3.64E-04 3.86E-02 
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ENSMUSG00000020904 Cfap52 -0.606 1.458 12.687 3.68E-04 3.86E-02 

ENSMUSG00000031927 1700012B09Rik -0.862 -0.048 12.680 3.70E-04 3.86E-02 

ENSMUSG00000021303 Gng4 -0.521 4.886 12.624 3.81E-04 3.92E-02 

ENSMUSG00000030125 Lrrc23 -0.466 2.620 12.618 3.82E-04 3.92E-02 

ENSMUSG00000041798 Gck -0.689 1.434 12.341 4.43E-04 4.41E-02 

ENSMUSG00000059854 Hydin -0.572 2.122 12.335 4.45E-04 4.41E-02 

ENSMUSG00000015882 Lcorl -0.322 3.755 12.254 4.64E-04 4.58E-02 

ENSMUSG00000040016 Ptger3 -0.612 1.014 12.231 4.70E-04 4.59E-02 

ENSMUSG00000075020 Mir670hg -0.478 1.968 12.225 4.71E-04 4.59E-02 

ENSMUSG00000044072 Eml6 -0.299 5.080 12.173 4.85E-04 4.68E-02 

ENSMUSG00000070306 Ccdc153 -0.465 2.694 12.149 4.91E-04 4.71E-02 

ENSMUSG00000041741 Pde3a -0.433 2.555 12.133 4.95E-04 4.73E-02 

ENSMUSG00000030109 Slc6a12 -0.669 0.911 12.096 5.05E-04 4.79E-02 

ENSMUSG00000047686 Zcchc5 -1.421 2.107 12.089 5.07E-04 4.79E-02 

ENSMUSG00000022262 Dnah5 -0.387 2.585 12.022 5.26E-04 4.94E-02 

ENSMUSG00000051910 Sox6 -0.298 4.107 12.005 5.31E-04 4.96E-02 
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Table A.3. Home-cage RNA-seq upregulated genes in CBPKix/Kix mice. 

GeneID Gene name logFC logCPM LR PValue FDR 

ENSMUSG00000003545 Fosb 0.937 4.135 55.313 1.03E-13 3.03E-10 

ENSMUSG00000073418 C4b 0.551 6.449 51.465 7.29E-13 1.84E-09 

ENSMUSG00000060735 Rxfp3 0.574 3.191 33.891 5.83E-09 7.35E-06 

ENSMUSG00000020846 Rflnb 0.495 4.145 30.876 2.75E-08 3.24E-05 

ENSMUSG00000028076 Cd1d1 0.897 0.876 26.438 2.72E-07 2.40E-04 

ENSMUSG00000029032 Arhgef16 1.151 -0.585 26.020 3.38E-07 2.54E-04 

ENSMUSG00000032128 Robo3 0.447 6.388 26.165 3.13E-07 2.54E-04 

ENSMUSG00000026043 Col3a1 0.922 2.783 25.152 5.30E-07 3.74E-04 

ENSMUSG00000020932 Gfap 0.504 9.378 24.672 6.80E-07 4.29E-04 

ENSMUSG00000045573 Penk 1.409 6.287 24.766 6.47E-07 4.29E-04 

ENSMUSG00000038173 Enpp6 0.637 3.359 22.519 2.08E-06 1.02E-03 

ENSMUSG00000037071 Scd1 0.367 7.828 22.172 2.49E-06 1.19E-03 

ENSMUSG00000026205 Slc23a3 1.206 -0.622 21.394 3.74E-06 1.65E-03 

ENSMUSG00000023918 Adgrf4 0.545 2.232 19.977 7.84E-06 2.88E-03 

ENSMUSG00000037868 Egr2 1.075 1.955 19.797 8.61E-06 3.04E-03 

ENSMUSG00000032500 Dclk3 0.392 4.530 19.565 9.72E-06 3.37E-03 

ENSMUSG00000085235 Gm12576 0.962 -0.569 18.276 1.91E-05 5.62E-03 

ENSMUSG00000034855 Cxcl10 1.165 -1.030 18.014 2.19E-05 6.09E-03 

ENSMUSG00000030713 Klk7 0.954 -0.434 17.688 2.60E-05 6.76E-03 

ENSMUSG00000025572 Tmc6 0.831 3.791 17.635 2.68E-05 6.85E-03 

ENSMUSG00000056749 Nfil3 0.393 3.497 17.347 3.11E-05 7.64E-03 

ENSMUSG00000054944 5330416C01Rik 1.009 -0.364 17.293 3.20E-05 7.75E-03 

ENSMUSG00000053560 Ier2 0.499 2.531 16.560 4.71E-05 1.02E-02 

ENSMUSG00000048191 Muc6 0.672 0.676 15.859 6.83E-05 1.30E-02 

ENSMUSG00000046718 Bst2 0.494 2.024 15.795 7.06E-05 1.33E-02 

ENSMUSG00000013766 Ly6g6e 0.537 1.792 15.741 7.26E-05 1.35E-02 

ENSMUSG00000061808 Ttr 2.633 9.557 15.671 7.54E-05 1.37E-02 

ENSMUSG00000099440 Gm29593 1.244 -1.585 15.572 7.94E-05 1.42E-02 

ENSMUSG00000027315 Spint1 0.533 1.638 15.412 8.64E-05 1.48E-02 

ENSMUSG00000032487 Ptgs2 0.790 6.061 15.255 9.39E-05 1.59E-02 

ENSMUSG00000050201 Otop2 0.999 -0.730 15.214 9.60E-05 1.61E-02 

ENSMUSG00000000730 Dnmt3l 1.032 -0.960 15.113 1.01E-04 1.67E-02 

ENSMUSG00000039405 Prss23 0.534 4.110 15.090 1.03E-04 1.68E-02 

ENSMUSG00000000216 Scnn1g 1.201 -1.431 14.987 1.08E-04 1.68E-02 

ENSMUSG00000046207 Pik3r6 0.534 1.752 15.010 1.07E-04 1.68E-02 
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ENSMUSG00000055415 Atp10b 0.544 1.467 14.991 1.08E-04 1.68E-02 

