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Sleep classification from wrist‑worn 
accelerometer data using random 
forests
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Jennifer Ramautar2, Diego R. Mazzotti4, Séverine Sabia5,6, Michael N. Weedon7, 
Eus J. W. van Someren2, Lars Ridder1, Jian Wang8 & Vincent T. van Hees1,9*

Accurate and low‑cost sleep measurement tools are needed in both clinical and epidemiological 
research. To this end, wearable accelerometers are widely used as they are both low in price and 
provide reasonably accurate estimates of movement. Techniques to classify sleep from the high‑
resolution accelerometer data primarily rely on heuristic algorithms. In this paper, we explore the 
potential of detecting sleep using Random forests. Models were trained using data from three 
different studies where 134 adult participants (70 with sleep disorder and 64 good healthy sleepers) 
wore an accelerometer on their wrist during a one‑night polysomnography recording in the clinic. The 
Random forests were able to distinguish sleep‑wake states with an F1 score of 73.93% on a previously 
unseen test set of 24 participants. Detecting when the accelerometer is not worn was also successful 
using machine learning ( F1-score > 93.31% ), and when combined with our sleep detection models on 
day‑time data provide a sleep estimate that is correlated with self‑reported habitual nap behaviour 
( r = .60 ). These Random forest models have been made open‑source to aid further research. In line 
with literature, sleep stage classification turned out to be difficult using only accelerometer data.

Sleep quality and duration play an important role in human  health1. Accurate methods for sleep assessment are 
needed to monitor the prevalence of poor sleep, to increase our understanding of the relation between sleep and 
health, and to design e�ective treatments for insomnia. Additionally, assessment methods need to have a high 
user-acceptability to reduce the risk of participant dropouts leading to selection bias.

�e gold standard for sleep measurement, polysomnography (PSG), is prohibitively expensive and unfeasible 
for use in large scale population research. On the other hand, the much more feasible sleep diaries can provide 
information on time in bed but they are subject to recall bias and might be less relevant to assess time slept during 
this period. �erefore, wearable accelerometers have been explored since the mid-1990s as a possible alternative 
for multi-day real life (out of the lab) sleep monitoring.

To cope with memory and battery constraints in the early devices, data was pre-processed inside the device. 
Further, these devices had in common that they relied on piezo-electric acceleration sensors not sensitive to 
gravitational acceleration under static conditions. Technological advancements in the mid-2000s led to a new 
generation of accelerometers, referred to as raw data accelerometry, which was based on Micro Electro-Mechan-
ical-Systems (MEMS) and able to store up to a week of digitised but otherwise unprocessed data in memory to 
facilitate o�ine analysis. �ese modern accelerometers are sensitive to gravitational acceleration under static 
conditions.

O�ine access to raw data enabled revisiting the entire data processing pipeline as better algorithms emerge 
over time, which is needed to facilitate longitudinal studies sometimes spanning a lifetime. Further, access to 
raw data increased the ability to standardise analysis across studies to allow more meaningful comparisons. As 
a result, raw data accelerometry is now widely used by the health research  community2–4.

Cole-Kripke5,  Sadeh6, and  Oakley7 proposed sleep detection algorithms for the accelerometer in the 1990s. 
�eir algorithms had in common that data was pre-processed onboard the device towards a 30-second aggregate, 
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called count. Cole and Sadeh derived counts with a zero-crossing technique, while Oakley derived counts with 
an amplitude-based technique. Cole, Sadeh, and Oakley, used a 7, 11, and 5 min time window for count-based 
sleep detection,  respectively5,6.

