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OPEN

REVIEW

Sleep, circadian rhythms, and the pathogenesis
of Alzheimer Disease

Erik S Musiek, David D Xiong and David M Holtzman

Disturbances in the sleep–wake cycle and circadian rhythms are common symptoms of Alzheimer Disease (AD), and they have

generally been considered as late consequences of the neurodegenerative processes. Recent evidence demonstrates that

sleep–wake and circadian disruption often occur early in the course of the disease and may even precede the development of

cognitive symptoms. Furthermore, the sleep–wake cycle appears to regulate levels of the pathogenic amyloid-beta peptide in the

brain, and manipulating sleep can influence AD-related pathology in mouse models via multiple mechanisms. Finally, the

circadian clock system, which controls the sleep–wake cycle and other diurnal oscillations in mice and humans, may also have a

role in the neurodegenerative process. In this review, we examine the current literature related to the mechanisms by which

sleep and circadian rhythms might impact AD pathogenesis, and we discuss potential therapeutic strategies targeting these

systems for the prevention of AD.

Experimental & Molecular Medicine (2015) 47, e148; doi:10.1038/emm.2014.121; published online 13 March 2015

INTRODUCTION

Though sleep consumes a considerable portion of our lives, its
biological functions and biochemical implications are still
poorly understood. Efficient and effective sleep is more than
just a luxury; it is critical for the proper function of many
organ systems, particularly the brain. The sleep–wake cycle is
the most obvious example of a circadian process, as it occurs
with a consistent 24-h rhythm and can be shifted according to
environmental cues. The body’s circadian clock system main-
tains these 24-h rhythms in physiological functions, including
the sleep–wake cycle, and synchronizes them to the light–dark
cycle. Disturbances of both sleep and the underlying circadian
rhythms have long been associated with many neurological and
psychiatric diseases, including Alzheimer Disease (AD). AD, a
devastating age-related neurodegenerative disease characterized
by aggregation and accumulation of amyloid-β (Aβ) and tau
proteins, is the most common cause of dementia in older
people worldwide. AD patients often exhibit disrupted
day–night activity patterns and fragmented or mistimed sleep,
which can cause great morbidity and is a major cause of
institutionalization. Although these sleep and circadian
abnormalities were once dismissed as consequences of the
disease process, accumulating evidence suggests that sleep and
circadian disturbances likely occur very early in the disease

process and may contribute to the pathogenesis of AD. Thus,
the possibility exist that treating the sleep–wake and circadian
dysfunction early, even prior to the development of AD
pathology, might prevent or slow the development of
subsequent pathology and later dementia. In Part I of this
review, we will discuss the considerable evidence implicating
sleep–wake disturbances in the development of Aβ pathology
and pathogenesis of AD. In Part II, we will discuss the circadian
clock and its function in AD and then postulate on the possible
mechanisms by which circadian clock dysfunction could also
contribute to AD. Finally, we will conclude with a brief
discussion of the therapeutic implications of these findings.

PART I: THE SLEEP–WAKE CYCLE AS A MODULATOR OF

AD PATHOGENESIS

Sleep disturbances are a common feature of AD and are
observed in mouse AD models
Disorders of the sleep–wake cycle are a common and debilitat-
ing symptom of AD. Sleep–wake disruption tends to occur in
the moderate stages of the disease and can be multifaceted. The
details of sleep disturbances in AD has been extensively
reviewed elsewhere and is beyond the scope of this review.1,2

Briefly, AD patients exhibit disturbances in the timing and
duration of the sleep cycle, primarily manifested as increased
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wakefulness at night (due to increased sleep latency and
increased nocturnal awakenings) and increased sleep during
the day, which can progress to a loss of day–night variation.3 In
terms of sleep architecture, the duration of rapid eye move-
ment (REM) sleep bouts is decreased in AD patients compared
with age-matched controls, leading to a cumulative lack of
REM sleep.4,5 Slow-wave sleep is also diminished in AD.6,7