ENSMUSG00000061132 Blnk 0.471 2.698 15.018 1.06E-04 1.68E-02 

ENSMUSG00000024907 Gal 0.952 -0.197 14.845 1.17E-04 1.79E-02 

ENSMUSG00000005958 Ephb3 0.328 4.608 14.815 1.19E-04 1.80E-02 

ENSMUSG00000022324 Matn2 0.268 6.563 14.718 1.25E-04 1.88E-02 

ENSMUSG00000072720 Myo18b 0.505 1.783 14.495 1.41E-04 2.05E-02 

ENSMUSG00000001025 S100a6 0.377 3.464 14.429 1.46E-04 2.11E-02 

ENSMUSG00000026312 Cdh7 0.448 3.072 14.411 1.47E-04 2.11E-02 

ENSMUSG00000063632 Sox11 0.375 4.377 14.340 1.53E-04 2.15E-02 

ENSMUSG00000031557 Plekha2 0.448 5.612 13.992 1.84E-04 2.51E-02 

ENSMUSG00000075334 Rprm 0.762 5.526 13.932 1.90E-04 2.55E-02 

ENSMUSG00000032332 Col12a1 0.473 3.520 13.883 1.95E-04 2.60E-02 

ENSMUSG00000037686 Aspg 0.631 2.534 13.869 1.96E-04 2.60E-02 

ENSMUSG00000054966 Lmntd1 0.799 -0.294 13.843 1.99E-04 2.62E-02 

ENSMUSG00000057440 Mpp7 0.480 2.163 13.597 2.26E-04 2.84E-02 

ENSMUSG00000028602 Tnfrsf8 0.612 0.958 13.488 2.40E-04 2.92E-02 

ENSMUSG00000007080 Pole 0.524 1.454 13.346 2.59E-04 3.11E-02 

ENSMUSG00000019960 Dusp6 0.316 6.000 13.318 2.63E-04 3.11E-02 

ENSMUSG00000030270 Cpne9 0.462 4.751 13.174 2.84E-04 3.30E-02 

ENSMUSG00000056596 Trnp1 0.341 7.270 12.885 3.31E-04 3.63E-02 

ENSMUSG00000009214 Tmem8c 0.931 -1.063 12.703 3.65E-04 3.86E-02 

ENSMUSG00000036907 C1ql2 0.367 6.797 12.658 3.74E-04 3.88E-02 

ENSMUSG00000026630 Batf3 0.783 -0.034 12.478 4.12E-04 4.20E-02 

ENSMUSG00000020847 Rph3al 0.384 2.504 12.445 4.19E-04 4.25E-02 

ENSMUSG00000028749 Pla2g2f 0.480 2.036 12.435 4.21E-04 4.25E-02 

ENSMUSG00000031170 Slc38a5 0.888 2.716 12.417 4.26E-04 4.27E-02 

ENSMUSG00000041695 Kcnj2 0.494 4.347 12.219 4.73E-04 4.59E-02 
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Table A.4. Fear conditioned RNA-seq downregulated genes in CBPKix/Kix mice. 

GeneID Gene name logFC logCPM LR PValue FDR 

ENSMUSG00000048108 Tmem72 -2.425 3.771 327.830 2.85E-73 4.90E-69 

ENSMUSG00000024899 Papss2 -1.187 3.807 300.888 2.11E-67 1.81E-63 

ENSMUSG00000004655 Aqp1 -1.604 3.665 194.417 3.45E-44 1.98E-40 

ENSMUSG00000079436 Kcnj13 -2.168 2.597 144.245 3.14E-33 1.35E-29 

ENSMUSG00000032572 Col6a4 -1.422 2.780 134.162 5.04E-31 1.73E-27 

ENSMUSG00000059824 Dbp -0.481 5.463 113.149 2.00E-26 5.73E-23 

ENSMUSG00000059991 Nptx2 -0.589 4.845 100.171 1.40E-23 3.43E-20 

ENSMUSG00000037086 Prr32 -2.069 1.919 95.558 1.44E-22 3.08E-19 

ENSMUSG00000021250 Fos -0.511 4.872 76.964 1.74E-18 3.32E-15 

ENSMUSG00000052837 Junb -0.349 6.315 73.032 1.28E-17 2.19E-14 

ENSMUSG00000015652 Steap1 -1.391 1.885 63.544 1.57E-15 2.34E-12 

ENSMUSG00000040740 Slc25a34 -1.086 1.591 63.459 1.64E-15 2.34E-12 

ENSMUSG00000055235 Wdr86 -1.186 2.404 62.556 2.59E-15 3.42E-12 

ENSMUSG00000014158 Trpv4 -0.755 3.220 61.008 5.68E-15 6.51E-12 

ENSMUSG00000043439 Epop -0.436 4.828 61.056 5.55E-15 6.51E-12 

ENSMUSG00000016024 Lbp -0.665 3.914 58.536 2.00E-14 2.02E-11 

ENSMUSG00000056174 Col8a2 -0.650 3.486 58.641 1.89E-14 2.02E-11 

ENSMUSG00000028125 Abca4 -0.625 3.863 58.161 2.42E-14 2.31E-11 

ENSMUSG00000020893 Per1 -0.288 6.775 55.374 9.97E-14 9.01E-11 

ENSMUSG00000027489 Necab3 -0.528 4.296 55.198 1.09E-13 9.37E-11 

ENSMUSG00000023034 Nr4a1 -0.283 6.726 54.806 1.33E-13 1.09E-10 

ENSMUSG00000058135 Gstm1 -0.344 7.380 54.665 1.43E-13 1.12E-10 

ENSMUSG00000021680 Crhbp -0.453 5.001 53.190 3.03E-13 2.14E-10 

ENSMUSG00000024810 Il33 -0.313 6.045 51.794 6.16E-13 4.07E-10 

ENSMUSG00000038550 Ciart -0.548 3.424 51.327 7.82E-13 4.98E-10 

ENSMUSG00000020889 Nr1d1 -0.295 6.397 49.566 1.92E-12 1.14E-09 

ENSMUSG00000111971 AC158232.1 -1.970 -0.123 49.336 2.16E-12 1.24E-09 

ENSMUSG00000068323 Slc4a5 -1.613 3.873 47.976 4.31E-12 2.39E-09 

ENSMUSG00000029135 Fosl2 -0.348 5.924 47.814 4.69E-12 2.52E-09 

ENSMUSG00000026051 1500015O10Rik -0.877 4.182 47.712 4.94E-12 2.57E-09 

ENSMUSG00000072845 Tmprss11a -2.098 0.724 46.545 8.95E-12 4.39E-09 

ENSMUSG00000047230 Cldn2 -1.085 3.068 44.512 2.53E-11 1.21E-08 

ENSMUSG00000001827 Folr1 -1.071 3.822 42.362 7.59E-11 3.52E-08 

ENSMUSG00000039179 Tekt5 -0.602 2.690 41.912 9.55E-11 4.32E-08 

ENSMUSG00000017493 Igfbp4 -0.255 6.129 41.573 1.14E-10 5.00E-08 
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ENSMUSG00000050121 Opalin -0.331 4.817 41.270 1.33E-10 5.56E-08 

