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Abstract—This paper presents a method for obstructive sleep
apnea (OSA) screening based on the electrocardiogram (ECG)
recording during sleep. OSA is a common sleep disorder produced
by repetitive occlusions in the upper airways and this phenomenon
can usually be observed also in other peripheral systems such as the
cardiovascular system. Then the extraction of ECG characteristics,
such as the RR intervals and the area of the QRS complex, is useful
to evaluate the sleep apnea in noninvasive way. In the presented
analysis, 50 recordings coming from the apnea Physionet database
were used; data were split into two sets, the training and the testing
set, each of which was composed of 25 recordings. A bivariate time-
varying autoregressive model (TVAM) was used to evaluate beat-
by-beat power spectral densities for both the RR intervals and the
QRS complex areas. Temporal and spectral features were changed
on a minute-by-minute basis since apnea annotations where given
with this resolution. The training set consisted of 4950 apneic and
7127 nonapneic minutes while the testing set had 4428 apneic and
7927 nonapneic minutes. The K-nearest neighbor (KNN) and neu-
ral networks (NN) supervised learning classifiers were employed
to classify apnea and non apnea minutes. A sequential forward
selection was used to select the best feature subset in a wrapper
setting. With ten features the KNN algorithm reached an accuracy
of 88%, sensitivity equal to 85%, and specificity up to 90%, while
NN reached accuracy equal to 88%, sensitivity equal to 89% and
specificity equal to 86%. In addition to the minute-by-minute clas-
sification, the results showed that the two classifiers are able to
separate entirely (100%) the normal recordings from the apneic
recordings. Finally, an additional database with eight recordings
annotated as normal or apneic was used to test again the classifiers.
Also in this new dataset, the results showed a complete separation
between apneic and normal recordings.

Index Terms—Electrocardiogram, heart rate variability, neural
network, pattern classification, time-varying autoregressive model.

I. INTRODUCTION

S LEEP apnea is a common sleep disorder characterized by
the repetitive cessation of breathing during sleep. In clin-

ics, sleep apnea is divided into three classes: obstructive, central,
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and mixed. Obstructive sleep apnea (OSA) is the most common
form in the general population, with prevalence between 2%
and 4%, and is commonly associated with aging and obesity.
Obstructive apnea consists of an interruption of the airflow to
the lungs caused by a collapse in the upper airways. Regardless
of the type of sleep apnea, it is typically accompanied by re-
ductions in blood oxygen saturation and arousal events. During
obstructive sleep apnea, respiratory muscles produce mechan-
ical effort in order to overcome the occlusion. If these efforts
are not sufficient, the blood oxygen level begins to decrease,
and muscle effort increases in response to the hypoxia until an
arousal event takes place to reactivate all of the systems and re-
store the normal respiration [1]. In mild and severe stages, sleep
apnea events may occur hundreds of times during a single night
with serious health and social consequences. The most common
sleep apnea symptoms are sleepiness during the day, irritability,
tiredness, impaired concentration, and reduced learning capabil-
ities [2]. These symptoms typically produce even more serious
consequences, including social problems in the work place and
traffic accidents. In addition, severe OSA generates diurnal hy-
pertension and severe cardiovascular health implications that
can lead to death when apnea remains undiagnosed or is not
properly treated [3].

In order to diagnose sleep apnea, dedicated personnel, ade-
quate infrastructure, and special acquisition systems are needed,
which make this diagnosis an expensive procedure. OSA di-
agnosis, in fact, requires the analysis of different signals that
are obtained from polysomnography recordings taken during
the duration of one night in a specialized sleep center. Due
to the small number of sleep centers with specialized personnel,
the diagnosis of sleep apnea is not accessible to the general pop-
ulation and, as a result, OSA pathology is nowadays generally
underestimated. These difficulties motivate new efforts aimed at
obtaining simpler and more accessible ways of evaluating sleep
apnea.

Although sleep apnea is a respiratory event, its effects can
be clearly observable within other peripheral systems such as
the cardiovascular system. Due to this relationship, the elec-
trocardiogram (ECG) can provide very valuable information
about apneic events and has been broadly studied for apnea
detection [4]. One of the most important signals that can be
obtained from the ECG is the beat-by-beat series of heart rate.
This signal contains fluctuations, commonly named heart rate
variability (HRV), which present frequency components be-
tween 0 and 0.5 Hz and are linked to the Autonomic Nervous
System (ANS) function. Frequency components between 0.15
and 0.5 Hz are generally associated to the vagal tone and are
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known as high frequency components (HF). Frequencies from
0.02 to 0.15 Hz are the manifestation of the activation of both
parasympathetic and sympathetic systems and are labeled low
frequency components (LF). An increase in the LF power is
generally associated to the orthosympatic activation. Finally,
frequencies between 0.0033 and 0.02 Hz contain information
regarding slow processes such as thermoregulation [5]. The ra-
tio between HF and LF spectral powers is defined as a measure
of the sympatho-vagal balance [6]. During sleep, HRV presents
specific dynamics [7] and complexity [8] that are characteris-
tics of non-rapid eye movement sleep (NREM) and rapid eye
movement (REM) sleep [9]. The power spectral distribution
of HRV signals show powers highly concentrated around 0.3
Hz during NREM sleep, in contrast to REM sleep where the
high frequency components are less peaked and the low fre-
quency components are prevalent. However, when sleep apnea
occurs, there is a reduction in the HRV complexity and frequency
components appear around 0.02 Hz as a result of the apnea
repetition.

