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REVIEW

Sleep and Reproductive Health
Olubodun Michael Lateef and Michael Olawale Akintubosun

The reproductive function of humans is regulated by several sex hormones which are secreted in synergy 
with the circadian timing of the body. Sleep patterns produce generic signatures that physiologically 
drive the synthesis, secretion, and metabolism of hormones necessary for reproduction. Sleep deprivation 
among men and women is increasingly reported as one of the causes of infertility. In animal models, 
sleep disturbances impair the secretion of sexual hormones thereby leading to a decrease in testosterone 
level, reduced sperm motility and apoptosis of the Leydig cells in male rats. Sleep deprivation generates 
stressful stimuli intrinsically, due to circadian desynchrony and thereby increases the activation of the 
Hypothalamus-Pituitary Adrenal (HPA) axis, which, consequently, increases the production of corticosterone. 
The elevated level of corticosteroids results in a reduction in testosterone production. Sleep deprivation 
produces a commensurate effect on women by reducing the chances of fertility. Sleeplessness among 
female shift workers suppresses melatonin production as well as excessive HPA activation which results in 
early pregnancy loss, failed embryo implantation, anovulation and amenorrhea. Sleep deprivation in women 
has also be found to be associated with altered gonadotropin and sex steroid secretion which all together 
lead to female infertility. Poor quality of sleep is observed in middle-aged and older men and this also 
contributes to reduced testosterone concentrations. The influence of sleep disturbances post-menopausal 
is associated with irregular synthesis and secretion of female sex steroid hormones.
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Introduction
Sleep deprivation is becoming a common health problem 
in modern society and many studies are being carried out 
to investigate its consequences on the growing world. 
Sleep deprivation can be defined as the partial or almost 
total absence of sleep that produces various deleterious 
health challenges in an organism [1]. We live in a sleep-
deprived society with several pieces of evidence showing 
average sleep duration of 6.8 hours daily against 9 hours 
observed a century ago, and about 30% of adults now 
sleep for a period less than 6 hours per night [2]. Sleep 
deprivation is related to common sleep disorders such 
as insomnia, behaviorally induced insufficient sleep syn-
drome and obstructive sleep apnea syndrome [3]. A previ-
ous report posited that recent sleeping habits of humans 
notably contradict those of the preindustrial era when 
humans were able to sleep for longer hours [4]. Sleep 
deprivation produces adverse effects that human evolu-
tion hasn’t been able to build mechanistic adaptations 
that can compensate for the accumulated sleep debts. The 
reason behind the persistent sleep deprivation observed 
among several classes of people is due to pressure to 
achieve basic socio-economic demands laden by routine 

work, daily schedules, study, and social engagements. 
The report of the National Sleep Foundation poll showed 
that about 39% of respondents reported getting less 
than seven hours of sleep on weeknights [5]. In addition, 
research shows that for the past few decades, self-reported 
sleep durations reduced significantly by approximately 
2 hours [5, 6]. The normal duration of sleep for an adult is 
highly controversial, but it is generally implied that about 
8 hours of nighttime sleep is sufficient and optimal for 
general health and wellbeing [7, 8, 9].

Sleep disorders in both men and women are associated 
with many health problems like depression, hypertension, 
glucose deregulation, cardiovascular disease, and anxiety 
disorders and it was reported that sleep disturbances in 
women coincide with postpartum depression, pregnancy, 
menopausal transition and premenstrual dysphoria [10]. 
The reproductive capacity of animals is affected by altera-
tion of the circadian timing system caused by exposure to 
irregular light-dark cycles and mutations of main biologi-
cal clock genes. This results in infertility and abnormali-
ties in menstrual cycle in female shift workers. Infertility is 
defined as the inability to conceive after 12 months of reg-
ular, unprotected intercourse in women less than 35 years 
of age or after six months in women over 35 years of age. 
[11]. In animal models, sleep deterioration influenced 
 sexual hormones by lowering the concentration of testos-
terone and increasing the concentration of progesterone 
and glucocorticoids in male rats [12] and also, interfered 
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with the male sexual performance [13]. The secretions of 
all the sex steroid hormones are in synchrony with the 
circadian rhythm and they regulate sleep patterns [14]. 
Transition into the menopausal status and the phase 
changes that occur during the menstrual cycle are as well 
in synchrony with changes in sleep patterns [15]. Sleep 
disturbances deregulate the level of steroid hormones in 
the body and this might lead to infertility among men and 
women. Cases of infertility are prevalent in the society and 
several factors have been identified as causes of infertility 
but little is known about how sleep disturbances modu-
late the reproductive functions in the body. The focus of 
this study was to review the effects of sleep deprivation 
on reproductive hormones and how it affects male and 
female reproductive health.