These changes can occur very early in the course of the disease.
Several studies in transgenic mice demonstrate that amyloid
deposition in the brain (and in some cases tau aggregation)
leads to the disruption of normal sleep architecture, an effect
that often precedes the appearance of amyloid plaques.
Abnormalities in mice include a loss of robust day–night
oscillation in brain lactate,8 phase delay,9 altered nocturnal
activity level,10 and decreased non-REM sleep.11–13 In some
cases, sleep abnormalities were reversed by Aβ immunotherapy,
demonstrating a causative role for Aβ.8,13 Thus, Aβ causes sleep
disturbances in mice that recapitulate some aspects of
human AD.

Sleep disturbances may predict dementia and Aβ pathology
Recently, accumulating evidence has suggested that sleep
disturbances may be early indicators of dementia and Aβ
pathology and may actually precede the onset of cognitive
symptoms in AD. Self-reported sleep problems, as assessed by
composite surveys of sleep-related symptoms, have been
associated with an increased future risk of developing dementia
within 1–9 years.15–17 Objective sleep–wake data can be
obtained using actigraphy, a method in which research subjects
wear a small sensor that monitors movement. Although
actigraphy measures behavioral activity, it has been shown to
be a good surrogate marker for sleep when compared with
electroencephalogram (EEG) based sleep studies.18,19 Fragmen-
tation of sleep, which can be quantified using actigraphic data
to analyze the frequency and duration of runs of uninterrupted
rest during the night, may be an indicator or arbiter of
cognitive impairment.20,21 Rest fragmentation at night increases
with age and is associated with a 1.5-fold increased risk of
developing dementia in the ensuing 6-year follow-up period.21

In these studies, total rest time also decreased with age but was
not associated with cognitive decline, suggesting that rest-
activity fragmentation has a more substantial impact on
cognition. Accordingly, a prospective study showed that
increased rest fragmentation at night appeared to exacerbate
the effects of apolipoprotein E4 on dementia risk, amyloid
plaque burden, and tau pathology.22 These studies suggest that
alterations in the rest-activity pattern, particularly fragmenta-
tion of nighttime rest (a representation of poor sleep con-
solidation) might portend future development of dementia or
even cerebral amyloid-beta (Aβ) deposition. Thus, several
studies have examined the relationship between sleep quality
and Aβ pathology in cognitively normal older adults. Using
actigraphy to assess sleep parameters, Ju et al.23 found that
cognitively normal adults with cerebral Aβ deposition on
Pittsburgh Compound B (PiB) amyloid positron emission
tomography (PET) (PiB) imaging were more likely to nap

frequently and had significantly worse sleep efficiency than
those without PiB-positive plaques. Subsequently, Spira et al.24

found that cognitively normal older adults who self-report
poor sleep were more likely to have Aβ plaque pathology in the
precuneus, as also assessed by PiB PET imaging. In total, these
studies suggest that presymptomatic amyloid deposition affects
sleep and suggest that specific alterations in sleep or activity
parameters might be an early biomarker of impending AD.
However, the effect sizes observed in these studies were small,
illustrating that sleep alterations in preclinical AD are subtle.
The existing literature also generally relies on actigraphy, which
shows high correlation with EEG-based sleep studies, but
does not provide detailed information about sleep stage or
quantitative sleep-EEG data. Future studies using EEG-based
sleep analysis are likely to provide deeper insights into the
relationship between sleep and Aβ pathology and other aspects
of AD pathogenesis.