ENSMUSG00000057880 Abat -0.183 8.073 41.279 1.32E-10 5.56E-08 

ENSMUSG00000020681 Ace -0.598 5.472 40.806 1.68E-10 6.88E-08 

ENSMUSG00000029055 Plch2 -0.201 7.550 40.585 1.88E-10 7.52E-08 

ENSMUSG00000012819 Cdh23 -0.906 1.471 39.632 3.07E-10 1.17E-07 

ENSMUSG00000024190 Dusp1 -0.427 4.624 38.692 4.96E-10 1.85E-07 

ENSMUSG00000107369 Gstm2-ps1 -0.434 3.705 38.636 5.11E-10 1.87E-07 

ENSMUSG00000021238 Aldh6a1 -0.229 6.233 37.506 9.11E-10 3.26E-07 

ENSMUSG00000030450 Oca2 -1.281 1.200 37.405 9.60E-10 3.37E-07 

ENSMUSG00000017723 Wfdc2 -1.276 1.262 36.743 1.35E-09 4.63E-07 

ENSMUSG00000004366 Sst -0.228 7.569 36.689 1.39E-09 4.67E-07 

ENSMUSG00000015312 Gadd45b -0.396 3.828 35.807 2.18E-09 7.06E-07 

ENSMUSG00000010080 Epn3 -0.629 2.677 35.233 2.93E-09 9.31E-07 

ENSMUSG00000037490 Slc2a12 -0.514 3.656 34.846 3.57E-09 1.10E-06 

ENSMUSG00000039672 Kcne2 -1.314 3.390 33.414 7.45E-09 2.21E-06 

ENSMUSG00000022237 Ankrd33b -0.233 6.440 32.734 1.06E-08 3.03E-06 

ENSMUSG00000028957 Per3 -0.262 5.831 32.739 1.05E-08 3.03E-06 

ENSMUSG00000024039 Cbs -0.266 5.164 32.642 1.11E-08 3.12E-06 

ENSMUSG00000020423 Btg2 -0.370 5.019 32.448 1.22E-08 3.39E-06 

ENSMUSG00000022505 Emp2 -0.401 4.519 32.205 1.39E-08 3.78E-06 

ENSMUSG00000026826 Nr4a2 -0.367 6.262 32.153 1.42E-08 3.82E-06 

ENSMUSG00000044177 Wfikkn2 -0.991 1.860 31.868 1.65E-08 4.36E-06 

ENSMUSG00000032515 Csrnp1 -0.415 3.530 31.036 2.53E-08 6.50E-06 

ENSMUSG00000039457 Ppl -0.504 2.800 30.863 2.77E-08 7.00E-06 

ENSMUSG00000013523 Bcas1 -0.218 7.020 29.544 5.47E-08 1.32E-05 

ENSMUSG00000055866 Per2 -0.304 5.605 29.227 6.44E-08 1.52E-05 

ENSMUSG00000026579 F5 -1.209 4.431 28.553 9.12E-08 2.06E-05 

ENSMUSG00000021587 Pcsk1 -0.366 3.796 28.197 1.10E-07 2.45E-05 

ENSMUSG00000030088 Aldh1l1 -0.252 5.580 27.796 1.35E-07 2.93E-05 

ENSMUSG00000057969 Sema3b -0.529 3.135 27.746 1.38E-07 2.97E-05 

ENSMUSG00000032355 Mlip -0.285 4.880 27.588 1.50E-07 3.18E-05 

ENSMUSG00000038375 Trp53inp2 -0.192 7.478 27.522 1.55E-07 3.25E-05 

ENSMUSG00000032246 Calml4 -0.592 2.613 27.248 1.79E-07 3.70E-05 

ENSMUSG00000022197 Pdzd2 -0.309 5.840 26.829 2.22E-07 4.55E-05 

ENSMUSG00000024292 Cyp4f14 -0.444 3.013 26.716 2.36E-07 4.77E-05 

ENSMUSG00000022512 Cldn1 -0.802 2.409 26.682 2.40E-07 4.79E-05 

ENSMUSG00000003477 Inmt -0.914 1.002 26.614 2.48E-07 4.81E-05 

ENSMUSG00000020932 Gfap -0.233 8.460 26.631 2.46E-07 4.81E-05 
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ENSMUSG00000052632 Asap2 -0.208 5.813 26.609 2.49E-07 4.81E-05 

ENSMUSG00000005268 Prlr -0.486 3.925 26.490 2.65E-07 5.06E-05 

ENSMUSG00000091415 Ak9 -0.886 0.775 26.312 2.90E-07 5.48E-05 

ENSMUSG00000027858 Tspan2 -0.234 7.008 26.161 3.14E-07 5.83E-05 

ENSMUSG00000109372 Gm19410 -0.324 4.261 26.154 3.15E-07 5.83E-05 

ENSMUSG00000031786 Drc7 -0.423 3.733 25.811 3.77E-07 6.88E-05 

ENSMUSG00000015002 Efr3a -0.196 7.482 25.773 3.84E-07 6.94E-05 

ENSMUSG00000029822 Osbpl3 -0.308 4.783 25.535 4.34E-07 7.77E-05 

ENSMUSG00000037428 Vgf -0.223 7.252 25.154 5.29E-07 9.38E-05 

ENSMUSG00000028328 Tmod1 -0.269 4.729 24.930 5.94E-07 0.000104 

ENSMUSG00000037868 Egr2 -0.458 2.733 24.638 6.92E-07 0.00012 

ENSMUSG00000025212 Sfxn3 -0.164 6.734 24.578 7.14E-07 0.000123 

ENSMUSG00000043671 Dpy19l3 -0.225 5.906 24.555 7.22E-07 0.000123 

ENSMUSG00000022090 Pdlim2 -0.376 3.440 24.528 7.32E-07 0.000123 

ENSMUSG00000023043 Krt18 -0.786 1.956 24.468 7.55E-07 0.000126 

ENSMUSG00000027570 Col9a3 -0.395 5.504 24.133 8.99E-07 0.000149 

ENSMUSG00000022054 Nefm -0.169 7.299 23.965 9.81E-07 0.000161 

ENSMUSG00000023019 Gpd1 -0.166 6.886 23.773 1.08E-06 0.000175 

ENSMUSG00000066129 Kndc1 -0.150 7.612 23.749 1.10E-06 0.000175 

ENSMUSG00000031883 Car7 -0.309 4.647 23.717 1.12E-06 0.000176 

ENSMUSG00000041642 Kif21b -0.210 6.971 22.972 1.64E-06 0.00025 

ENSMUSG00000021091 Serpina3n -0.269 5.707 22.776 1.82E-06 0.00027 

ENSMUSG00000068874 Selenbp1 -0.390 3.233 22.773 1.82E-06 0.00027 

ENSMUSG00000085609 1700016P03Rik -0.432 2.697 22.612 1.98E-06 0.000291 

ENSMUSG00000016494 Cd34 -0.207 5.609 22.594 2.00E-06 0.000291 

ENSMUSG00000020486 Sept4 -0.186 7.614 22.541 2.06E-06 0.000297 

ENSMUSG00000025911 Adhfe1 -0.286 4.283 22.363 2.26E-06 0.000323 

ENSMUSG00000062591 Tubb4a -0.119 9.437 22.337 2.29E-06 0.000325 

ENSMUSG00000020473 Aebp1 -0.314 3.941 22.148 2.52E-06 0.000351 

ENSMUSG00000022797 Tfrc -0.172 6.982 22.143 2.53E-06 0.000351 

ENSMUSG00000061048 Cdh3 -1.493 0.424 21.801 3.02E-06 0.000416 

ENSMUSG00000017868 Sgk2 -0.819 0.875 21.777 3.06E-06 0.000418 

ENSMUSG00000026841 Fibcd1 -0.226 7.392 21.730 3.14E-06 0.000423 

ENSMUSG00000034739 Mfrp -1.410 3.963 21.706 3.18E-06 0.000423 

ENSMUSG00000054986 Sec14l3 -0.718 1.084 21.713 3.17E-06 0.000423 

ENSMUSG00000022441 Efcab6 -0.390 3.145 21.571 3.41E-06 0.000451 

ENSMUSG00000041708 Mpped1 -0.243 7.770 21.540 3.47E-06 0.000455 

ENSMUSG00000001467 Cyp51 -0.188 5.975 21.511 3.52E-06 0.000458 
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ENSMUSG00000042608 Stk40 -0.225 5.183 21.495 3.55E-06 0.000458 