Borazio et al. proposed the Estimation of Stationary Sleep-segments (ESS) algorithm for raw data accelerom-
etry, which aims to detect segments of idleness quanti�ed as a low standard deviation per second lasting for at 
least 10  min8. Next, van Hees et al.9 proposed an algorithm that relied on the estimated orientation angle of the 
accelerometer, based on the detection of time segments where the estimated angle of the accelerometer relative 
to gravity does not change beyond 5 ◦ for at least 5 min. �is approach facilitated easier interpretation compared 
to the conventional approaches based on the magnitude of acceleration and zero-crossing counts. �is heuristic 
algorithm is now extensively used in the research  community1,10–12. More recently Trevenen et al. used machine 
learning to perform sleep classi�cation. �ey extracted a variety of features from the acceleration vector mag-
nitude and used these as input for a Hidden Markov Model (HMM) to classify sleep versus wakefulness, as well 
as to discriminate all four sleep  stages13. �e novel attempt to classify sleep stages from accelerometer-only data 
resulted in poor classi�cation performance and was not able to accurately detect REM nor discriminate between 
Non-REM stages. Nonetheless, their conclusion about the potential for sleep stage classi�cation was optimistic. 
Finally, Barouni and colleagues proposed a heuristic approach for sleep classi�cation from raw data accelerom-
etry, but mainly followed the approach used for traditional count-based accelerometers use kinematically hard to 
interpret the threshold crossing of the magnitude of  acceleration14. Additionally, it should be noted that Willetts 
et al. used the term sleep classi�cation in their work but relied on wearable cameras as criterion method. Wearable 
cameras are not able to distinguish sleep from wakefulness, by which their sleep detection claim is  inaccurate15.

Complementary to sleep stage classi�cation, information on day-time nap behaviour is also of interest. �e 
assessment of nap behaviour is challenged by potential removal of the accelerometers for episodes during the 
day, since the existing heuristic nonwear detection  algorithms16 was designed to only detect nonwear segments 
lasting for at least an hour.

Although the heuristic approaches have proven their value, their performance does in principle not improve 
when more data becomes available. In this paper, we explore the potential of random forests machine learning 
as a more data-driven approach to improve sleep-wake and wear-nonwear classi�cation. Our approach uses 
data acquired from 158 participants from three di�erent studies representing a wide age range and including 
both healthy sleepers and those with sleep disorders. �e performance of these machine learning models was 
assessed by cross-validation using data from 134 participants (64 healthy sleepers and 70 with sleep disorders, 
age range 20–72)9,17,18. We then report the performance of our trained models on previously unseen test data 
from 24 remaining participants (16 healthy sleepers and 8 with sleep disorders). �ese trained models have 
been made open-source available to aid further sleep research. When used in combination, both sleep detection 
and nonwear detection approaches may be useful for daytime nap detection, which we evaluate in 109 separate 
individuals with accelerometer data collected in real life (out of the lab) where self-reported napping behaviour is 
available. Furthermore, we investigate the possibility of predicting four sleep stages (rapid eye movement (REM) 
sleep and Non-REM sleep stages N1, N2, and N3), which is not feasible with the current heuristic approaches. 
Reliable detection of sleep stages from wearable accelerometer data would advance sleep research as it provides 
an additional level of sleep description.

Results
�e number of samples corresponding to wakefulness and di�erent sleep stages among the assessed 30 second 
intervals are shown in Table 1.

Sleep–wake classification. For sleep–wake classi�cation, samples labeled as N1, N2, N3, and REM are 
considered as Sleep samples.

vanHees approach. �e vanHees heuristic algorithm described in the “Methods” section is applied to the accel-
erometer data to obtain a binary classi�cation of wakefulness or sleep. �e classi�cation performance of the 
method in the outer cross-validation and test set are reported in Table 2.

Table 1.  Samples per class in the data (Percentages in parentheses).