Sleep deprivation
Sleep deprivation (SD) is observed when there is either a 
total lack of sleep for particular time duration or when 
there is a shortage of the expected optimal sleep duration. 
Sleep deprivation is mostly caused by an individual’s con-
temporary lifestyle and work-related factor such as shift 
works. Several cases of cardiometabolic and reproductive 
dysfunctions are reported by shift workers. Disruption of 
sleep timing patterns by sleeplessness or the fragmenta-
tion of sleep [16] may have similar consequences related 
to severe acute sleep deprivation and this may include; 
cognitive functions, attention and operant memory [17, 
18]. Reports from both human and animal models showed 
that sleep deprivation is connected with many severe phys-
iological consequences such as endocrine disturbances, 
metabolic, immune and cardiovascular deregulations [19, 
20, 21]. A short duration of sleep in humans is associated 
with high cases of mortality and a long term sleep depriva-
tion was shown to lead to the death of the animals in an 
experimental animal model [21, 22]. Hence, sleep depriva-
tion is projected as one of the causes of harmful stress that 
may adversely affect an organism’s well-being and mental 
health [35].

Sleep deprivation may also be seen as disruption in 
sleep time during shift work or air travel (jet-lag syndrome 
resulting from traveling across different time zones) [23]. 
Sleep deprivation may also set in when people adjust to 
daylight saving time. Research shows that the longest 
period of sleep deprivation attained in a human volunteer 
study was 205 hours (8.5 days). Electroencephalogram 
(EEG) recording during this sleeping period did not show 
alpha waves but the EEG signal resembled stage 1 of Non-
rapid eye movement (NREM1) sleep during the waking 
state [24, 25].

After a stretched interval of sleep loss, rebound sleep 
takes place and it is usually longer than the normal sleep 
duration. Sleep rebound is often accompanied with Rapid 
eye Movement (REM) sleep and longer periods of the delta-
wave, while stage 1 (NREM1) may be absent and stage 2 
(NREM2) is shortened [26, 27]. The duration of rebound 
sleep differs markedly from the total duration of sleep loss 
but it is necessary for sleep to last for several hours more 
than normal in order to compensate for the accrued sleep 
debts even within the first 24 hours post-deprivation. The 

period of sleep deprivation is proportional to the compen-
satory period and rebound sleep may last for several days. 
During the compensatory period, the percentage of REM 
sleep increases above 50%, as a result of increased epi-
sodes of REM sleep [28].

Impaired reproductive function in sleep-
deprived male rats
Sleep deprivation is a significant problem among adult 
men and it has detrimental effects on the male reproduc-
tive system in rats [29]. It is generally believed that tes-
tosterone secretion changes during the day with highest 
blood concentration around wake time and lowest during 
the day [30, 31, 32]. Several scholarly shreds of evidence 
prove that SD lowers the concentration of testosterone 
in the blood and thus, manifesting its deleterious effects 
on human reproductive health and functions, as well as 
on the endocrine system [33, 34]. Stress is an intrinsic 
process of sleep restriction that induces many injurious 
health problems with severe metabolic, endocrinologic 
and immunologic consequences [35]. Therefore, it is sug-
gested that unknown factors and affected sleep duration 
associated with sleep deprivation may contribute to differ-
ences in sperm motility.