In the last several years, some research has focused on devel-
oping automatic screening tools for OSA based on the analysis
of the ECG with a variety of signal processing and pattern
recognition techniques [4], [10]. Some studies used features ex-
tracted from the ECG such as HRV, QRS complex amplitude,
T duration, R area, and peripheral tonometry. Results obtained
by those studies showed good classification levels between nor-
mal and apneic periods. Among the different approaches for
classifying apnea, we can find the Hilbert transform, wavelets
decomposition, the Fourier transform, time–frequency analysis
and other techniques which are mainly used to extract relevant
features [4]. Among the apnea screening methods presented in
literature, de Chazal et al. [10] propose one of the best, it is able
to achieve 90% of correct classification on minute-by-minute
basis. It extracts spectral features through Fourier transform of
both RR series and ECG morphological characteristics. In our
opinion, its main weakness is in the high-dimension feature
space, i.e., 88 different features. This is probably due to the fact
that the features are not chosen taking into consideration physi-
ological mechanisms (this is the so called black-box approach).
The aim of this paper was to propose a different approach able
to achieve a similar level of performance, but with a smaller
number of features for the classification. To reach this objective
we focused on two critical aspects: 1) knowledge of the phys-
iological phenomena implied in the OSA episodes to extract
features able to better describe the underlying mechanisms; 2)
use of time-variant models able to deal with the characteristic
nonstationarity of the signals of interest during sleep. In addi-
tion, two different classification methods were compared on the
same set of features, to clarify the influence of the classification
methodology on the final results.

II. MATERIALS AND METHODS

A. Protocol

The data analyzed in the present research come from the Phys-
ionet website www.physionet.org. The ECG data from complete
night polysomnography recordings were acquired with a sam-

pling rate of 100 Hz, 16-bit resolution, and modified lead V2
electrode configuration. Each recording has a duration close to
8 h. Apnea scoring was carried out by expert personnel, utiliz-
ing polysomnographic data, according to the standard clinical
criteria as reported in [1]. The annotation was provided on a
minute-by-minute basis: a minute was labeled as apneic if it
contained at least one apneic or hypo-apneic episode, and if not
it was defined as nonapneic [11]. The subject age ranged in the
dataset between 27 and 63 years (48 ± 10.8 years) and subject
weight ranged between 53 and 135 kg (86.3 ± 22.2 kg). In the
Physionet data, the recordings are classified into three groups:
apnea group (class A, with more than 100 minutes in apnea,
mean age of 50 years with a range between 29 and 63 years),
Borderline group (class B with total apnea duration more than 5
and less than 99 min, mean age of 46 years with a range between
39 and 53 years) and normal group (class C, with less than 5 min
in apnea, mean age of 33 years with a range between 27 and
47 years). The database also contains the QRS complex occur-
rence times for each recording. From a total of 70 recordings
in the database (35 records called withheld set and 35 records
called release set), we selected the recordings that satisfied the
following criteria:

1) no periods with more than eight consecutive misdetected
QRS complexes,

2) no presence of a large quantity of ectopic beats in the
recording.

A total of 50 recordings were selected, of which 25 (belonging
to physionet release set) were used in the preliminary analysis
needed to develop and training our algorithms for feature extrac-
tion and classification. This training set consisted in 15 apneic,
2 borderline, and 8 normal recordings with 4950 min with ap-
nea and 7127 without apnea episodes. The other 25 recordings
(belonging to physionet withheld set) were used to measure the
performance of our algorithms. This testing set contained 13 ap-
neic, 4 borderline and 8 control recordings with 4428 minutes
with apnea and 7927 without apnea episodes. The algorithm
performance was measured by comparing its minute-by-minute
classification to the minute-by-minute annotation provided in
the Physionet website. In addition to the Physionet database,
eight new recordings coming from Philipps University were
used for a further verification of our screening systems. These
new recordings were acquired at 100 Hz with 16-bit resolution
and modified lead V2 electrode configuration. The subjects had
the following characteristics: weight was 76.75 ± 20.98 kg, age
of 40.75 ± 16.14 years and 14.61 ± 23.44 as apnea/hypoapena
index [(AHI) it is the hour average of apnea and hypoapnea
episodes during sleep]. From [1], an apnea/hypoapnea event is
defined as a transient reduction in, or complete cessation of,
breathing. These episode must fulfill the following criteria,

1) A clear decrease (>50%) from the baseline in the ampli-
tude of a valid measure of breathing during sleep. Baseline
is defined as the mean amplitude of stable breathing and
oxygenation in the two minutes preceding onset of the
event or the mean amplitude of the three largest breaths in
the two minutes preceding onset of the event.

2) Clear amplitude reduction of a validated measured breath-
ing during sleep that not reach the above criterion but is
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associated with either an oxygen saturation of > 3% or an
arousal.

3) The event last 10 s or longer.
The recordings were annotated by expert personnel as either

normal or apneic based on the standard criterion [1].

B. Methods

From the single lead of the ECG signal, QRS complex area
(QRS area) and RR intervals were derived (the algorithm de-
scribed in [12] was used to find the R peak occurring times in
the recordings coming from Philipps University, while for the
recordings coming from physionet was not necessary since these
recordings already had the QRS occurring times). At this point,
a set of features were extracted from this data through time
and frequency domain analysis and then the features were used
for classification. Fig. 1 shows an example demonstrating the
derivation of the RR intervals and the QRS area obtained from a
subject during normal (right panel) and apneic (left panel) con-
ditions. The RR intervals time series shows oscillatory patterns
of brady-tachycardia during apnea events. These correspond to
a very low frequency component (around 0.02 Hz) in the RR
intervals spectrum. The same oscillatory patterns occur in the
QRS area time series, which is related to the respiratory activity.
A high value of coherence does exist between the two time series
at very low frequencies. The time series and the related power
spectra during normal breathing are also presented in Fig. 1. In
such a case the main oscillation, in both the signals, is at the
respiration frequency (around 0.25 Hz). This is also true for the
coherence function. From this, it is clear that how both time
and spectral parameters extracted from RR intervals and QRS
area can be considerated useful features to be fed into the clas-
sifier. Nonparametric (KNN) and parametric (neural networks)
supervised classifiers are compared in this paper.