Dataset Nested Cross-validation Test

Participants 134 24

Nonwear 264,880 (56.6%) 44,481 (54.1%)

Wake 35,355 (7.6%) 7041 (8.6%)

Sleep 167,969 (35.9%) 30,646 (37.3%)

N1 10,094 (2.2%) 1930 (2.3%)

N2 83,366 (17.8%) 15,439 (18.8%)

N3 41,729 (8.9%) 8097 (9.9%)

REM 32,780 (7%) 5180 (6.3%)

Total 468,204 821,68
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Random forests. �e chosen hyperparameters for the trained random forests models for Sleep–Wake clas-
si�cation for each of the �ve cross-validation folds are given as (trees, max-depth) tuple—(400,Full), (500,Full), 
(400,Full), (200,Full), (200,Full) where max-depth of Full implies that the decision trees are allowed to grow to 
any depth till termination criteria are satis�ed. �e classi�cation performance metrics across the �ve outer folds 
are averaged and reported in Table 2 along with test set performance. It can be observed that the random forests 
approach outperforms the vanHees approach on both outer cross-validation and test data. Speci�cally, random 
forests perform better at detecting wakefulness compared to the vanHees approach as seen in the confusion 
matrices in Fig. 1, though the number of sleep–Wake samples is heavily imbalanced.

�e important features for sleep–wake classi�cation averaged across all folds are shown in Supplementary 
Information Figure 4. For more information on feature de�nition see METHODS section. It can be observed that 
statistical measures for Locomotor Inactivity During Sleep (LIDS) and Z-angle are the most important features 
for sleep-wake classi�cation.

Healthy versus poor sleepers. Figure 2 shows the plots of F1-score with respect to time spent sleeping for each 
user based on whether they are poor or healthy sleepers. Red markers denote F1-scores of sleep and green mark-
ers denote F1-scores of wakefulness for each user. We obtained the Spearman’s correlation coe�cient for the 
time spent sleeping and F1-scores for healthy and poor sleepers. For healthy sleepers, it was observed that wake-
fulness F1-scores and time spent sleeping were negatively correlated due to fewer wake samples causing poor 
wakefulness classi�cation. For poor sleepers, time spent sleeping was positively correlated with sleep F1-scores 
and negatively correlated with wakefulness F1-scores.

Nonwear classification. �e chosen hyperparameters for the trained random forests models for Nonwear 
classi�cation for each of the �ve cross-validation folds are given as (trees, max-depth) tuple—(500,15), (100,15), 
(200,15), (300,20), (500,15). �e nonwear classi�cation performance metrics across the �ve outer folds are aver-
aged and reported in Table 2 along with test set performance. It can be seen that nonwear classi�cation using 
random forests performs quite well on both the outer cross-validation data and previously unseen test set.

�e confusion matrices of nonwear classi�cation are shown in Fig. 1 for the test set. �e numbers in the matri-
ces indicate the percentage of samples from the true class that was classi�ed as the predicted class. It can be seen 
that Wear periods are predicted reliably whereas Nonwear periods tend to be confused with Wear periods by 11%.

�e important features for nonwear classi�cation averaged across all folds with random forests are shown in 
Supplementary Information Figure 7. It can be observed that statistical measures for LIDS and Z-angle are the 
most important features for nonwear classi�cation.

Table 2.  Binary sleep–wake and nonwear–wear classi�cation. F1 F1-score, AP average precision (mean ± 
standard deviation).

Classi�cation Approach

Outer Cross-validation Test

F1 (%) AP (%) Kappa F1 (%) AP (%) Kappa

Sleep–wake

Sadeh 69.24 62.89 0.39 68.13 61.75 0.37

Cole-Kripke 68.66 62.23 0.39 67.49 61.15 0.36

vanHees 70.23 61.53 0.41 70.85 62.30 0.42

Random forests 75.91 ± 2.43 80.27 ± 2.36 0.52 ± 0.05 73.93 78.76 0.50

Nonwear Random forests 91.28 ± 2.31 96.95 ± 1.47 0.83 ± 0.05 93.31 99.08 0.85

Figure 1.  Sleep–wake and nonwear–wear classi�cation on test set: confusion matrices for di�erent methods. 
�e numbers indicate the percentage of true labels that were predicted correctly or incorrectly.
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Sleep stage classification. Various classes in sleep classi�cation can be organized into a hierarchy of 
classes as described in METHODS. Classifying accelerometer samples according to this hierarchy might help 
understand the discriminative properties (if any) of data to perform nonwear detection, sleep-wake, and sleep 
stage classi�cation. Hence, we perform hierarchical classi�cation of samples using the 36 engineered features 
and random forests.