Control of Aβ levels by the sleep–wake cycle
These studies on sleep and AD raise the possibility that altering
sleep quality might impact Aβ deposition. In support of this
hypothesis, considerable evidence has emerged linking the
sleep–wake cycle with Aβ regulation in the brains of mice
and humans. Using in vivo cerebral microdialysis, a method in
which brain interstitial fluid (ISF) from brain regions such as
the hippocampus can be sampled around the clock in awake,
freely moving mice and assayed for Aβ, Kang et al.25 revealed
that ISF Aβ levels demonstrate a pronounced diurnal rhythm.
When mice were kept in standard 12 h:12 h light:dark
conditions, levels of Aβ were highest during the dark phase
(when mice tend to be awake) and lowest during the light
phase (when mice tend to be asleep). ISF Aβ correlated closely
with total minutes awake, and the usual dip in Aβ levels at the
onset of the light phase could be delayed if the mice were
prevented from sleeping. Experiments in humans employing
lumbar catheters to collect cerebrospinal fluid (CSF) around
the clock revealed similar diurnal oscillations in CSF Aβ levels
as were observed in the ISF of mice, although the phase was
delayed by ~ 6 h, presumably because of the transit time of Aβ
from the ISF to the lumbar CSF compartment several feet
away.25,26 Thus, Aβ levels in the brain appear to be closely
linked to the sleep–wake cycle, both in mice and humans.

The mechanisms that mediate the diurnal oscillation in Aβ
are of critical importance, and they are still under investigation.
One hypothesis is that Aβ oscillates as a result of similar
oscillations in neuronal activity. ISF Aβ levels are known to be
regulated by neuronal activity,27–29 suggesting that increased
neuronal activity during the wake phase might mediate the
diurnal increase in Aβ. Slow wave sleep is associated with a
period of neuronal hyperpolarization and diminished neuronal
firing and might thus be expected to be associated with less Aβ
production.30 Loss of slow wave sleep, as seen in AD or
sleep deprivation protocols,6 would be expected to result in
higher cumulative levels of neuronal activity and greater Aβ
production. Accordingly, Roh et al.8 demonstrated that lactate,
a marker of neuronal activity,29 also exhibited diurnal
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oscillation in the ISF in phase with Aβ. As plaque pathology
advanced, the diurnal oscillations in both lactate and Aβ
became damped, but they were restored when plaques were
eliminated following Aβ immunotherapy.8 In humans with
autosomal dominant AD, oscillations in CSF Aβ also declined
as amyloid plaque pathology became evident (as quantified by
PiB PET imaging). This study clearly demonstrates the
bidirectional relationship between Aβ and sleep and supports
the neuronal activity hypothesis. It also demonstrates that
accumulating Aβ pathology can mitigate diurnal oscillations in
Aβ and disrupt the sleep–wake cycle.

While sleep might limit Aβ production by tempering
neuronal activity, it may also regulate the clearance of Aβ from
the brain. Xie et al.31 reported that sleep induces significant
increases in the volume of extracellular fluid in the brain and
enhances the convective bulk flow of metabolites and proteins
out of the brain via the ‘glymphatic’ system, or the brain’s form
of lymphatic flow, which is controlled by glia. The clearance of
exogenously injected Aβ was significantly faster in sleeping
mice than waking ones, suggesting that sleep might regulate
extracellular Aβ levels by enhancing the removal of Aβ via
glymphatic flow. Although this has not been demonstrated for
endogenously derived Aβ, these sleep-related fluxes in bulk
flow could also explain diurnal variation in the concentration
of other proteins and metabolites, including lactate. Further
investigation into these and other mechanisms to explain the
diurnal oscillation of Aβ is underway.

Sleep deprivation exacerbates Aβ pathology
A clear implication of this relationship between the sleep–wake
cycle and Aβ levels is that altering sleep might also modulate
Aβ pathology and potentially AD pathogenesis. Kang et al.25