In a study conducted on laboratory rats, after seven days 
of sleep deprivation, a statistically significant reduction 
was found in sperm motility when compared to the con-
trol group but an insignificant reduction in sperm counts 
of testis and cauda epididymis was observed between the 
control and SD group [35]. A significant increase in corti-
costerone concentrations in the sleep-deprived groups was 
observed with a corresponding significant decrease in tes-
tosterone concentrations in the SD groups. These results 
are in tandem with several studies that measured steroid 
hormone levels in the blood of sleep-deprived animals [36, 
37, 38]. High levels of corticosteroid secreted during SD 
induced by stressful stimuli may suppress the hypothal-
amus-pituitary-gonadal (HPG) axis resulting in reduced 
testosterone secretion [39, 40]. Circulating testosterone 
levels increase during sleep [41], and this has been shown 
to start rising during sleep onset and peak during the first 
episode of rapid eye movement sleep [42]. Several works of 
literature on human and animal subjects have shown that 
SD is associated with reduced levels of androgens in circu-
lation such as testosterone [43] and a decreased level of 
testosterone can impair gonadal and sexual functions, and 
ultimately may lead to reduced chances of fertility [44].

The testicular function is regulated by a number of 
neurotransmitters and neuropeptides, including seroto-
nin (5-HT) [45, 46]. Serotonin and its receptors have been 
localized in Leydig cells isolated from the testes of golden 
hamsters [47]. Research conducted on animal studies 
showed that serotonin concentrations are increased dur-
ing SD [48, 49]. Serotonin has been demonstrated to 
inhibit testosterone production [47]; hence, the reduc-
tion in testosterone levels observed during SD may be as 
a result of serotonin-related inhibition of testosterone 
production (Figure 1).

More so, decreased production of testosterone may be 
linked with activation of the hypothalamus-pituitary-adrenal 
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(HPA) axis which increases the concentration of corticos-
teroid in circulation [50]. SD decreases testosterone level 
by the inhibition of HPG axis which stimulates the release 
of corticosteroid. Corticosterone level increases through 
a negative feedback mechanism that initiates the activa-
tion of the HPA axis. Through regulation by the hypothala-
mus, the pituitary gland produces pituitary gonadotropins 
such as luteinizing hormone (LH) and follicle-stimulating 
 hormone (FSH). LH stimulates the Leydig cells which have 
surface receptors for LH, the excited Leydig cells produce 
and secrete testosterone. However, if corticosterone levels 
become elevated by stressful stimuli, the release of testos-
terone in Leydig cells decreases and apoptosis of Leydig 
cells are induced [51]. In a study by Mazaro and Lamano-
Carvalho [52], the neonatal exposure of rats to maternal 
deprivation and a resultant neonatal stimulation caused 
a reduction in basal corticosterone levels when compared 
with a control group but this effect was not observed 
when the rats were exposed to a new acute stressor of 
immobilization.

Effects of sleep deprivation on male sexual 
behavior
Sleep deprivation also impairs sexual behavior in male 
rats that previously had excellent sexual behavior. The 
effect of SD on sexual performance was observed as an 
increase in latency to initiate intromission behavior and 

decreased rate of ejaculations and intromissions. This has 
been reported to constitute lower sexual performance 
[53]. On the other hand, when the sleep duration was fur-
ther decreased to mimic the chronic sleep debt present 
in humans, no significant change in sexual motivation 
or behavior was observed [54]. Supplementation of tes-
tosterone has been observed to be an efficient means of 
maintaining and improving sexual response in adults and 
aged male rats [55, 56]. There is evidence that the supple-
mentation of testosterone (T) combined with estradiol (E2) 
shows better results [57]. It is thoughtful to suggest that 
testosterone replacement administered with or without 
estradiol or progesterone during the sleep-deprived state 
could enhance the sexual performances of these animals.