ENSMUSG00000059898 Dsc3 -0.659 1.396 21.422 3.69E-06 0.000473 

ENSMUSG00000022032 Scara5 -0.954 0.824 21.357 3.81E-06 0.000485 

ENSMUSG00000022893 Adamts1 -0.262 4.926 21.214 4.11E-06 0.000511 

ENSMUSG00000028179 Cth -0.595 1.664 20.993 4.61E-06 0.000569 

ENSMUSG00000030342 Cd9 -0.236 5.299 20.983 4.63E-06 0.000569 

ENSMUSG00000033595 Lgi3 -0.162 7.231 20.939 4.74E-06 0.000574 

ENSMUSG00000045294 Insig1 -0.259 6.197 20.877 4.90E-06 0.000584 

ENSMUSG00000026204 Ptprn -0.132 9.159 20.854 4.96E-06 0.000587 

ENSMUSG00000064246 Chil1 -0.389 2.951 20.701 5.37E-06 0.000632 

ENSMUSG00000021182 Ccdc88c -0.189 5.651 20.250 6.80E-06 0.000789 

ENSMUSG00000108126 Gm43909 -0.767 0.830 19.964 7.89E-06 0.000904 

ENSMUSG00000017400 Stac2 -0.210 6.412 19.950 7.95E-06 0.000905 

ENSMUSG00000063558 Aox1 -0.342 3.508 19.834 8.45E-06 0.000955 

ENSMUSG00000048038 Ccdc187 -0.354 3.258 19.630 9.40E-06 0.001056 

ENSMUSG00000015806 Qdpr -0.148 7.115 19.558 9.76E-06 0.001089 

ENSMUSG00000063434 Sorcs3 -0.225 5.791 19.452 1.03E-05 0.001143 

ENSMUSG00000004105 Angptl2 -0.466 2.535 19.172 1.19E-05 0.001283 

ENSMUSG00000021848 Otx2 -0.630 3.136 19.185 1.19E-05 0.001283 

ENSMUSG00000023805 Synj2 -0.154 6.553 19.182 1.19E-05 0.001283 

ENSMUSG00000038457 Tmem255b -0.640 1.357 19.086 1.25E-05 0.001333 

ENSMUSG00000040836 Gpr161 -0.222 6.300 19.071 1.26E-05 0.001336 

ENSMUSG00000019970 Sgk1 -0.189 6.343 19.035 1.28E-05 0.001353 

ENSMUSG00000042489 Clspn -0.685 1.077 18.955 1.34E-05 0.001385 

ENSMUSG00000067879 3110035E14Rik -0.233 7.667 18.932 1.35E-05 0.001394 

ENSMUSG00000025855 Prkar1b -0.103 9.193 18.900 1.38E-05 0.001409 

ENSMUSG00000003518 Dusp3 -0.142 6.856 18.603 1.61E-05 0.001617 

ENSMUSG00000039202 Abhd2 -0.160 6.850 18.525 1.68E-05 0.001675 

ENSMUSG00000031351 Zfp185 -0.388 2.880 18.464 1.73E-05 0.00172 

ENSMUSG00000027894 Slc6a17 -0.112 9.118 18.353 1.84E-05 0.001812 

ENSMUSG00000020604 Arsg -0.210 5.058 18.256 1.93E-05 0.001896 

ENSMUSG00000039633 Lonrf1 -0.208 5.098 18.205 1.98E-05 0.001925 

ENSMUSG00000031425 Plp1 -0.126 10.695 18.159 2.03E-05 0.001962 

ENSMUSG00000026418 Tnni1 -0.479 2.101 18.142 2.05E-05 0.001968 

ENSMUSG00000079056 Kcnip3 -0.215 6.610 18.123 2.07E-05 0.001976 

ENSMUSG00000070780 Rbm47 -0.780 1.267 18.045 2.16E-05 0.002048 

ENSMUSG00000042589 Cux2 -0.238 4.993 17.968 2.25E-05 0.002109 

ENSMUSG00000025981 Coq10b -0.298 4.172 17.810 2.44E-05 0.002267 
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ENSMUSG00000027520 Zdbf2 -0.272 3.982 17.794 2.46E-05 0.002274 

ENSMUSG00000001435 Col18a1 -0.346 3.182 17.727 2.55E-05 0.002343 

ENSMUSG00000044229 Nxpe4 -0.278 4.141 17.696 2.59E-05 0.002369 

ENSMUSG00000051067 Lingo3 -0.225 5.477 17.656 2.65E-05 0.002407 

ENSMUSG00000030123 Plxnd1 -0.203 5.336 17.535 2.82E-05 0.002498 

ENSMUSG00000033316 Galnt9 -0.165 6.764 17.547 2.80E-05 0.002498 

ENSMUSG00000054889 Dsp -0.188 5.613 17.538 2.82E-05 0.002498 

ENSMUSG00000036169 Sostdc1 -0.767 3.839 17.518 2.85E-05 0.002508 

ENSMUSG00000024597 Slc12a2 -0.187 6.361 17.374 3.07E-05 0.002664 

ENSMUSG00000065922 n-R5-8s1 -2.246 4.550 17.379 3.06E-05 0.002664 

ENSMUSG00000037992 Rara -0.297 3.922 17.354 3.10E-05 0.002666 

ENSMUSG00000042453 Reln -0.179 6.111 17.357 3.10E-05 0.002666 

ENSMUSG00000027375 Mal -0.158 7.749 17.268 3.25E-05 0.002775 

ENSMUSG00000024558 Mapk4 -0.195 5.839 17.248 3.28E-05 0.002791 

ENSMUSG00000029819 Npy -0.190 5.335 17.076 3.59E-05 0.003011 

ENSMUSG00000034825 Nrip3 -0.170 7.691 16.941 3.86E-05 0.003206 

ENSMUSG00000049649 Gpr3 -0.417 2.459 16.938 3.86E-05 0.003206 

ENSMUSG00000014496 Ankrd28 -0.174 5.687 16.925 3.89E-05 0.003208 

ENSMUSG00000068566 Myadm -0.172 5.963 16.918 3.90E-05 0.003208 

ENSMUSG00000031266 Gla -0.351 3.186 16.831 4.09E-05 0.003339 

ENSMUSG00000027210 Meis2 -0.210 5.810 16.805 4.14E-05 0.003357 

ENSMUSG00000110935 AC138292.1 -0.571 1.431 16.788 4.18E-05 0.003371 

ENSMUSG00000013089 Etv5 -0.174 6.043 16.738 4.29E-05 0.003446 

ENSMUSG00000051920 Rspo2 -0.360 4.847 16.673 4.44E-05 0.003534 

ENSMUSG00000011148 Adssl1 -0.266 3.957 16.654 4.49E-05 0.003553 

ENSMUSG00000044976 Wdr72 -1.297 -0.058 16.528 4.79E-05 0.003745 

ENSMUSG00000014602 Kif1a -0.098 10.416 16.493 4.88E-05 0.003779 

ENSMUSG00000035686 Thrsp -0.219 4.751 16.414 5.09E-05 0.003904 

ENSMUSG00000032280 Tle3 -0.178 5.506 16.402 5.12E-05 0.003913 

ENSMUSG00000076439 Mog -0.169 6.033 16.120 5.94E-05 0.0045 

ENSMUSG00000022425 Enpp2 -0.491 9.983 16.029 6.24E-05 0.004702 

ENSMUSG00000028876 Epha10 -0.183 5.982 15.959 6.47E-05 0.004819 

ENSMUSG00000104093 A330015K06Rik -0.706 0.670 15.969 6.44E-05 0.004819 

ENSMUSG00000040435 Ppp1r15a -0.249 4.080 15.781 7.11E-05 0.005245 

ENSMUSG00000033952 Aspm -1.261 -0.773 15.766 7.17E-05 0.005265 

ENSMUSG00000061808 Ttr -1.253 10.938 15.564 7.98E-05 0.005833 

ENSMUSG00000051985 Igfn1 -0.756 2.134 15.537 8.09E-05 0.00589 

ENSMUSG00000036634 Mag -0.119 7.680 15.509 8.21E-05 0.005954 
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ENSMUSG00000073424 Cyp4f15 -0.264 3.779 15.485 8.31E-05 0.006003 