found that forced sleep deprivation caused a striking increase in
the Aβ plaque burden in transgenic mice that express AD-
associated mutant forms of human amyloid precursor protein
(APP) and presenilin-1 (PS1) and develop Aβ plaques with age.
Conversely, treatment with the orexin antagonist almorexant,
which increased sleep, decreased plaque burden. A subsequent
study using mice that express human APP, PS1, and human
Tau transgenes also demonstrated an increase in cortical Aβ
plaque burden following chronic sleep deprivation.32 Although
both studies showed an increase in Aβ pathology with sleep
deprivation, they differ on the role of stress-related glucocorti-
coids in the process. As stress is known to increase the Aβ
plaque burden in transgenic mice in a glucocorticoid-
dependent manner,33–35 Rothman et al.32 reported a two-fold
increase in glucocorticoid levels in sleep-deprived mice that
correlated with plaque burden and suggested that glucocorti-
coids have a key role in this model. Kang et al.25 demonstrated
that ISF Aβ diurnal oscillations can occur in the presence of a
corticotrophin releasing hormone antagonist, suggesting that
glucocorticoids are not critical to Aβ oscillations, though they
did not directly address the role of glucocorticoids in their sleep
deprivation experiments. It is likely that the sleep restriction
paradigm and the mouse model used can play a major role in
dictating how important glucocorticoids are in sleep

deprivation-induced Aβ deposition, as the mouse model
employed by Rothman et al.36 was very sensitive to psycholo-
gical stress. Regardless of the role of glucocorticoids, a human
study employing CSF collection via a lumbar catheter in
healthy volunteers showed that the CSF Aβ level declines after
a night of sleep, but this sleep-induced decline is prevented by
sleep deprivation, resulting in a higher morning CSF Aβ level.37
Thus, sleep deprivation appears to exacerbate Aβ pathology in
mice, and early data suggest that it might do the same in
humans.

Sleep deprivation mediates Aβ-independent neuronal injury
Aside from alterations in Aβ, several studies have demonstrated
that sleep deprivation can exacerbate neuronal injury via
several mechanisms. For example, sleep deprivation can induce
tau phosphorylation, synaptic injury, and impaired learning
and memory in mice expressing mutant human tau, APP, and
PS1 transgenes.32,38 In healthy human volunteers, a night of
sleep deprivation led to a 20% increase in CSF levels of neuron-
specific enolase and SB-100, two markers of neuronal injury,
suggesting that even instances of acute sleep deprivation may
cause neuronal injury.39 Sleep deprivation has also been shown
to cause mitochondrial oxidative stress in wake-promoting
neurons of the locus ceruleus, and, if prolonged, it can
overwhelm the protective SirT3 signaling and cause the death
of these neurons.40 As AD is generally considered a disease of
protein aggregation, it is notable that sleep deprivation induces
endoplasmic reticulum stress and activates the protective
unfolded protein response, a response that wanes with
age.41,42 Thus, sleep deprivation may compromise proteostasis
in the aging brain, which could contribute to aggregation of
Aβ, tau or other proteins associated with neurodegeneration.

Summary, part I
Recent evidence in mice and humans is consistent with the
concept that sleep disturbances are not only a consequence of
the disease process in AD but might also precede symptom
onset and may drive disease pathology (Figure 1). Aβ levels in
ISF and CSF exhibit diurnal oscillation that appears to be
linked to the sleep–wake cycle and may be mediated by
alterations in neuronal activity and/or bulk protein clearance
by the glymphatic system. Sleep deprivation exacerbates Aβ
plaque pathology while enhancing sleep by inhibiting orexin
signaling attenuates plaque accumulation. Finally, sleep depri-
vation exerts a variety Aβ-independent effects in the brain that
could exacerbate neurodegeneration. Because relatively small
alterations in Aβ levels can translate into considerable changes
in plaque pathology over a long timeframe,43 chronic mild
sleep disturbances throughout life might conceivably facilitate
Aβ deposition, setting in motion a feed-forward cycle in which
Aβ pathology in turn impairs the sleep wake cycle. Poor sleep
could also promote tau phosphorylation and neuronal injury
that exacerbate Aβ-induced damage, leading to AD. Further
research is needed to elucidate the molecular mechanisms that
mediate the effects of sleep on Aβ and other neurodegenerative
pathways, to determine the role of sleep in the genesis of AD in
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humans, and to evaluate sleep parameters as therapeutic and
diagnostic targets in AD.