Age-related impairment to reproductive 
function in sleep-deprived young men
SD is a known physiological stressor that deregulates the 
activities of the circadian rhythm. The synthesis of testos-
terone is dependent on endocrine and neuronal signals 
which in turn are influenced by physiological condi-
tions such as stress [58]. In a previous study conducted 
on young men, the concentration of testosterone peaked 
during sleep either they slept during the day or night [59]. 
Testosterone concentration was also observed to decrease 
after waking from both daytime and nighttime sleep. It is 
worth noting that an equivalent period of sleep rebound 

Figure 1: Schematic diagram of the potential mechanism of how sleep deprivation reduces testosterone secretion 
which eventually leads to male infertility.
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after REM-sleep deprivation does not restore testosterone 
concentration to its baseline levels. This implies that long 
period of sleep deprivation may result in a long term sex-
ual hormonal imbalances [59]. SD induces stress response 
by increasing the activity of the hypothalamus-pituitary-
adrenal (HPA) axis, which consequently reduces testoster-
one production [60].

In a study, the sleep of 10 healthy young men was 
restricted to five hours for eight consecutive days to mimic 
the condition experienced by at least 15% of the U.S. 
working population. One week after sleep restriction, a 
significant decrease of about10 to 15% in daytime testos-
terone levels was observed when compared with the level 
found after a normal night of sleep [61]. In a normal sleep 
episode, another study also observed a lower daytime 
testosterone levels after one night of total SD as well as 
after a 4.5-hour sleep episode restricted to the first half of 
the night. On the contrary, the results from the study also 
showed that daytime testosterone levels were not affected 
by two consecutive 4-hour sleep episodes restricted to the 
second half of the night, which is heavier in REM-sleep 
[58]. From this standpoint, research suggests that the tim-
ing, instead of the adversity of sleep deprivation, plays a 
crucial role in daytime testosterone concentrations [58].

Age-related impairment to reproductive 
function in sleep-deprived aging men
Aging reduces the production of testosterone gradually 
and this is usually referred to as ‘andropause’. Reduction 
in testosterone levels is moderate and gradual than that 
of estrogens during menopause in women [62, 63]. Testos-
terone production progressively reduces beginning from 
the midlife years at an average rate of 1 to 2% per year 
[64, 65] with relatively reduced sleep duration. Sleep pat-
terns become more interrupted with sleep fragmentations 
and longer awakenings across the night [66]. NREM sleep 
when compared to REM sleep is affected by aging because 
of the reduction in slow-wave sleep (SWS) and a rise in 
NREM sleep stages during aging [67]. In a study, the rela-
tionship between mean overnight blood testosterone con-
centrations and sleep patterns was investigated in 67 men 
between the ages of 45 and 74. The findings from the study 
showed that poorer sleep quality in middle-aged and older 
men is associated with lower testosterone concentrations. 
In another clinical trial, 10 young men and 8 older men 
underwent multisite intensive monitoring, which included 
simultaneous overnight EEG recordings and frequent blood 
testosterone sampling (every 2.5 minutes) [68]. A precise 
 correlation between increasing testosterone secretion and 
deep sleep in young men was observed but no correlation 
was observed between the sleep stage transitions and tes-
tosterone release. The absence of similar results in older 
men indicates the stronger influence of sleep fragmenta-
tion on testosterone levels of older men than young men.

Sleep Deprivation and changes to Reproductive 
Hormones in women
Sleep has functional effects on reproductive viability in 
women of varying ages. During puberty, sleep stimulates 
the pulsatile secretion of gonadotropin but sleep reduces 

LH pulse frequency in reproductive age women during the 
early follicular phase and has negligible consequences in 
other menstrual cycle phases [69]. Several studies evalu-
ated the impact of sleep on the secretion of sex hormones 
[70, 71, 73, 101].