�e hierarchical classi�cation performance metrics across the �ve outer folds are averaged and reported in 
Table 3 along with test set performance. Unlike F1-score computation of �at classi�cation, F1-score of hierarchi-
cal classi�cation takes all correctly classi�ed ancestor classes of the hierarchy into account. It can be observed 
that the prediction performance drops as we go down the hierarchy. Levels 3, 4, and 5 which consist of leaf nodes 
like REM, N1, and N3 show a drastic reduction in performance.

�e confusion matrices of true classes versus predicted classes are shown in Fig. 3. It can be observed that 
classes Wear, Sleep, NREM, N1 + N2 and N2 seem to be predicted more frequently than other classes. �e low 
diagonal values of REM, N3, and N1 show that it is di�cult to discriminate between NREM & REM, N1 + N2 & 
deep sleep (N3) and N1 & N2. Further, most samples classi�ed as Sleep seem to be further classi�ed as N2 which 
shows that N2 dominates the classi�cation despite balancing the data with synthetic samples during training.

Nap detection. Self-reported nap duration per week was 13 min less ( t = −0.36, p = 0.72 ) compared with 
accelerometer-based estimates with a correlation of 0.60 ( p < .00001, N = 109 ). A Figure of the corresponding 
data points can be found in the Supplementary information.

Discussion
Based on our experiments, we infer that machine learning approaches such as random forests applied to accel-
erometer-only data improves the sleep–wake classi�cation compared to the approaches proposed in  1990s5,6 and 
as well as the heuristic algorithm proposed by  vanHees9. Our machine learning approach also enables nonwear 
detection at a higher time resolution than the vanHees  approach9. �e combination of these enhancements ena-
bles us to estimate daytime napping periods. However, the current �ndings should be seen as an encouragement 

Figure 2.  Sleep-wake performance random forests for healthy and poor sleepers (di�erence for wake and sleep 
is 11.28 ( p = 0.0031 ) and 5.57 ( p = 0.0018 ), respectively).

Table 3.  Hierarchical classi�cation. F1 F1-score, AP average precision.

Hierarchy Classes

Outer cross-
validation Test

F1 (%) AP (%) F1 (%) AP (%)

Level 1
Nonwear 90.16 98.01 94.12 99.52

Wear 89.22 96.15 93.79 99.09

Level 2
Wake 54.79 55.65 55.13 59.01

Sleep 78.39 23.34 82.36 24.03

Level 3
NREM 64.55 21.34 72.02 20.19

REM 16.67 14.96 12.27 16.18

Level 4
N1+N2 48.19 24.19 57.36 24.38

N3 24.40 9.05 20.51 11.05

Level 5
N1 1.58 6.56 4.22 5.61

N2 45.73 11.56 53.19 11.69
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of further research around nap detection and not as proof to justify immediate application in sleep research. Sleep 
stage classi�cation from accelerometer data proved to be more challenging due to the absence of discriminative 
features in the data.

Our sleep classi�cation approach is most similar to that of Trevenen et al.13. Based on an exploratory analysis 
of our data, we observed that transition between sleep states is rare compared to remaining in the same state for 
prolonged periods of time. Hence, when using approaches like Hidden Markov Models (HMM) as in Trevenen 
et al.13, the transition probability matrix is heavily diagonal and HMMs do not provide any advantage under 
such scenarios. �erefore, we trained discriminative models for every time interval based on engineered fea-
tures. However, HMMs inherently ensure that the predicted sequences adhere to the transition probabilities and 
hence prevents spurious sleep state predictions. To have a similar e�ect for preventing spurious predictions, we 
smoothed the prediction probabilities of the individual random forest models over a 5-minute rolling window.