PART II: CIRCADIAN DYSFUNCTION IN AD

PATHOGENESIS

Although accumulating evidence points to a strong relationship
between the sleep–wake cycle and AD pathogenesis, it is
important to consider the potential role of the circadian system
in mediating some of the observed effects. In the next section,
we will discuss how the circadian clock system regulates the
sleep–wake cycle and many other aspects of physiology.
Although the circadian clock and the sleep–wake cycle are
intimately linked, the circadian system is an independent entity
with unique therapeutic targets and considerations.

Circadian rhythms are critical to human health
Circadian rhythms, defined as oscillations with a period of
24 h, are a fundamental component of mammalian physiology.
Nearly all terrestrial organisms have circadian clock systems
that serve to coordinate physiology with external cues such as
the light–dark cycle. The circadian oscillation of the sleep–wake
cycle is just one of many circadian processes in the body, and it
is directly controlled by the circadian clock in mice and
humans. Systemic circadian rhythms, such as those observed
in the sleep–wake cycle, hormone secretion, and blood
pressure, are controlled by the hypothalamic suprachiasmatic
nucleus (SCN). The SCN signals via multiple mechanisms,
including the autonomic nervous and hormone release, to
synchronize cell-autonomous peripheral clocks throughout the
body. The SCN controls circadian secretion of melatonin, the
‘dark’ hormone which promotes sleep onset, and SCN lesions
lead to loss of circadian rhythms and an arrhythmic sleep–wake
cycle in mice.44

Circadian rhythms in the SCN and in most cells throughout
the body are maintained by a core cellular clock transcriptional
machinery consisting of the bHLH/PAS transcription
factors BMAL1 and CLOCK, which heterodimerize and
drive transcription of many genes, including their own
negative feedback repressors (PERIOD (Per) and CRYPTO-
CHROME (Cry) genes), which repress BMAL1/CLOCK-

mediated transcription.45 BMAL1/CLOCK-mediated transcrip-
tion is referred to as the ‘positive limb’ of the circadian clock,
while the transcriptional suppressor proteins (Per1-3, Cry1-2)
are termed the ‘negative limb’. This core clock machinery is
found not only in the SCN but also in almost all cells in the
body, including neurons and astrocytes,46,47 and has been
estimated to mediate the circadian transcription of 10–20% of
all transcripts in a tissue-specific manner.45,48 The SCN serves
as the master body clock, which synchronizes these peripheral
oscillators into coherent whole-organism rhythms that are in
synch with external light–dark cues. Importantly, whole-
organism circadian rhythms and cell-autonomous circadian
oscillations are dissociable, as cells removed from an organism
continue to oscillate in culture without SCN input and local
deletion of clock genes can result in an arrhythmic organ or cell
population within a normally rhythmic animal. Likewise, SCN
lesions disrupt the synchronization of whole body rhythms but
do not prevent the cellular clock from continuing to function
in a given cell.49

The circadian clock serves as a master integrator of cellular
metabolism in peripheral tissue, and circadian dysfunction has
been implicated in the pathogenesis of aging and several disease
states, including atherosclerosis, diabetes, and cancer.50–52

Accordingly, epidemiological evidence shows that humans
with disturbed circadian rhythms because of shift work,
jetlag, sleep disorder, or aging have an increased risk of
metabolic syndrome, coronary disease, cancer, and other
chronic diseases.53

Interplay between sleep–wake cycle and circadian rhythms
The sleep–wake cycle and circadian rhythms are often referred
to interchangeably, and many studies examining parameters
such as actigraphy do not distinguish between them. Sleep is
clearly regulated by the circadian clock, as human sleep
patterns follow clear circadian patterns, and deletion of the
master clock gene Bmal1 abrogates all circadian function54

leading to a total loss of day–night rhythmicity of sleep.55

However, the timing and duration of sleep are also controlled
by other factors, such as sleep pressure and arousal. Sleep
deprivation can alter the expression of clock genes and the
DNA binding patterns of BMAL1/CLOCK heterodimers, thus
altering clock function.56 Moreover, efforts to study sleep and
circadian phenomena are often muddled because interventions
that disrupt rhythms (such as shifting the light: dark cycle or
genetic deletion of clock genes) also disrupt sleep. Thus, the
impact of such interventions on both sleep and circadian
endpoints should be considered.