Follicle Stimulating Hormone (FSH)
FSH is an important regulator of reproductive function 
by stimulating the growth of the ovarian follicle. Sleep 
plays an important role in the secretion of FSH but there 
are conflicting results on how sleep affects FSH level. A 
study conducted on 160 normally cycling, reproductive-
age women showed a positive correlation between FSH 
and sleep duration which continued after adjusting for 
age and body mass index [72]. However, SD in the  second 
half of the night did not change the level of FSH in 
women during the early follicular stage of the menstrual 
cycle [73]. The level of FSH also increases with age and 
decreases with BMI [74] but this relationship is reversed 
after menopause because low BMI was shown to be associ-
ated with the reduction of nighttime sleep duration after 
the age of 60 years [75]. A high level of FSH during the 
early follicular phase of menstrual cycle is a pointer to 
low ovarian reserve [76] and reproductive aging [77]. The 
effect of sleep deterioration after menopause is seen as 
the increased level of FSH with a corresponding reduction 
in BMI.

Progesterone
Progesterone regulates the process of the uterine lining 
and it is essential for implantation and maintenance of 
pregnancy. Low levels of progesterone may be an index 
of luteal phase dysfunction [77]. The effects of sleep on 
progesterone are not well pronounced but it was docu-
mented to affect sleep architecture [78]. Low levels of 
progesterone may be associated with increased sleep-
disordered breathing in women with polycystic ovary 
 syndrome (PCOS) [79].

Thyroid Stimulating Hormone (TSH)
The level of TSH increases during sleep and acute sleep 
deprivation in healthy young women in their follicular 
phase is associated with a significant increase in TSH level 
[80, 81]. High level of TSH causes menstrual irregularities, 
anovulation, amenorrhea and recurrent miscarriages [77]. 
High level of TSH can stimulate prolactin secretion which 
may lead to female infertility [82, 83, 84]. TSH increases 
before sleep onset and continuously increases through-
out the sleep period at night but later decreases during 
the day [85]. TSH surges during acute SD but becomes 
diminished during a prolonged SD [85]. The relationship 
between sleep and TSH shows why acute sleep deprivation 
may lead to high TSH which consequently, might lead to 
anovulation, miscarriages, and amenorrhea.

Luteinizing Hormone (LH)
 LH stimulates steroid release from the ovaries, ovula-
tion, and the release of progesterone after ovulation by 
the corpus luteum [86]. The effects of sleep on menstrual 
cycle modulate LH secretory pulses and amplitude [85] by 
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diminishing the frequency of LH pulses in the early follicu-
lar phase and those awakenings increase the amplitude of 
LH pulse [87]. The amplitude and frequency of LH pulses 
further decreases during the mid-follicular phase, where 
sleep exerts a less noticeable modulation on LH pulses. 
The amplitude of LH decreases toward the middle to end 
of the luteal phase without the influence of sleep [73]. 
The effect of sleep on LH is to down-regulate the activities 
of LH in both male and female reproductive functions.

Prolactin (PRL)
Prolactin is a hormone secreted in the pituitary gland and 
it stimulates milk production (lactation) in women and 
also plays a role in reproduction. Women with narcolepsy 
(with or without sleep apnea) have been observed to have 
lower levels of sleep-related prolactin release [88]. There 
are inconsistent reports on the effect of sleep on prolactin 
but sleep disturbances may deregulate prolactin secre-
tion. It was documented that prolactin surges upon sleep 
onset and is maximal throughout the night [85]. Transient 
awakening inhibits prolactin secretion and is deeply sup-
pressed by SD [85]. The effect of sleep deprivation results 
in hyperprolactinemia which is associated with anovula-
tion, polycystic ovary syndrome and endometriosis [89].

Estradiol
Estradiol is necessary for the development and mainte-
nance of female sex characteristics. It is secreted by the 
granulosa cells of the ovarian follicles. Estradiol is the pri-
mary estrogen during reproductive years and it regulates 
the activities of FSH and LH and thus, plays an important 
role in ovulation and growth of the ovarian follicle. The ris-
ing and falling of estrogen in the menstrual cycle is neces-
sary for FSH and LH to stimulate ovulation [90]. Estradiol 
has been reported to increase during partial sleep depriva-
tion in women of reproductive age [73]. The importance of 
sleep in estrogen secretion was examined in a study and it 
was observed that women with more variable sleep sched-
ules had higher levels of estradiol than women with more 
regular schedules [91]. Furthermore, the level of estradiol 
decreased by 60% in women with regular sleep schedules 
than women with variable sleep schedules [91]. High lev-
els of estradiol were also observed to be associated with 
poorer sleep quality [92]. Women with sleep-disordered 
breathing episodes have been shown to experience better 
sleep quality with estrogen therapy [93]. The importance 
of regular sleep schedules can’t be overemphasized in the 
attainment of a sound and healthy reproductive state in 
women of different reproductive ages.