C. Correction of RR Intervals

From the QRS complex occurrence time provided in Phys-
ionet, RR series were extracted. Resulting series were plotted
on the PC screen with the related ECG for the manual correction
of misdetected beats. After correction, the RR time series were
computed. However, after the visual inspection and correction,
some RR intervals still presented nonphysiological distances
(i.e., ectopic beats). In order to correct those intervals, the fol-
lowing procedure was implemented. The RR mean value was
calculated using a ten-beat moving average filter. A search was
performed for all RR intervals 30% higher and 20% lower with
respect to the mean at each beat. RR intervals that met this con-
dition were substituted by the mean RR value at that time [10].

D. ECG and QRS Area

Previous studies analyzed the QRS area variations during both
normal respiration and respiratory maneuvers such as Valsalva.
They reported variations on the QRS area with frequencies close
to those of the mechanical movements produced by respiration
(see Fig. 1). These changes in the ECG are mainly generated
by the variations in the relative distance between the electrode

Fig. 1. Temporal and spectral relationship between RR intervals and QRS
area during apneic and normal sleep. From top to bottom: ECG, RR intervals,
QRS area, airflow, power spectrum of the RR intervals, power spectrum of the
QRS area and coherence. Left column is related to the apneic breathing, while
right column is related to normal breathing during sleep.

located on the chest surface and the heart, and by the changes in
the thoracic impedance produced by the inflation and deflation
of the lungs. For this reason, the QRS area could be used as a
rough estimation of the respiratory activity. The QRS area was
calculated by subtracting the ECG baseline from the original
ECG. The baseline was calculated by a median filter of 200 ms
width1 [10], [13]. Using the resulting ECG, the minimum value

1This is a nonlinear technique that slides a window to a sequence, replacing
the center value in the window with the median value of the window samples.
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was found within a temporal window 100 ms before and after
the maximum R peak value. Then, the area inside this region
was calculated by summing up all of the sample values.

E. Time-Varying Autoregressive Model (TVAM)

Frequency analysis of the signals provides useful spectral pa-
rameters that have important physiological meanings, as is the
case with HRV. Parameters are in general estimated under the
hypothesis of stationarity, but when the signal to be analyzed
is nonstationary, as is the case of HRV during sleep time, it is
necessary to use techniques such as TVAMs, which are based
on a filter able to adapt its parameters with each new sample. An
adaptive filter self-adjusts its transfer function according to the
characteristics of the input signal, and thus seems particularly
suitable for this purpose. Let x be a row vector with N values
defined as x = |x(1), x(2), . . . , x(N)|. The prediction (approx-
imation) of the current output at time n for an all pole system is
defined as follows:

x̃(n) = −
S∑

s=1

asx(n − s) (1)

where the as values are coefficients of the filter (Model), S the
filter order, and x̃(n) denotes the prediction output. Thus the
prediction error is evaluated as

e(n) = x(n) − x̃(n) = x(n) +
S∑

s=1

asx(n − s). (2)

Each time the system moves toward a new input sample x(n +
1), the vector a of the coefficients is updated in order to follow
the variation in the time series. This update can be achieved in
a recursive way by

a(n + 1) = a(n) + K(n)e(n) (3)

where K(n) is the analogue of the Kalman gain, which is up-
dated sample by sample [14]. The previous relations can be
extended to the bivariate case, where the prediction can be
written as

x̃(n) = −
S∑

s=1

Asx(n − s) (4)

where

As =
∣∣∣∣ a11(s) a12(s)
a21(s) a22(s)

∣∣∣∣ (5)

x(n) =
∣∣∣∣ x1(n)
x2(n)

∣∣∣∣ . (6)

We can observe that for a specific time n, the characteristics of
the model system are described by the following matrix:

A(n) = |A1(n) A2(n) · · · As(n) | (7)

and, for a multichannel AR model, the power spectral densities
are given by [15]

Pn (f) = (An (f)−1VnAn (f))−H T (8)

where T is the sampling period, H denotes the Hermitian trans-
pose, V is the covariance matrix of the multichannel noise input
process at time n (covariance of the prediction errors) and, being
I the identity matrix, A(f) is given by

An (f) = I +
S∑

s=1

An (s)exp−2πisf T . (9)

As a result, we obtain the following Hermitian power spectral
density matrix

Pn (f) =
∣∣∣∣ P11(f) P12(f)
P21(f) P22(f)

∣∣∣∣ (10)

where the diagonal elements contain the spectra of individ-
ual channels and the off-daigonal elements contain the cross-
spectra. Finally, we can evaluate a measure of the spectral depen-
dence between two channels. This measure is called complex
coherence and it is computed as

γ12n
(f) =

P12n
(f)√

P11n
(f)

√
P22n

(f)
(11)

the coherence spectrum between two channels is given by

η12n
(f) = |γ12n

(f)|2 (12)

while the phase spectrum between two channels is given by

θ12n
(f) = tan−1

[
Im(γ12n

(f))
Re(γ12n

(f))

]
. (13)

For further details see [16].