Circadian dysfunction is a common symptom of Alzheimer
disease
Behavioral circadian rhythms decline in aged mice and
humans,57,58 and dysregulation of systemic circadian rhythms,
such as those seen in sleep–wake cycle, activity, and melatonin
secretion, is a common symptom of AD dementia.3,58–62

Mouse models of AD also show disintegration of circadian
rhythms with age.10 Drosophila which overexpress Aβ peptides

Figure 1 Proposed mechanisms linking sleep deprivation, circadian
dysfunction, and AD. Dotted arrows represent hypothetical links.
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also show a severely disturbed circadian function, though their
central pacemaker appears intact, suggesting a downstream
effect of Aβ that has not been defined.63,64 However, several
studies in humans have suggested that dysfunction and
degeneration of the SCN lies at the root of the circadian
dysfunction in AD.65–68 Pathological studies in humans reveal a
significant loss of critical vasopressin- and vasoactive intestinal
peptide-expressing neurons in the SCN in AD, two neuronal
populations that are known to maintain the SCN circadian
function in mice.66,67 On a molecular level, expression of
Bmal1 and Clock decline in senescent cells69 as well as in aged
rodent brain tissues.70 Although impaired circadian rhythms
have long been understood as a consequence of AD, several
lines of recent evidence suggest a possible causative role for
circadian dysfunction in AD pathogenesis. Epidemiological
data show that impaired systemic circadian rhythms in
cognitively normal adults, as assessed by actigraphy, are a
significant risk factor for the future development of AD.71 In
this study, actigraphy data was analyzed for circadian para-
meters rather than sleep parameters, even though the primary
data collection method was no different than that used in many
studies examining sleep in AD. From a genetic standpoint,
three small studies have identified three separate polymorph-
isms in the Clock gene that have been associated with an
increased risk of AD,72–74 though these studies have not yet
been replicated in larger cohorts. Finally, the previously
described diurnal oscillations in Aβ could be considered to
have a circadian rhythm and could be mediated by upstream
influences of the circadian system,25,26 though this has not yet
been determined.

Circadian clock gene deletion causes neuronal injury
Although a little is known about the effect of the circadian
clock on Aβ or tau pathology in mammals, recent data from
our group demonstrate that disruption of the core circadian
clock in the brain might directly facilitate neurodegeneration.
We generated mice with a brain-specific deletion of the master
clock gene Bmal1 in the cortex and hippocampus but with the
SCN spared, thus leaving systemic circadian rhythms and
sleep–wake cycle intact in the animal while completely
disrupting circadian transcriptional regulation in the rest of the
brain.75 Despite normal behavioral rhythms (as assessed by
wheel-running actigraphy) and sleep–wake cycle (as assessed by
EEG), brain-specific Bmal1 knockout mice developed severe
cortical astrogliosis, oxidative damage, and synaptic degenera-
tion. This was associated with impaired circadian transcription
of several redox defense genes.75 Decreasing levels of BMAL1 in
the brain also exacerbated neurodegeneration caused by the
mitochondrial toxin 3-nitropropionic acid. These data suggest
that declines in circadian function, as seen in aging or AD,
might exacerbate neurodegeneration via decreased BMAL1-
mediated transcription. Further studies are needed to examine
the regulation of clock genes in AD, the downstream mechan-
isms mediated by the circadian clock in neurons and glia, and
how circadian dysfunction regulates Aβ, tau, and other AD-
related pathways.