Further, while Trevenen et al. used data collected from healthy 22-year old individuals, our experiments are 
based on a more challenging, yet more heterogeneous dataset collected from a wide range of ages and includes 
participants with sleep disorders.

We explored random forest-based nonwear detection to gain insight into the potential for daytime nap detec-
tion. Nonwear detection was found to be acceptably accurate. By feeding the classi�er both sleep and nonwear 
data we o�ered the classi�er a challenging task. If we had trained it using data corresponding to nonwear and 
a person performing activities the classi�cation task would have been easy but not representative of real-life 
nonwear detection. Future research is needed to identify generic purpose non-wear detection able to both assist 
in the distinction of daytime naps and the identi�cation of large episodes of nonwear or sleep.

Sleep stage classi�cation was expected to be challenging at the outset of the study. However, the reason why 
we still explored it is that even a weak classi�cation could be of value in large scale population studies, e.g. UK 
 Biobank10, where minor e�ects become only visible when averaged over a large number of individuals. Sleep stage 
classi�cation may only be realistic with complementary sensor data, e.g. photoplethysmogram (PPG), which was 
outside the scope of this study as we focus on solutions for the already widely collected accelerometer-only data.

�e positive correlation of 0.60 and the lack of a statistical di�erence between average self-reported habitual 
napping duration and estimates from our ensemble of accelerometer-based random forest models are encour-
aging. However, based on these data alone it is hard to say whether the observed individual di�erences are 
explained by the subjective nature of a questionnaire, the discrepancy between the questionnaire that asks about 
habitual behavior and an accelerometer recording corresponding to nine speci�c days, or the precision of the 
random forest models. �erefore, further research is warranted involving a more direct comparison, e.g. with 
video observation.

Most of the data used in this study was collected with the GENEActiv accelerometer brand. Future studies 
should consider the potential of model transferability across accelerometer brands. Previous research indicates 
that data is highly comparable across accelerometer  brands19, but con�rmation of these speci�c outcomes is 
desired.

Models were trained and tested across three di�erent datasets. �e PSG data was scored by a di�erent sleep 
technician at every site, each site had its own PSG equipment, and participants at each site had di�erent demo-
graphics. It could be hypothesized that the models have therefore become more robust against signal artifacts 
related to these experimental di�erences.

�e present study does not look at detecting the beginning and the end of the night (sleep period time win-
dow), which is a di�erent but related challenge we looked at in van Hees et al.20.

Raw data accelerometry faces the same challenges as traditional actigraphy in not being able to capture most 
physiological processes that underlie sleep. Our present work does not prove, or even attempt to prove, that raw 
data o�ers more accurate sleep detection than traditional actigraphy. �e main advantage of raw data is that it 
o�ers increased scienti�c transparency and can be re-processed for many purposes beyond sleep research alone.

Figure 3.  Confusion matrices for hierarchical classi�cation.
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Our work shows that random forests can help to enhance the sleep classi�cation relative to the currently 
open-source available method by van Hees et al.9, and the Sadeh and Cole-Kripke implementation by Hammad 
et al. 21. Sleep researchers will have to decide whether they prefer a more accurate but less interpretable random 
forest model or a less accurate model by vanHees, Sadeh, or Cole-Kripke. In an earlier publication, we argue that 
the vanHees heuristic model is more kinematically interpretable compared with conventional algorithms that 
rely on zero-crossing counts or magnitude of  acceleration9. Whether the Sadeh and Cole-Kripke algorithms o�er 
better methodological consistency with historical research is di�cult to say since the piezo-electric acceleration 
sensors as used in the 1990s have been replaced by MEMS-based capacitive sensors in the 2000s that have a wider 
frequency response. We are not aware of any studies that investigate the comparability of Sadeh or Cole-Kripke 
algorithm output across these hardware generations.