ENSMUSG00000100706 Gm19744 -0.544 1.443 15.463 8.41E-05 0.006048 

ENSMUSG00000028962 Slc4a2 -0.168 5.695 15.452 8.46E-05 0.006059 

ENSMUSG00000003545 Fosb -0.326 3.881 15.346 8.95E-05 0.006357 

ENSMUSG00000016763 Scube1 -0.189 5.047 15.297 9.19E-05 0.00647 

ENSMUSG00000068196 Col8a1 -0.916 3.268 15.301 9.17E-05 0.00647 

ENSMUSG00000029455 Aldh2 -0.176 6.395 15.209 9.63E-05 0.006724 

ENSMUSG00000026688 Mgst3 -0.214 5.342 15.200 9.67E-05 0.006728 

ENSMUSG00000027347 Rasgrp1 -0.106 9.414 15.108 0.000102 0.007007 

ENSMUSG00000038910 Plcl2 -0.164 5.980 15.112 0.000101 0.007007 

ENSMUSG00000029467 Atp2a2 -0.088 9.881 14.984 0.000108 0.007392 

ENSMUSG00000021775 Nr1d2 -0.218 6.585 14.960 0.00011 0.007429 

ENSMUSG00000047842 Diras2 -0.129 8.411 14.953 0.00011 0.007429 

ENSMUSG00000049382 Krt8 -0.714 1.055 14.956 0.00011 0.007429 

ENSMUSG00000000184 Ccnd2 -0.145 6.544 14.937 0.000111 0.007454 

ENSMUSG00000003849 Nqo1 -0.427 2.272 14.888 0.000114 0.007562 

ENSMUSG00000030905 Crym -0.119 7.990 14.882 0.000114 0.007562 

ENSMUSG00000091636 Akain1 -0.252 4.080 14.783 0.000121 0.00788 

ENSMUSG00000024042 Sik1 -0.226 4.282 14.739 0.000123 0.008005 

ENSMUSG00000092090 Gm3294 -0.448 2.019 14.693 0.000126 0.00817 

ENSMUSG00000055078 Gabra5 -0.120 7.876 14.627 0.000131 0.008402 

ENSMUSG00000015354 Pcolce2 -0.307 3.325 14.607 0.000132 0.008458 

ENSMUSG00000053025 Sv2b -0.113 9.042 14.511 0.000139 0.008834 

ENSMUSG00000008855 Hdac5 -0.135 7.517 14.480 0.000142 0.008948 

ENSMUSG00000108434 Gm45768 -0.350 2.675 14.359 0.000151 0.009507 

ENSMUSG00000003526 Prodh -0.238 5.006 14.283 0.000157 0.009864 

ENSMUSG00000011154 Cfap161 -0.566 1.139 14.239 0.000161 0.010062 

ENSMUSG00000034765 Dusp5 -0.226 4.774 14.208 0.000164 0.010191 

ENSMUSG00000067578 Cbln4 -0.281 3.996 14.157 0.000168 0.01043 

ENSMUSG00000028348 Murc -0.754 0.355 14.149 0.000169 0.010437 

ENSMUSG00000040093 Bmf -0.447 2.049 14.041 0.000179 0.011015 

ENSMUSG00000023267 Gabrr2 -0.838 0.212 13.856 0.000197 0.012071 

ENSMUSG00000016624 Phf21b -0.287 3.551 13.827 0.0002 0.012211 

ENSMUSG00000004637 Wwox -0.228 4.117 13.650 0.00022 0.013144 

ENSMUSG00000028864 Hgf -0.538 1.229 13.665 0.000219 0.013144 

ENSMUSG00000053644 Aldh7a1 -0.138 6.527 13.652 0.00022 0.013144 

ENSMUSG00000032232 Cgnl1 -0.224 4.815 13.612 0.000225 0.013335 

ENSMUSG00000050558 Prokr2 -0.394 2.284 13.609 0.000225 0.013335 
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ENSMUSG00000041390 Mdfic -0.383 2.544 13.562 0.000231 0.013583 

ENSMUSG00000053646 Plxnb1 -0.129 7.058 13.566 0.00023 0.013583 

ENSMUSG00000068220 Lgals1 -0.283 3.398 13.509 0.000237 0.013828 

ENSMUSG00000027171 Prrg4 -0.987 -0.336 13.435 0.000247 0.014221 

ENSMUSG00000028919 Arhgef19 -0.199 4.565 13.431 0.000247 0.014221 

ENSMUSG00000030889 Vwa3a -0.218 4.432 13.438 0.000247 0.014221 

ENSMUSG00000042734 Ttc9 -0.170 5.540 13.359 0.000257 0.014678 

ENSMUSG00000053846 Lipg -0.477 1.603 13.338 0.00026 0.0148 

ENSMUSG00000016179 Camk1g -0.179 5.187 13.217 0.000277 0.01563 

ENSMUSG00000027004 Frzb -0.198 4.931 13.192 0.000281 0.015787 

ENSMUSG00000020953 Coch -0.308 3.213 13.165 0.000285 0.015869 

ENSMUSG00000033730 Egr3 -0.198 5.482 13.174 0.000284 0.015869 

ENSMUSG00000046402 Rbp1 -0.258 3.747 13.164 0.000285 0.015869 

ENSMUSG00000022055 Nefl -0.108 8.369 13.116 0.000293 0.016226 

ENSMUSG00000039115 Itga9 -0.370 2.355 13.038 0.000305 0.016746 

ENSMUSG00000056966 Gjc3 -0.232 4.300 13.033 0.000306 0.016746 

ENSMUSG00000022949 Clic6 -0.841 5.008 13.026 0.000307 0.01676 

ENSMUSG00000039741 Bahcc1 -0.196 5.242 12.906 0.000328 0.017758 

ENSMUSG00000026141 Col19a1 -0.319 2.762 12.886 0.000331 0.017888 

ENSMUSG00000032988 Slc16a8 -0.541 1.713 12.724 0.000361 0.019383 

ENSMUSG00000049907 Rasl11b -0.147 5.990 12.687 0.000368 0.019708 

ENSMUSG00000036304 Zdhhc23 -0.243 3.830 12.584 0.000389 0.020507 

ENSMUSG00000028698 Pik3r3 -0.167 5.605 12.476 0.000412 0.021572 

ENSMUSG00000019890 Nts -0.331 2.793 12.453 0.000417 0.021725 

ENSMUSG00000026697 Myoc -0.230 4.027 12.446 0.000419 0.021751 

ENSMUSG00000010660 Plcd1 -0.244 3.884 12.419 0.000425 0.02186 

ENSMUSG00000026836 Acvr1 -0.157 5.438 12.421 0.000425 0.02186 

ENSMUSG00000022449 Adamts20 -0.193 4.532 12.411 0.000427 0.021888 

ENSMUSG00000008153 Clstn3 -0.096 8.586 12.331 0.000445 0.022713 

ENSMUSG00000021670 Hmgcr -0.149 6.965 12.306 0.000452 0.022889 

ENSMUSG00000033007 Asic4 -0.329 3.037 12.274 0.000459 0.023208 

ENSMUSG00000097789 Gm2115 -0.188 6.747 12.207 0.000476 0.023919 

ENSMUSG00000048537 Phldb1 -0.125 7.445 12.180 0.000483 0.024193 

ENSMUSG00000097023 Mir9-3hg -0.198 4.946 12.167 0.000486 0.0243 

ENSMUSG00000029093 Sorcs2 -0.131 6.251 12.100 0.000504 0.024896 

ENSMUSG00000019194 Scn1b -0.093 8.602 12.073 0.000511 0.025087 

ENSMUSG00000027115 Kif18a -0.674 0.405 12.066 0.000514 0.025087 

ENSMUSG00000027332 Ivd -0.125 6.880 12.074 0.000511 0.025087 
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ENSMUSG00000046805 Mpeg1 -0.190 4.659 12.064 0.000514 0.025087 