The effects of Melatonin on reproductive health
The endogenous secretion or suppression of melatonin 
by bright light is implicated in the reproductive health of 
women. The rate of endogenous secretion of melatonin 
has similar relationship between the day length and repro-
ductive axis [94]. Melatonin secretion enhances reproduc-
tive function by synchronizing sexual behaviors to season 
and period that are appropriate for mating and concep-
tion to take place. High levels of melatonin are found 
in human ovarian follicular fluid secreted by the pineal 

gland and ovaries. During ovulation, the importance of 
melatonin present in the ovarian follicles is to protect the 
oocyte from oxidative stress [95]. In a study, low levels of 
follicular melatonin were observed to be associated with 
higher levels of reactive oxygen species (ROS) and reduced 
oocyte quality in infertile women [96]. SD reduces the 
secretion of endogenous melatonin thereby limiting the 
follicular melatonin levels and thus, exposing the follicles 
to high influences of oxidative stress. Increasing knowl-
edge of melatonin’s ability to reduce oxidative stress in 
the ovary has instigated the investigation of exogenous 
melatonin as a protective agent during in vitro fertiliza-
tion (IVF) [94]. Melatonin supplementation improves the 
outcomes of IVF such as the number of oocytes retrieved 
[97], oocyte quality and maturation [97, 98], rate of fer-
tilization [96, 98], and the quality of embryo [94, 96, 
98]. Melatonin supplementation has also been shown to 
improve IVF outcomes in women with PCOS [99]. Sleep 
deprivation deregulates the endogenous secretion of mel-
atonin and impairs reproductive health.

Consequences of gestational sleep deprivation 
on the sexual performance of the offspring
Testosterone is a reproductive hormone that drives sex-
ual behavior and performance in males [100, 101, 102, 
103] but little is known about the role of progesterone 
related with sexual behavior in females. Gestational sleep 
deprivation affects the sexual behavior of the offspring. 
In order to ascertain the effects of SD in women similarly 
to what have been reported in men, a study examined 
the sexual response of the offspring of female rats who 
were subjected to sleep restriction during pregnancy and 
male rats subjected to paradoxical sleep deprivation (PSD) 
before copulation [54]. It was observed that gestational 
sleep restriction (SR) compromised sexual behavior in 
the offspring when they reach adulthood. F1 male off-
spring of female rats that were subjected to SR through-
out the gestational period showed significantly reduced 
sexual motivation. This was made evident by the increased 
latency to the first mount and a reduction in the overall 
number of mounts during the experimental procedure. 
Similarly, when the male parents were subjected to SR 
or PSD, the F1 male offspring showed a reduction in tes-
tosterone level as well as impaired sexual function. The 
reduction in sexual motivation observed in the offspring 
was due to sleep-deprived parents [54]. In humans, both 
the paternal genetic traits and environmental exposures 
have profound effects on the offspring’s reproductive 
health including changes in paternal nutritional, hormo-
nal and metabolic status [104]. The environmental expo-
sures of the father affect the offspring’s phenotype [105] 
and high levels of ROS decrease sperm mitochondrial 
respiration [106]. Summarily, the findings from this study 
show that the sleeping habits of the parents influence 
the intergenerational transmission of reproduction. Fac-
tors such as stress and lack of sleep activate the adrenal-
hypothalamus-hypophysis axis, which alters the activity of 
the aromatase enzyme responsible for the conversion of 
E2 to T within the hypothalamus [107]. Stress is an inher-
ent part of sleep deprivation and may compromise sexual 
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functions in the offspring and this might be responsible 
for the alterations in the sexual response observed in the 
offspring. The detrimental effects of poor sleep quality on 
the sexual function of the offspring and the health val-
ues of quality sleep extend beyond individuals to their 
descendants.