F. KNN Algorithm

KNN is a nonparametric technique for classification, where
it is assumed that we have no a priori parameterized knowledge
about the probability structure of the data [17] and data samples
are directly used instead. In short, the KNN algorithm assigns
to a new observation the most frequent label among the samples
in the training set that are closest to it. This simple rule imple-
ments a nonparametric Bayesian classifier that maximizes the a
posteriori probability of label class w ∈ w1 , . . . , wM given the
observed data x in the classical form

p(w|x) =
p(x|w)p(w)

p(x)
. (14)

The theory behind this method can be summarized in the imple-
mentation of a nonparametric estimate of the unknown probabil-
ity density p(x), for the data. This estimate is based on the fact
that the probability P , for each vector x, to fall in a (possibly
small) region � around it can be evaluated by

P =
∫
�

p(x′)dx′. (15)

P is the expected value of p(x) in a given region around a
sample; one can estimate a smoothed value of p(x) for the data
by locally estimating the probability P around each possible
sample. Assuming p(x) is constant in a (possibly small) region
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� around a sample x, we can write

P =
∫
�

p(x′)dx′ � p(x)V (16)

where V is the volume enclosed by the region � around x.
Let us now assume we have n independent and identically

distributed samples x1 , . . . ,xn drawn from the unknown prob-
ability distribution p(x). Using a maximum likelihood approach,
we can estimate the probability P = k/n as the number k of
samples falling in a given region of volume V around a sample.
This gives us an estimate of the data density

p(xn ) � k/n

V
. (17)

A KNN classifier specifies P taking, for each record, a sur-
rounding region capable of containing a fixed number of samples
K; this region, depending on the specific record of the datasets
it is referred to, will have a different volume Vn and the data
density will be

p(xn ) � k/n

V
=

K

Vn
(18)

where Vn is the volume of the region around xn , i.e., its neigh-
borhood, containing K samples. We can then estimate the a pos-
teriori probabilities of the label for a new sample P (wi |xnew )
from a set of labeled samples using this result.

Let us place a cell of volume Vnew around xnew so as to
capture K samples, of which Ki ≤ K subsequently labeled
wi . Doing so, the estimate for the joint probability p(xnew , wi)
becomes

p(xnew , wi) =
Ki

Vnew
(19)

and thus a reasonable estimate for the a posteriori probability
over the possible classes P (wi |x) is computed as

P (wi |xnew ) =
p(xnew |wi)p(wi)

p(xnew )
=

p(xnew |wi)p(wi)∑c
j=1 p(xnew |wj )p(wj )

(20)

=
p(xnew , wi)∑c

j=1 p(xnew , wj )
=

Ki

K
(21)

where c is the number of classes.
All this reasoning boils down to the simple fact that the a pos-

teriori probability of (14) of class label wi for a given record x is
merely the fraction of the samples within the cell around x con-
taining K other samples that are labelled wi . For minimum error
rate, we need to select the category most frequently represented
within the cell, and it can be proved that, if there are enough
samples and if the cell is sufficiently small, this will approach the
performance of the best possible classifier [17]. In practical im-
plementations, the local region enclosed by the nearest neighbor
training samples of xnew is commonly defined in terms of the
Euclidean distance in the n-dimensional feature space �n [18].

G. Artificial Neural Networks

Artificial neural networks (ANNs) are generic nonlinear func-
tion approximators extensively used for pattern recognition and

Fig. 2. Schematic representation of a feedforward neural network. a0 are the
input neurons, aI represent the neurons of the hidden layer and aI I is the output
neuron. f is the neuron function and b represents the neuron bias.

classification [19], [20]. A neural network is a collection of basic
units, called neurons, computing a nonlinear function of their
input. Every input has an assigned weight that determines the
impact that this input has on the overall output of the node. In
Fig. 2, a schematic representation of such an artificial network
in shown. In this diagram, the label wsr is the weight of the
connection from neuron r to neuron s, and as is the activation
or output of neuron s. Unit s output is obtained by ideally fol-
lowing a two step procedure. First the total weighted input as is
computed using the formula

as =
∑

r

wsrar (22)

where ar is the activity level of the rth unit in the previous layer
and wsr is the weight of the connection between the rth and the
sth unit. Then, neuron output is obtained as a nonlinear function
(e.g., sigmoid or hyperbolic tangent) of the total weighted input
as minus a bias term.

By interconnecting a proper number of nodes in a suitable
way and by setting the weights to appropriate values, a neural
network can approximate any nonlinear function with arbitrary
precision [21]. This structure of nodes and connections, known
as network topology, together with the weights of the connec-
tions determines the final network behavior. Fig. 2 describes a
simple feed-forward topology (i.e., no loops are present) with
a single hidden layer (i.e., a layer of neurons neither connected
to the input nor to the output). Given a neural network topol-
ogy and a training set, it is possible to optimize the values of
the weights in order to minimize an error function by means
of any back-propagation algorithm [22], standard optimization
technique [23] or randomized algorithm [24].

The topology of a neural network plays a critical role in
whether or not the network can be trained to learn a particular
dataset [40]. A simple topology will result in a network that can-
not learn to approximate a complex function, while a complex
topology is likely to result in a network losing its generalization
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capability. This loss of generalization is the result of overfitting
the training data instead of approximating a function present
in the data, a neural network that has an overly complex struc-
ture may have the ability to memorize the training set resulting
in inaccurate predictions on future samples. In this paper, in
order to improve generalization, we use the early stopping tech-
nique [25]. This consists of using a validation set to stop the
training algorithm before the network starts learning noise in
the data as part of the model. Error resulting on the validation
set can be used also as an estimate of the generalization error and
thus can be used to select a proper number of hidden neurons.