ENSMUSG00000052221 Ppp1r36 -0.490 1.344 11.988 0.000535 0.025915 

ENSMUSG00000023232 Serinc2 -0.268 3.391 11.945 0.000548 0.026454 

ENSMUSG00000027340 Slc23a2 -0.123 7.531 11.869 0.000571 0.027378 

ENSMUSG00000059013 Sh2d3c -0.214 4.443 11.865 0.000572 0.027378 

ENSMUSG00000038264 Sema7a -0.105 7.264 11.838 0.00058 0.027626 

ENSMUSG00000059049 Frem1 -0.307 3.136 11.803 0.000592 0.027949 

ENSMUSG00000068099 1500009C09Rik -0.130 6.170 11.805 0.000591 0.027949 

ENSMUSG00000026028 Trak2 -0.095 7.888 11.784 0.000597 0.027981 

ENSMUSG00000030102 Itpr1 -0.131 8.356 11.789 0.000596 0.027981 

ENSMUSG00000038010 Ccdc138 -0.364 2.252 11.783 0.000598 0.027981 

ENSMUSG00000026939 Tmem141 -0.245 3.579 11.757 0.000606 0.028309 

ENSMUSG00000025380 Fscn2 -0.904 -0.456 11.699 0.000625 0.028582 

ENSMUSG00000030220 Arhgdib -0.328 2.614 11.708 0.000622 0.028582 

ENSMUSG00000038530 Rgs4 -0.212 7.479 11.699 0.000625 0.028582 

ENSMUSG00000038665 Dgki -0.268 3.476 11.718 0.000619 0.028582 

ENSMUSG00000042745 Id1 -0.268 3.378 11.716 0.00062 0.028582 

ENSMUSG00000059248 Sept9 -0.145 6.801 11.725 0.000617 0.028582 

ENSMUSG00000059921 Unc5c -0.155 5.660 11.713 0.000621 0.028582 

ENSMUSG00000000253 Gmpr -0.149 5.951 11.656 0.00064 0.029171 

ENSMUSG00000109572 Cfap99 -0.806 -0.105 11.621 0.000652 0.029569 

ENSMUSG00000036591 Arhgap21 -0.096 8.200 11.540 0.000681 0.030795 

ENSMUSG00000103770 Pcdha9 -0.347 2.394 11.493 0.000699 0.031259 

ENSMUSG00000018566 Slc2a4 -0.821 0.003 11.440 0.000719 0.031839 

ENSMUSG00000022026 Olfm4 -0.360 2.374 11.437 0.00072 0.031839 

ENSMUSG00000025558 Dock9 -0.086 8.246 11.454 0.000713 0.031839 

ENSMUSG00000035226 Rims4 -0.148 5.821 11.435 0.000721 0.031839 

ENSMUSG00000036273 Lrrk2 -0.181 4.619 11.442 0.000718 0.031839 

ENSMUSG00000060716 Plekhh1 -0.153 5.368 11.417 0.000728 0.032066 

ENSMUSG00000022519 Srl -0.228 3.887 11.384 0.000741 0.032367 

ENSMUSG00000056553 Ptprn2 -0.099 8.228 11.388 0.000739 0.032367 

ENSMUSG00000045648 Vwc2l -0.340 3.107 11.375 0.000744 0.032386 

ENSMUSG00000026496 Parp1 -0.107 7.134 11.359 0.000751 0.032574 

ENSMUSG00000035621 Midn -0.172 5.656 11.328 0.000763 0.033042 

ENSMUSG00000051339 2900026A02Rik -0.117 6.827 11.289 0.00078 0.033654 

ENSMUSG00000024063 Lbh -0.157 5.500 11.276 0.000785 0.033804 

ENSMUSG00000027298 Tyro3 -0.170 7.302 11.259 0.000792 0.033872 

ENSMUSG00000112441 AC122860.2 -0.954 -0.467 11.259 0.000792 0.033872 



130 

 

 

ENSMUSG00000058672 Tubb2a -0.079 9.244 11.241 0.0008 0.03411 

ENSMUSG00000053560 Ier2 -0.263 3.195 11.227 0.000806 0.034288 

ENSMUSG00000000120 Ngfr -0.509 1.209 11.219 0.00081 0.034354 

ENSMUSG00000060890 Arr3 -0.528 1.127 11.185 0.000825 0.034811 

ENSMUSG00000021319 Sfrp4 -0.564 0.920 11.170 0.000831 0.034974 

ENSMUSG00000022415 Syngr1 -0.121 8.962 11.167 0.000832 0.034974 

ENSMUSG00000015745 Plekho1 -0.192 4.453 11.129 0.00085 0.035495 

ENSMUSG00000021453 Gadd45g -0.208 4.082 11.126 0.000851 0.035495 

ENSMUSG00000074060 Fbxw15 -0.597 0.588 11.122 0.000853 0.035495 

ENSMUSG00000031740 Mmp2 -0.386 2.113 11.109 0.000859 0.035654 

ENSMUSG00000030256 Bhlhe41 -0.171 5.041 11.099 0.000864 0.035698 

ENSMUSG00000035172 Plekhh3 -0.219 3.946 11.098 0.000864 0.035698 

ENSMUSG00000091556 Gm14569 -0.430 1.659 11.075 0.000875 0.036064 

ENSMUSG00000040659 Efhd2 -0.135 7.267 10.968 0.000927 0.038016 

ENSMUSG00000020432 Tcn2 -0.178 4.741 10.887 0.000969 0.039373 

ENSMUSG00000021701 Plk2 -0.105 7.988 10.885 0.000969 0.039373 

ENSMUSG00000027253 Lrp4 -0.149 5.423 10.873 0.000976 0.039452 

ENSMUSG00000044005 Gls2 -0.188 4.481 10.874 0.000975 0.039452 

ENSMUSG00000047495 Dlgap2 -0.140 5.678 10.846 0.00099 0.039793 

ENSMUSG00000045659 Plekha7 -0.226 5.052 10.815 0.001007 0.040171 

ENSMUSG00000021256 Vash1 -0.181 4.653 10.805 0.001012 0.040194 

ENSMUSG00000024517 Grp -0.302 4.342 10.804 0.001013 0.040194 

ENSMUSG00000028680 Plk3 -0.224 3.738 10.767 0.001034 0.040919 

ENSMUSG00000031642 Sh3rf1 -0.146 5.916 10.756 0.001039 0.040955 

ENSMUSG00000005373 Mlxipl -0.373 2.044 10.746 0.001045 0.040987 

ENSMUSG00000023868 Pde10a -0.139 6.239 10.749 0.001043 0.040987 

ENSMUSG00000024395 Lims2 -0.243 3.541 10.720 0.00106 0.041207 

ENSMUSG00000028249 Sdcbp -0.097 8.166 10.724 0.001058 0.041207 

ENSMUSG00000061751 Kalrn -0.095 9.375 10.721 0.001059 0.041207 

ENSMUSG00000063297 Luzp2 -0.154 6.971 10.729 0.001054 0.041207 

ENSMUSG00000030772 Dkk3 -0.106 8.333 10.703 0.001069 0.04148 

ENSMUSG00000026883 Dab2ip -0.109 6.993 10.690 0.001077 0.041694 

ENSMUSG00000041607 Mbp -0.113 11.360 10.640 0.001106 0.042533 

ENSMUSG00000020044 Timp3 -0.143 5.842 10.613 0.001123 0.04306 

ENSMUSG00000029658 Wdr95 -0.599 0.594 10.609 0.001126 0.043079 

ENSMUSG00000037709 Fam13a -0.158 5.073 10.593 0.001135 0.043351 

ENSMUSG00000014077 Chp1 -0.099 7.380 10.571 0.001149 0.043676 

ENSMUSG00000005681 Apoa2 -1.020 -0.571 10.523 0.001179 0.044629 
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ENSMUSG00000025488 Cox8b -0.898 0.507 10.509 0.001188 0.04477 