Summary, part II
Although the investigation of the role of circadian rhythms
and clock genes in AD pathogenesis is in its infancy,
both human and animal data suggest that circadian
dysfunction occurs in AD and may precede symptom onset.
Furthermore, the circadian clock may have a key role in
regulating the expression of neuroprotective proteins and
preventing cerebral oxidative stress and synaptic damage
(Figure 1). As a key regulator of the sleep–wake cycle, the
circadian clock could also potentially contribute to the regula-
tion of Aβ, though this remains to be seen. As the roles of clock
genes in other diseases continue to be elucidated, further
inquiry into the function of the circadian clock in both the
healthy and diseased brain may yield important insights into
AD pathogenesis.

PART III: THERAPEUTIC IMPLICATIONS

Therapies aimed at improving sleep quality and normalizing
rhythms in sleep and behavior would address both the sleep
and circadian systems and are thus particularly attractive.
Considering the profound protective effect of almorexant on
Aβ plaque burden in mice,25 the orexin system is a high-
priority target. The recent approval of Suvorexant, the first
Food and Drug Administration approved orexin receptor
antagonist, provides an excellent opportunity to evaluate
orexin-targeted therapeutics on Aβ dynamics and cognitive
endpoints in early-stage or presymptomatic AD.

Melatonin and light therapy are two methods of synchroniz-
ing the circadian clock and enforcing a consistent diurnal
rhythm of sleep and activity, and they have been studied
extensively in aging and AD with mixed results. In addition to
helping regulate circadian rhythms, melatonin is a versatile
endogenous antioxidant,76 and its levels decrease both with
age77 and preclinical AD.78 Regular melatonin supplementation
may be slightly beneficial in improving cognitive performance
of patients with mild cognitive impairment.79 In mice, how-
ever, there seems to be mixed data on the efficacy of melatonin
supplementation on the reduction of amyloid plaques and
other correlates of AD.80–83

Studies have suggested that melatonin has mixed effects in
restoring diurnal rhythm in AD patients. Administration of
melatonin at bedtime simulates the body’s natural signal that
it is night and exerts direct effects on clock gene expression in
the SCN and other tissues. While studies in normal aged
individuals suggest improvements in sleep quality with
melatonin supplementation,84 studies have shown little, if
any, effect on sleep in AD patients,85,86 suggesting additional
factors other than endogenous melatonin levels may be affected
by AD pathology.

Similarly, ensuring darkness at night and then applying high-
intensity white or blue light in the morning has similar effects
on the circadian system. Studies have shown that bright-light
therapy is effective in improving the stability of diurnal
rhythms in dementia patients,87 although this therapy alone
may not improve rhythms in AD patients.88 However, bright-
light therapy in conjunction with melatonin appears more
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effective than either therapy alone.88,89 A specific melatonin
M1/M2 receptor agonist (ramelteon) has been approved for
insomnia, whereas a second M1/M2 selective receptor
agonist (tasimelteon) has been approved for the treatment of
circadian disturbance (termed non-24 h sleep–wake disorder)
in the blind. Although neither of these agents has been tested
in an AD setting, they may achieve higher potency than
melatonin itself.

Although still in preclinical development, several groups are
designing agents that directly target the circadian clock itself.
High throughput screening has identified small molecules that
can alter the expression of clock genes and change the
amplitude, frequency, and period of circadian oscillations.90,91

Small molecule agonists of the orphan nuclear receptors Rev-
Erbα and -β, which are components of the extended circadian
clock, can also exert direct effects on circadian rhythms in
mice, leading to improvements in metabolic function.92 Thus,
direct targeting of the circadian clock might provide a unique
therapeutic opportunity for the treatment of neurodegenerative
diseases in the future.

CONCLUSION

While improving sleep quality and circadian timing could have
immediate positive effects on quality of life for AD patients and
their caregivers, optimizing these parameters earlier in life
might also provide a means of preventing or delaying the
development of AD. Understanding the mechanisms by which
sleep and circadian disturbances influence the disease process
in AD may identify more specific therapeutic targets that could
be engaged in healthy middle-aged individuals. Sleep and
circadian function could thus represent modifiable risk factors
for the future development of AD that are both diagnostically
and therapeutically accessible.
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