H. Feature Set

Preprocessing (RR detection and QRS area calculation) pro-
vided two time series with physical and physiological informa-
tion about the ANS and the respiratory system. Based on these
time series, it is possible to extract characteristics that could
be of physiological and clinical relevance. In addition to those
features that have a physiological meaning, it is possible to ex-
tract related features without an explicit or direct physiological
meaning, but with discrimination power that allows for class
separation, as it is needed for the problem under study. To this
end, from RR intervals and QRS area (QRS area was normalized
with its mean value index to maintain a range value comparable
with the RR intervals) phase space, two time series were de-
rived. The first one was the module Mod(n), which is defined
as

Mod(n) =
√

QRSarea(n)2 + RR(n)2 (23)

where n is the beat number. The second one was called phase
Pha(n) and is defined as

Pha(n) = tan−1
(

QRSarea(n)
RR(n)

)
. (24)

These latter features were generated with the expectation to
highlight the relationships between RR value and respiration
(that are well known in physiology, see for example [26]),
through the use of simple geometrical relations.

The power spectral density (PSD) and coherence, for each
RR intervals and QRS area series, were obtained by a bivariate
time-varying autoregressive model at each beat. From the beat-
by-beat spectra and coherence, three time series were obtained
by integrating the following bands: very low frequency (VLF) =
0.003–0.04 Hz, LF = 0.04–0.15 Hz and HF = 0.15–0.5 Hz. The
same spectral indexes were extracted from Mod and Pha, but in
a monovariate way.

When dealing with physiological series, it is important to
normalize the time series in order to eliminate the intersubject
variability, which is produced by subject specific physiologi-
cal limits and conditions. In this way, some inconsistencies are
eliminated and it is assured that noise caused by the bio-diversity
of subjects is reduced or damped. We applied two different nor-
malization procedures to the data; each feature, coming directly
from RR intervals and QRS area time series, was normalized to
zero mean and unit standard deviation where the corresponding
mean and standard deviation were calculated from the corre-

sponding whole night recording. HF, LF, and VLF were normal-
ized in two different ways: zero mean and unit standard deviation
with respect to the night recording and beat-by-beat band power
percentage with respect to the total power (VLF + LF + HF).
Since coherence values range between 0 and 1, no normalization
was applied. At this point, all the features presented a temporal
beat resolution. For all the features, mean and variance were
evaluated minute-by-minute in order to obtain the same tempo-
ral resolution given by the apnea annotations in the Physionet
database. For RR intervals, QRS area, Mod, and Pha, kurtosis
and skewness were also evaluated minute-by-minute. A total of
72 features were extracted.

I. Selection and Transformation of the Features

To prevent the course of dimensionality, avoiding classifica-
tion errors produced by domination of irrelevant features in esti-
mating the a posteriori distribution for the classification, feature
selection has been applied. Feature selection can be performed
in different ways: it can be evaluated by statistical analysis of
features, wrapper methods, principal component analysis or fac-
tor analysis [17]. Wrapper methods select the features based on
the classifier performance for each possible subset in order to
predict the benefits of adding or eliminating a feature from the
feature set (cross-validation). Wrapper methods might have a
high computational cost due to the exhaustive procedure to eval-
uate all possible combinations of the input features to find the
best subset; to this regard, some greedy approaches have been
proposed to overcome this drawback and maintain high perfor-
mance on wrapper methods. Some of the most common wrapper
methods used in the paper include: sequential forward selection
(SFS), sequential backward selection, and bidirectional selec-
tion [27], [28]. In this study, sequential forward selection with
KNN wrapper evaluation was used to find the best feature subset
to classify sleep apnea.

1) Wrapper Approach Through Leave-One-Out (LOO):
LOO cross-validation (LOOCV) is a loop procedure to com-
pute some statistics of a classifier performance. LOOCV evalu-
ates the classifier performance using a validation set consisting
of a single observation from the whole dataset and the rest of
the observations as training set. Then the evaluation of the per-
formance is repeated such that each observation in the dataset
is used once as the validation set. Finally, mean and variance
of the classifier performance are computed, giving a statistical
evaluation of the classification.

SFS has been used in this work to find the best feature subset
that maximizes the classifier performance based on LOOCV.
SFS begins evaluating the classifier performance for each single
feature. Afterwards SFS selects the best individual feature as
the feature that maximizes the classifier performance. Then SFS
evaluates the LOOCV consisting of two components. The first
of this is the one that maximized the classifier performance
in the previous phase and the second is one of the features from
the remaining feature subset. This allows for the selection of
the best pair of features. Consecutively, SFS evaluates feature
subsets with three, four, or more features. As a result, SFS gives
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Fig. 3. KNN performance at different Ks and different feature sets selected
by statistical significance. From top to bottom, accuracy, specificity and sensi-
tivity. Dot is for one feature, circle for ten features and triangle represents the
performance of 30 features. Dashed line shows K = 25 that was selected for
classification.

the best feature subset consisting of the combination of best
features selected at each step.