Reproductive health of sleep-deprived shift 
Workers
Many studies conducted on the relationship between 
sleep and circadian rhythm disruption associated with fer-
tility and reproductive health were focused on female shift 
workers. Shift works are always problematic and involve 
working at night. The circadian timing system of shift 
work promotes sleep among the workers and the time 
allocated for sleep coincides with the time of the high cir-
cadian alerting signal. This leads to sleep disruption and 
misalignment between the externally imposed light-dark 
cycle and endogenous circadian systems. This alteration in 
the circadian timing system has negative consequences on 
physiological function as circadian oscillators are spread 
throughout the periphery (Figure 2) [108].

A meta-analysis study conducted in 2014 investigated 
the effect of shift work on reproductive health and came 
up with the following outcomes. Infertility was defined 
as time to pregnancy greater than 12 months, early 
spontaneous pregnancy loss prior to 24 weeks gestation 

and menstrual cycle disruption defined as cycles less than 
25 days or greater than 31 days [109]. An increased odds 
of menstrual disruption (1.22, 95% confidence interval; 
1.15–1.29) and infertility (1.8, 95% confidence interval; 
1.01–3.20) was observed among the shift workers but 
without early spontaneous pregnancy loss. A sub-analysis 
defined night shift workers as those working shifts only 
at night for about ten to twelve hours typically begin-
ning between 20:00 and 22:00 [109]. When the sub-anal-
ysis was restricted to night shift workers, a significantly 
increased risk of early spontaneous pregnancy loss was 
observed which remained after adjustment for confound-
ers (1.41, 95% confidence interval; 1.22–1.63). In a study 
of 2000 female flight attendants, when the sleep period 
overlapped with the work times based on the time zone, 
a significantly increased risk of first-trimester miscarriages 
was reported among the female flight attendants [110]. 
Shift work has been used extensively as a driving tool for 
assessing health risks due to circadian desynchrony but 
there have been several limitations to these studies. This 
is because of the differences in shift work schedules and 
duration of shift work. It is further unclear whether cir-
cadian deregulations, sleep deprivation, or exposure to 
light at night mediate the observed risks. The conflicting 
results and minimal effect of shift work on early reproduc-
tive health may be secondary to the observed health risks 
and this area needs to be further researched.

Figure 2: Schematic diagram of how sleep deprivation among female shift workers deregulates the physiological 
mechanisms of reproduction which substantially contributes to female infertility.
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Conclusion
In summary, research reveals that infertility across all ages 
is affected by the quality, timing, and duration of sleep. 
Human and animal models clearly show that sleep dep-
rivation alters the level of reproductive hormones that 
are key players in determining the tendencies of male 
and female fertility. Findings from this study show that 
sleeplessness produces physiological alterations similar to 
oxidative stress which stimulates the activation of the HPA 
axis and inhibits the HPG axis, thereby resulting in a high 
level of corticosteroids in the blood. High corticosteroids 
are implicated in several cases of infertility in men and 
women. Circadian disruption induced by shift work affects 
reproductive health by deregulation of sex steroids, gon-
adotropins and prolactin production. The consequences 
of a sleep deprived parent can also be passed across to 
their descendants. The reduction in sexual motivation 
observed in the offspring may be as a result of sleepless-
ness experienced during the gestational period. The gath-
erings of this study show that sleep deprivation not only 
has detrimental effects on male and female reproduction 
functions but also transcends to the offspring by impair-
ing their sexual performances. However, mechanisms 
underlying the complex interaction of sleep on reproduc-
tive hormones in women need to be further investigated 
to enable us understand the clinical approaches to eradi-
cating cases of infertility among female shift workers.
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