ENSMUSG00000059173 Pde1a -0.132 7.719 10.506 0.00119 0.04477 

ENSMUSG00000022037 Clu -0.090 9.807 10.499 0.001194 0.044814 

ENSMUSG00000068699 Flnc -0.377 1.945 10.475 0.00121 0.045093 

ENSMUSG00000004698 Hdac9 -0.141 5.563 10.421 0.001246 0.04602 

ENSMUSG00000030067 Foxp1 -0.133 6.032 10.415 0.00125 0.04602 

ENSMUSG00000108616 Gm35040 -0.228 3.681 10.397 0.001262 0.046352 

ENSMUSG00000021806 Nid2 -0.290 3.009 10.380 0.001274 0.046676 

ENSMUSG00000096054 Syne1 -0.124 8.890 10.359 0.001288 0.047097 

ENSMUSG00000090958 Lrrc32 -0.405 1.688 10.343 0.001299 0.047406 

ENSMUSG00000027438 Napb -0.104 8.889 10.320 0.001316 0.047896 

ENSMUSG00000032479 Map4 -0.092 9.537 10.300 0.00133 0.048291 

ENSMUSG00000039474 Wfs1 -0.190 7.269 10.295 0.001334 0.048291 

ENSMUSG00000061731 Ext1 -0.163 5.360 10.294 0.001335 0.048291 

ENSMUSG00000032231 Anxa2 -0.254 3.311 10.239 0.001375 0.049377 

ENSMUSG00000048450 Msx1 -0.271 3.283 10.237 0.001376 0.049377 

ENSMUSG00000100303 2600014E21Rik -0.355 1.990 10.228 0.001383 0.049514 

ENSMUSG00000037492 Zmat4 -0.180 5.943 10.207 0.001399 0.049868 

ENSMUSG00000042156 Dzip1 -0.139 6.704 10.203 0.001402 0.049888 
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Table A.5. Fear conditioned RNA-seq upregulated genes in CBPKix/Kix mice. 

GeneID Gene name logFC logCPM LR PValue FDR 

ENSMUSG00000069662 Marcks 0.234 7.152 53.788 2.23E-13 1.67E-10 

ENSMUSG00000033717 Adra2a 0.439 4.196 53.139 3.11E-13 2.14E-10 

ENSMUSG00000006930 Hap1 0.236 7.995 50.273 1.34E-12 8.21E-10 

ENSMUSG00000022636 Alcam 0.222 7.089 47.588 5.26E-12 2.66E-09 

ENSMUSG00000047507 Baiap3 0.423 3.925 39.779 2.84E-10 1.11E-07 

ENSMUSG00000051323 Pcdh19 0.228 6.264 35.919 2.06E-09 6.80E-07 

ENSMUSG00000024256 Adcyap1 0.514 2.910 34.838 3.58E-09 1.10E-06 

ENSMUSG00000046447 Camk2n1 0.154 9.527 33.455 7.29E-09 2.20E-06 

ENSMUSG00000026344 Lypd1 0.262 5.382 31.088 2.47E-08 6.42E-06 

ENSMUSG00000021721 Htr1a 0.251 5.502 30.480 3.37E-08 8.40E-06 

ENSMUSG00000025128 Bhlhe22 0.237 6.705 29.689 5.07E-08 1.25E-05 

ENSMUSG00000026463 Atp2b4 0.185 7.400 29.226 6.44E-08 1.52E-05 

ENSMUSG00000064373 Selenop 0.156 7.866 29.039 7.09E-08 1.65E-05 

ENSMUSG00000036777 Anln 0.231 5.666 28.874 7.73E-08 1.77E-05 

ENSMUSG00000032500 Dclk3 0.367 4.467 27.941 1.25E-07 2.76E-05 

ENSMUSG00000039087 Rreb1 0.236 7.553 23.748 1.10E-06 0.000175 

ENSMUSG00000051617 Krt9 0.343 3.702 23.511 1.24E-06 0.000194 

ENSMUSG00000068735 Trp53i11 0.284 6.288 23.091 1.55E-06 0.000239 

ENSMUSG00000037071 Scd1 0.158 7.719 23.033 1.59E-06 0.000244 

ENSMUSG00000032690 Oas2 1.114 -0.045 22.777 1.82E-06 0.00027 

ENSMUSG00000092035 Peg10 0.382 4.235 22.242 2.40E-06 0.000338 

ENSMUSG00000033585 Ndn 0.306 7.400 21.293 3.94E-06 0.000498 

ENSMUSG00000042793 Lgr6 0.546 1.918 21.275 3.98E-06 0.000499 

ENSMUSG00000075334 Rprm 0.278 4.984 20.951 4.71E-06 0.000574 

ENSMUSG00000068663 Clec16a 0.356 7.296 20.909 4.82E-06 0.000579 

ENSMUSG00000028222 Calb1 0.260 7.200 20.334 6.50E-06 0.00076 

ENSMUSG00000044141 E130201H02Rik 0.530 2.330 19.971 7.86E-06 0.000904 

ENSMUSG00000022637 Cblb 0.191 5.518 19.361 1.08E-05 0.001192 

ENSMUSG00000026043 Col3a1 0.600 1.701 19.241 1.15E-05 0.001261 

ENSMUSG00000000794 Kcnn3 0.249 4.623 19.017 1.30E-05 0.001358 

ENSMUSG00000021803 Cdhr1 0.311 3.598 18.972 1.33E-05 0.001381 

ENSMUSG00000055670 Zzef1 0.192 6.238 18.748 1.49E-05 0.001517 

ENSMUSG00000021032 Ngb 0.489 2.105 18.714 1.52E-05 0.001535 

ENSMUSG00000004902 Slc25a18 0.168 5.909 18.215 1.97E-05 0.001925 

ENSMUSG00000027861 Casq2 0.669 1.073 18.004 2.20E-05 0.002081 
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ENSMUSG00000047181 Samd14 0.169 5.930 17.886 2.35E-05 0.002191 