2) KNN-Model Selection: A KNN(K,F, S) model classifier
is defined by three variables: (K), which represents the number
of samples nearest to the target to be considered for class de-
cision, (F ) the feature set, and (S) the training set. In our case
(S), consisted of the training set that contained 7127 nonapneic
and 4959 apneic minutes. In order to find a proper K to apply
SFS, we selected three features subsets with the highest statis-
tical difference between apnea and no apnea classes by using
the Wilcoxon test, which is a nonparametric statistical analysis.
These subsets were formed, respectively, by the single feature
with the highest p value, the ten features with the highest p
value, and the 30 features with the highest p value, respectively,
according to the Wilcoxon test. For each subset, accuracy, speci-
ficity, and sensitivity were evaluated for K = 1, 3, 5, . . . , 61 by
LOOCV. Fig. 3 shows the behavior of performance measures
for the three subsets at different K values. The KNN perfor-
mance at a K value of 25 is identified by the dotted line. This
K value was selected for our analysis because the performance
measures of accuracy, sensitivity, and specificity did not show
clear improvements with higher K values.

After selecting the best K, it is necessary to define the set
of features F that has separation power for apneic and nonap-
neic events. In order to define the best set with nonredundant
information, the SFS previously described was used. The SFS

Fig. 4. Performance of the KNN Classifier during (a) feature selection by SFS,
(b) with smoothing versions of the feature set in training where x axis represent
the smoothing window length, and (c) post-processing window selection. Circle
is accuracy, dot is specificity, and triangle represents sensitivity.

is stopped when it finds either a desired number of combination
of features or there are no more features to combine. In our
case, we stopped the SFS when the feature subset consisted of
20 features. Fig. 4(a) shows the accuracy behavior at each step
when using SFS.

J. Preprocessing and Postprocessing

In order to boost the classification performance after feature
selection, the classifiers were trained again with the best fea-
ture subset and complemented with their respective smoothed
versions. This was done since it is assumed that the smoothed
features contain information at different time scales. First for
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each classifier, LOOCV was evaluated using its best ten feature
subset and complemented with the same best ten features, but
smoothed by a moving average filter of window size equal to
2 min. Then, the same procedure was applied but using a moving
average filter of window size equal to 3 min. This procedure was
repeated with time windows of 3, 4 until 20 min. Fig. 4(b) shows
the performance of the KNN classifier during training with the
best feature subset of ten features and their respective smoothed
versions. The window width selected was 15 min (identified
with an arrow) since, with this value, accuracy, specificity, and
sensitivity are maximized.

Generally, when dealing with time series, the output of a
classifier can be postprocessed to eliminate spurious misclassi-
fication events. Spurious events are produced when the values of
the features are located in the proximity of the decision boundary
or by the presence of outliers. In order to produce an automatic
post-processing procedure, a median window running across the
classification sequences for each recording was used. This pro-
cedure boosted classification performance. Different windows
were tested in order to boost the classification and to adapt the
classifier to the data. Fig. 4(c) shows the KNN performance on
the training set at different size window lengths (size is given
in minutes). The selected window was 3 min since accuracy,
sensitivity and specificity are maximized at this window length.

1) NN Model Selection: A feedforward neural network was
selected to be compared with KNN in classifying apnea and
non apnea epochs. A back-propagation algorithm was used to
adjust the weight of the net during the training process. Neural
networks are powerful models prone to overfitting the data;
so, we followed a training procedure aimed at reducing this
issue. The same training set used in KNN was further divided in
three groups: the training group (60% of the training epochs),
the validation group (20% of training epochs) and the testing
group (20% of the training epochs). The training group has been
used by the Levenberg–Marquardt training procedure in order
to optimize the weights, while the validation group has been
used to perform early stopping. The NN architecture was then
selected by an interactive bottom-up procedure for the hidden
layer, using classification error in the test group. In principle,
the validation error could have been used for network structure
optimization, but we aimed at maximum generalization in the
training procedure and thus we have decided to use the test set
instead.

The features used for the NN training were the best ones found
by the KNN algorithm together with the best smoothed versions
and post processing median filter selected for the KNN. The
input layer dimension was chosen depending on the feature set
dimension. The output layer had 1 neuron (linear neural func-
tion) and the hidden layer (logarithmic Sigmoid neural function)
was varied from 3 to 30 neurons. For each net, the training pro-
cess was stopped when classification in the validation set began
to increase (early stopping procedure). Each net was restarted
20 times and the NN architecture with the lowest classification
error in the test group was selected for further analysis. Table I
presents the selected architectures (in terms of number of neu-
rons in the hidden layer) for different best feature subsets and
the corresponding classification errors.

TABLE I
MEAN SQUARE ERROR OF NN DURING TRAINING

TABLE II
PERFORMANCE OF KNN AND NN ON THE TESTING SET

III. RESULTS

A training set with 25 recordings was used to develop the
KNN and NN classifiers, this set was composed of eight nor-
mal, 15 apneic, and two borderline subjects. The training set
contained 4950 min annotated as apneic and 7127 min labeled
as normal. KNN, NN, and the best set of features with the best
smoothing windows in the pre- and post-processing procedure
were used to classify apneic and nonapneic minutes in the test
set. A different set of 25 recordings formed the test set. This set
contained 13 apnea, four borderline, and eight control record-
ings with 4428 apneic and 7927 nonapneic minutes. The best
features selected by KNN using the SFS during the training
process were the following features (see Fig. 4(a) for KNN
performance) given in order of importance:

1) VLF power of RR intervals normalized to total power;
2) coherence at VLF between RR intervals and QRS area;
3) LF/HF ratio of QRS area;
4) VLF power of module normalized to total power;
5) VLF power of QRS area series normalized to total power;
6) HF power of phase normalized to total power;
7) LF power of phase normalized to total power;
8) coherence at HF between RR intervals and QRS area;
9) LF power of module normalized to total power;

10) LF power of QRS area normalized to total power.
Table II shows the KNN and NN performance when the test-

ing set is analyzed using feature subsets of 4, 6, and 10 features.
One can observe from Table II that the performance of the

NN algorithm is very similar to that of the KNN algorithm,
even though NN was trained with the features that maximized
the KNN performance, thus confirming the generality of the
SFS approach with the KNN wrapper. In addition, the perfor-
mance of both classifiers is up to 88% accurate with respect to
correct classification for all different dimensions of the feature
set analyzed. Fig. 5(a) shows the automatic classification by
KNN of the number of minutes that each subject, in the test
set, spent in apnea during sleep, while Fig. 5(b) presents the
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Fig. 5. Class separation based on minutes per night calculated by (a) KNN
classifier and (b) NN classifier, processing 10 features for 25 recordings of the
testing. Note that applying a threshold of 30 min of apnea per night patients and
controls classes are separated. To compare with real classification, (◦) represents
records with apnea, (+) is borderline and (∗) is for normal records.

results obtained with NN. For both KNN and NN classifiers, a
threshold of 30 min in apnea per night allows a total separation
of the recordings classified as normal and the ones classified as
affected by apnea [see Fig. 5(a) and 5(b)]. Furthermore, most of
the borderline recordings had between 30 and 110 apnea min-
utes per night. The chosen threshold was the one that maximized
the class separation.

Finally, both classifiers were tested on eight recordings not
taken from the Physionet database. The record classification
given by the physician was apneic or nonapneic. KNN and NN
classifiers were used in order to define the class. Fig. 6(a) and
(b) shows the results for KNN and NN respectively. Note that
for KNN the normal recordings remain below the separation
line of 30 apneic minutes. Taking this in consideration, one can

Fig. 6. Class separation based on minutes per night calculated by (a) KNN
classifier and (b) NN classifier, processing ten features of eight recordings. Note
that applying a threshold of 50 min per night apnea and normal classes are
completely separated. (◦) represents records with apnea and (∗) is for normal
records.

note that pathological and normal subjects are separated com-
pletely. In contrast, NN overestimates apneic minutes. However,
a complete separation between apneic and nonapneic subjects
could be achieved using NN with a line separation at 50 apneic
minutes.

IV. DISCUSSION

This paper deals with the automatic classification of obstruc-
tive apnea during sleep based on features from the ECG signal.
TVAMs were used for feature extraction and KNN and NN
were used as classifiers to identify the time spent in apnea dur-
ing sleep. Our main claims are: 1) high capacity to distinguish
between normal and apneic sleep is achieved when sleep apnea
is classified using the RR intervals and QRS area parameters
coming from the ECG signal; 2) the best feature which can be
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used to separate apneic and no apneic conditions is the very low
frequency component of RR intervals and QRS area, since this
is the component that reflects the apnea repetition frequency; 3)
regardless of the classifier, similar class separation is achieved;
and 4) TVAMs seem to be valuable tools for the analysis of
the variations of the heart rate in normal and pathological con-
ditions during sleep, overcoming the stationary requirement of
the signals to be analyzed.

With respect to the selected features, it is worth noting that
one of the best performing features is the coherence between
the RR intervals and the QRS area. This suggests that respi-
ration is not only related to the respiratory sinus arrhythmia
that influences the heart rate, but that it also modifies the ECG
morphology. In addition, this feature directly represents the re-
lation between the respiratory nature of the pathology and the
synchronization with the heart rate. From a practical point of
view, it seems that the selection of features related to QRS area
by the SFS could be a shrewd choice, since QRS area can be
seen as a rough estimation of the respiration signal [29], [30],
which is the one used by clinicians for the identification of ap-
neic episodes. The evaluation of spectral parameters through
TVAMs has a very low computational cost and thus the extrac-
tion of spectral features is at the same time fast and simple. The
high time resolution (beat-by-beat) overcomes the problems of
nonstationarity of the signal and it is suitable for developing a
real time apnea detection system. In the present research the
classification was obtained on a minute-by-minute basis. This
was done to allow for a comparison with the annotation in the
database. However, the beat-by-beat calculation of the features
makes the classification on other time bases possible. Power
spectral features extracted by TVAMs represent the most robust
features for the evaluation of the apnea condition. This is es-
pecially true for the spectral component in very low frequency
which reflects the rhythm of apnea repetition. Since our algo-
rithm is based on this component, isolated apneas are difficult
to detect. Other physiological and pathological events during
sleep, such as cyclic alternating pattern [31], [32] and periodic
leg movements [33], could constitute confounding effects for
apnea detectors. This could explain the apnea overestimation
obtained by the classifiers and the necessity for our selection of
a threshold of 30 min instead of the 5 min suggested in Physionet
for separating normal from pathological recordings. However,
the use of QRS area, strictly related to respiration, makes the
method more robust. Furthermore, we have observed that two
different classifiers, KNN (nonparametric) and NN (paramet-
ric), perform very well for the sleep apnea classification even
when using a reduced number of features. This suggests that the
features extracted using TVAMs present good discriminatory
power independently of the classifier.

In the present paper, respiration was recorded by a nasal
thermistor. Nevertheless nasal thermistor is one of the simplest
ways to record the nasal airflow, the quantitative description of
the dependence of thermistor on room temperature is an open
argument. This issue unfortunately is not trivial because the
thermistor signal depends on room temperature and the temper-
ature near the nose that may differ from room temperature. As
long as room temperature is in a range of industrial bed rooms,

such as 15 ◦C–20 ◦C the dependence may be small. But if tem-
perature raises above, say 25 ◦C, the dependency becomes more
severe. No systematic studies on this dependency are published
in journals so far. The dependency has been reported by several
sleep laboratories that tried to make a quantitative correlation
between pneumotachographic determined airflow and thermis-
tor in order to replace the heavy pneumotachograph. However,
even if nasal airflow presents some problems, it is used by the
physicians for patient classification in apneic or nonapneic ac-
cording to their well-accepted clinical practice and experience.
Finally, we would like to remark that no one of the parameters
proposed in the present paper comes from the respiratory signal.