ENSMUSG00000047238 Mageh1 0.195 5.391 17.630 2.68E-05 0.002427 

ENSMUSG00000042607 Asb4 1.070 -0.154 17.609 2.71E-05 0.002441 

ENSMUSG00000028360 Slc44a5 0.177 5.642 17.434 2.97E-05 0.002608 

ENSMUSG00000087075 A230065H16Rik 0.605 1.532 17.185 3.39E-05 0.00287 

ENSMUSG00000023886 Smoc2 0.179 5.531 17.125 3.50E-05 0.002948 

ENSMUSG00000020848 Doc2b 0.240 7.127 16.825 4.10E-05 0.003339 

ENSMUSG00000045573 Penk 0.227 5.001 16.722 4.33E-05 0.003459 

ENSMUSG00000021136 Smoc1 0.274 3.854 16.563 4.71E-05 0.003709 

ENSMUSG00000070695 Cntnap5a 0.213 5.193 16.547 4.75E-05 0.003724 

ENSMUSG00000020846 Rflnb 0.309 4.148 16.508 4.85E-05 0.003767 

ENSMUSG00000090946 Ccdc71l 0.187 5.221 16.418 5.08E-05 0.003904 

ENSMUSG00000030592 Ryr1 0.195 5.716 16.268 5.50E-05 0.00418 

ENSMUSG00000063626 Unc5d 0.204 4.965 15.957 6.48E-05 0.004819 

ENSMUSG00000005892 Trh 1.077 0.750 15.909 6.65E-05 0.004923 

ENSMUSG00000079845 Xlr4a 0.858 0.550 15.391 8.74E-05 0.00623 

ENSMUSG00000069049 Eif2s3y 0.164 5.778 15.213 9.61E-05 0.006724 

ENSMUSG00000020123 Avpr1a 0.942 -0.039 15.060 0.000104 0.007157 

ENSMUSG00000022483 Col2a1 0.454 2.041 15.039 0.000105 0.00721 

ENSMUSG00000043498 9330132A10Rik 0.189 6.141 14.932 0.000111 0.007454 

ENSMUSG00000022311 Csmd3 0.202 4.774 14.887 0.000114 0.007562 

ENSMUSG00000029563 Foxp2 0.649 0.959 14.856 0.000116 0.007641 

ENSMUSG00000020641 Rsad2 0.664 0.789 14.826 0.000118 0.007731 

ENSMUSG00000041378 Cldn5 0.205 5.388 14.762 0.000122 0.007939 

ENSMUSG00000067594 Krt77 0.261 3.674 14.646 0.00013 0.00835 

ENSMUSG00000052684 Jun 0.161 7.076 14.580 0.000134 0.008551 

ENSMUSG00000084979 Gm16267 0.609 0.903 13.889 0.000194 0.0119 

ENSMUSG00000028047 Thbs3 0.201 5.500 13.793 0.000204 0.01239 

ENSMUSG00000020061 Mybpc1 0.598 1.046 13.775 0.000206 0.012465 

ENSMUSG00000036198 Arhgap36 0.688 0.666 13.657 0.000219 0.013144 

ENSMUSG00000038173 Enpp6 0.277 3.400 13.531 0.000235 0.013763 

ENSMUSG00000032268 Tmprss5 0.520 1.456 13.523 0.000236 0.013771 

ENSMUSG00000040929 Rfx3 0.189 6.602 13.457 0.000244 0.014173 

ENSMUSG00000086290 Snhg12 0.247 3.780 13.424 0.000248 0.01423 

ENSMUSG00000090863 A530084C06Rik 0.869 0.072 13.323 0.000262 0.014864 

ENSMUSG00000028019 Pdgfc 0.314 2.948 13.231 0.000275 0.015561 

ENSMUSG00000036902 Neto2 0.157 5.653 13.100 0.000295 0.016319 

ENSMUSG00000058626 Capn11 1.307 2.168 13.070 0.0003 0.016522 
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ENSMUSG00000010663 Fads1 0.106 8.093 12.959 0.000318 0.017311 

ENSMUSG00000044244 Il20rb 0.421 2.001 12.805 0.000346 0.018622 

ENSMUSG00000070003 Ssbp4 0.128 7.038 12.667 0.000372 0.019864 

ENSMUSG00000036357 Gpr101 0.281 3.689 12.607 0.000384 0.020384 

ENSMUSG00000043872 Zmym1 0.227 4.437 12.608 0.000384 0.020384 

ENSMUSG00000041798 Gck 0.438 1.889 12.591 0.000388 0.020488 

ENSMUSG00000023048 Prr13 0.172 5.231 12.542 0.000398 0.02091 

ENSMUSG00000023191 P3h3 0.182 5.216 12.472 0.000413 0.021572 

ENSMUSG00000050953 Gja1 0.113 7.907 12.439 0.000421 0.021765 

ENSMUSG00000041459 Tardbp 0.101 7.895 12.333 0.000445 0.022713 

ENSMUSG00000036782 Klhl13 0.171 5.115 12.325 0.000447 0.022726 

ENSMUSG00000024548 Setbp1 0.154 5.411 12.234 0.000469 0.02364 

ENSMUSG00000042353 Frem3 0.604 0.803 12.132 0.000496 0.024684 

ENSMUSG00000034918 Cdhr2 0.726 0.194 12.123 0.000498 0.024727 

ENSMUSG00000052155 Acvr2a 0.136 6.072 12.117 0.0005 0.024745 

ENSMUSG00000050122 Vwa3b 0.221 4.326 12.050 0.000518 0.025206 

ENSMUSG00000059674 Cdh24 0.242 4.548 12.029 0.000524 0.025423 

ENSMUSG00000013584 Aldh1a2 0.396 2.238 11.867 0.000571 0.027378 

ENSMUSG00000049583 Grm5 0.101 8.069 11.841 0.000579 0.027626 

ENSMUSG00000045827 Serpinb9 0.297 2.940 11.801 0.000592 0.027949 

ENSMUSG00000033849 B3galt2 0.206 5.598 11.712 0.000621 0.028582 

ENSMUSG00000030029 Lrig1 0.169 5.120 11.636 0.000647 0.029401 

ENSMUSG00000022510 Trp63 0.468 1.471 11.503 0.000695 0.031182 

ENSMUSG00000031075 Ano1 0.291 2.951 11.503 0.000695 0.031182 

ENSMUSG00000032024 Clmp 0.188 4.910 11.509 0.000693 0.031182 

ENSMUSG00000013846 St3gal1 0.325 5.410 11.401 0.000734 0.032256 

ENSMUSG00000024008 Cpne5 0.183 4.819 11.381 0.000742 0.032367 

ENSMUSG00000036356 Csgalnact1 0.240 4.153 11.269 0.000788 0.033848 

ENSMUSG00000027078 Ube2l6 0.405 1.894 11.212 0.000813 0.034396 

ENSMUSG00000098557 Kctd12 0.139 6.382 11.132 0.000849 0.035495 

ENSMUSG00000031671 Setd6 0.220 3.976 10.972 0.000925 0.038016 

ENSMUSG00000024529 Lox 0.902 -0.444 10.912 0.000955 0.039082 

ENSMUSG00000028749 Pla2g2f 0.374 2.055 10.903 0.00096 0.03918 

ENSMUSG00000034098 Fstl5 0.166 4.933 10.861 0.000982 0.039614 

ENSMUSG00000039997 Ifi203 0.319 2.486 10.844 0.000991 0.039793 

ENSMUSG00000023795 Pisd-ps2 0.192 6.868 10.837 0.000995 0.039855 

ENSMUSG00000020810 Cygb 0.145 5.735 10.814 0.001008 0.040171 

ENSMUSG00000024524 Gnal 0.107 7.072 10.758 0.001038 0.040955 
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ENSMUSG00000039910 Cited2 0.183 4.912 10.677 0.001085 0.041893 

ENSMUSG00000034163 Zfc3h1 0.120 6.321 10.665 0.001092 0.042075 

ENSMUSG00000032878 Ccdc85a 0.120 6.840 10.580 0.001143 0.043559 

ENSMUSG00000037681 Esyt3 0.308 2.568 10.532 0.001173 0.044494 

ENSMUSG00000042063 Zfp386 0.234 3.519 10.505 0.001191 0.04477 

ENSMUSG00000052906 Ubxn8 0.167 4.843 10.488 0.001202 0.044982 

ENSMUSG00000015085 Entpd2 0.272 3.094 10.476 0.00121 0.045093 

ENSMUSG00000027637 1110008F13Rik 0.217 4.091 10.436 0.001236 0.045958 

ENSMUSG00000027313 Chac1 0.306 2.586 10.431 0.001239 0.045996 

ENSMUSG00000025498 Irf7 0.503 1.064 10.414 0.001251 0.04602 

ENSMUSG00000028037 Ifi44 0.962 -0.795 10.421 0.001246 0.04602 

ENSMUSG00000104459 Gm37824 0.363 1.942 10.287 0.00134 0.048373 

ENSMUSG00000060550 H2-Q7 0.670 0.314 10.245 0.00137 0.049365 

ENSMUSG00000026312 Cdh7 0.295 3.003 10.219 0.00139 0.049662 
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Figure A.1 
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Figure A.2 
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Figure A.3 

 

 

 

 

 

 

 

 

 

 

 

 



139 

 

 

Figure A.4 
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Figure A.5 
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