During the last years, a series of papers has been published
which addresses sleep apnea evaluation from peripheral signals
[34]–[36]. These papers applied diverse techniques of signal
processing and pattern classification [4]. Some of them reached
the same classification performance as we did with our models,
in terms of accuracy, sensitivity and specificity, but with a higher
number of features used. This suggests that apnea classification
based on peripheral signals such as HRV and QRS area provides
this level of performance regardless of the approach utilized. The
main differences between the current paper and [10] are: 1) the
philosophic approach, since we use a gray-box approach with
basis in the well-known cardio-respiratory parameters accepted
in physiology (normally used for the evaluation of ANS status),
while they applied a black box philosophy using tuples of the
cardio-respiratory frequencies obtained by Fourier transform as
independent features; 2) we propose the use of a time-variant
autoregressive model as feature extractor, since this technique
is able to follow and adapt itself to the nonstationarieties of
the signals overcoming the hypothesis required for the correct
application of Fourier transform; and 3) we focused on feature
space reduction, since it is always important to avoid course
of dimensionality and reduce computation cost. In addition De
Chazal et al. [37] studied the use of different time resolutions
in order to explore possible classification improvements with
temporal and spectral features obtained by Fourier transform.
Their results showed that the best performance was obtained
with 1 min resolution or higher. This could be due to the temporal
dynamic of the apnea phenomenon which is in the range of the
VLF (corresponding to periods ranging between 20 and 40 s) or
due to the intrinsic limitation of the Fourier transform that is not
able to recognize very low frequencies in short time windows. It
could be interesting to reproduce this study with TVAMs, since
it presents a higher time resolution and it does not require the
precondition of stationarity.

It is worth noting that the developed algorithms are highly de-
pendent on the R peak detector performance. In this study, we
used the well-known Pan–Tompkins algorithm [12]. In literature
many different algorithms have been proposed, and a compari-
son is presented in [38]. The Pan–Tompkins algorithm has been
widely used and is one of the most standard algorithms for R
peak detection. Pan and Tompkins reported a failed detection
percentage of 0.675 % (from 116 137 beats, the results showed
507 false positive beats and 277 false negative beats), which
represents a high performance in the current task. However, it is
important to stress that such a result is connected to the quality
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of the signal, and, especially for long-time recordings during
the night, some periods may occur during which the signal is
really bad or absent. When the ECG presents a low signal to
noise ratio, any R peak detector could fail and then alternatives
measures have to be taken in order to obtain reliable results. For
instance, if some isolated peaks are misdetected, the procedure
described in section correction of RR intervals could be used,
as well as the procedure described in [10], when consecutive
misdetected beats occur (from three to ten misdetected beats).
In addition, when more than ten consecutive misdectected beats
occur, the whole 1 min epoch could be discarded and remains as
unclassified. Thus, if these situations are managed correctly, the
performance of the current screening procedure is not largely
affected, since the TVAM is able to evaluate finely the feature
characteristics where the signal does exist. However, for future
clinical applications, it will be necessary to define the mini-
mal amount of the total night recording needed for a reliable
diagnosis.

The algorithms, presented in this work, slightly overestimate
apnea. This overestimation could be reduced by the calculation
of other features of different nature such as the ones obtained
with nonlinear approaches, for instance measurements of time
series complexity [39]. In addition, other characteristics coming
from the ECG signal such as ST segment and T wave duration
as well as other peripheral signals (i.e., photopletysmography
(PPG) [41]) could provide information for improving apnea
screening. However, it is worth noting that when classifying
patients as apneic or nonapneic, the presented method is very
accurate. This says, the possible presence of a few false positive
apneic periods would not likely create significant problems if
this methodology was used as a screening tool in the general
population. Finally, the inter-rater variability of visual computer
screen based scoring among experts presents an agreement level
of around 85% [42]. This suggests that the presented algorithms
are inside the confidence interval of agreement among experts.
Similar performances levels of the automatic approaches for
sleep apnea detection [4], including the ones presented in this
paper, confirm the hypothesis that automatic screening is ro-
bust and repeatable. This idea reinforces the possible use of
automatic screening for supporting the medical decision mak-
ing and evaluation of sleep apnea in different environments,
including home setting. The main advantage, of the algorithms
described in the present paper, is their high performance (similar
to the performance levels of the algorithms presented in liter-
ature) but with a smaller feature space. This makes the whole
system particularly suited for home screening devices based on
one lead ECG signals. A patient suspected for OSA can be eas-
ily identified and directed to a sleep center for standard clinical
evaluation.

V. CONCLUSION

The bivariate time-varying autoregressive model, proposed in
this study to analyze the interrelation of time series during sleep,
seems to allow for fast computation, simple implementation,
high signal variation adaptability, high resolution, and extraction
of features with large classification power between normal and

apneic sleep periods. Independently from the classifier we used
(i.e., KNN or NN), the results of the classification showed an
accuracy of 88%, which is in line with previous studies but with
a reduced number of features utilized. The performance of the
classification models in this paper suggests the high applicability
of TVAMs in possible home health systems for sleep apnea
screening in the general population.
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