�ere are also important clinical implications of these results. �e assessment of sleep/wake patterns for the 
diagnosis of sleep and circadian rhythm disorders o�en requires polysomnography, which is expensive and labor-
intensive. Accelerometry is sometimes used as a less expensive form of assessment but current algorithms are 
limited in their accuracy, particularly in patients with insomnia. Improved algorithms have the potential to make 
accelerometry a more clinically-useful assessment tool that would permit the measurement of sleep and wake 
over extended periods of time. �is approach could also be implemented more easily than polysomnography in 
non-sleep clinic settings. Future studies are warranted to investigate the physiology behind misclassi�cations in 
order to better understand how sleep classi�er performance may vary across speci�c sleep disorders.

Methods
�e raw accelerometer data was extracted from binary �les obtained with di�erent accelerometer brands using 
R package  GGIR22. �e raw data was then preprocessed using GGIR algorithms for signal calibration relative 
to gravitational  acceleration23 and alignment of PSG assessment labels with processed data. Next, we explored 
random forests machine learning to perform sleep-wake, nonwear-wear, and sleep stage classi�cation. Addition-
ally, we explored the value of sleep-wake and nonwear-wear classi�cation to identify daytime naps.

Random forests. �e same random forests approach was used for sleep-wake, nonwear-wear, and sleep 
stage classi�cation. In our initial exploration of the data, we experimented with deep learning techniques but as 
the results were not better than the vanHees approach we decided to report them in the Supplementary  Infor-
mation to this paper.

Signal features. In our models, we used 36-dimensional features encompassing twelve di�erent statistical meas-
ures, listed in Table 4, applied to three derived signals calculated from the three accelerometer axes, ax , ay , and az:

• ENMO : �e Euclidean Norm Minus One (ENMO) with negative values rounded to zero in g has been shown 
to correlate with the magnitude of acceleration and human energy  expenditure16. ENMO is computed as 
follows: 

• Z-angle: Z-angle, computed using Eq. 3, corresponds to the angle between the accelerometer axis perpen-
dicular to the skin surface and the horizontal plane. As described in “vanHees approach”, any change (or lack 
of change) in the z-angle over successive time intervals may be an indicator of posture change.

• LIDS: Locomotor Inactivity During Sleep (LIDS)24 involves a non-linear conversion of locomotor activity 
and has shown to be sensitive to ultradian sleep cycles. �e original paper did not make use of raw data 
accelerometry. In this work, LIDS is computed as follows: 

(1)ENMO = max(0,
√

a2x + a2y + a2z − 1)

Table 4.  Statistical measures applied to derived signals.

Statistical measure Description

Mean Mean value of the signal in that interval

Std Standard deviation of the signal in that interval

Minimum Minimum value of the signal in that interval

Maximum Maximum value of the signal in that interval

MAD Median absolute deviation of the signal in that interval

Entropy20 Entropy of the signal at low resolution (20 bins)

Entropy200 Entropy of the signal at high resolution (200 bins)

Prev30Di� Di�erence in mean value between the previous 30 s and current interval

Next30Di� Di�erence in mean value between the current interval and next 30 s

Prev60Di� Di�erence in mean value between the previous 60 s and current interval

Next60Di� Di�erence in mean value between the current interval and next 60 s

Prev120Di� Di�erence in mean value between the previous 120 s and current interval

Next120Di� Di�erence in mean value between the current interval and next 120 s
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where activity count is computed using a 10-minute moving sum over max(0,ENMO − 0.02) . LIDS is then 
smoothed using moving average over a 30-min window.

For each 30 s interval, we computed 36-dimensional features which were then used to train the random forest.

Imbalanced data. We observed from our data that some labels occur more frequently than others leading 
to an imbalanced dataset. Such data needs to be handled with care when used with machine learning models 
since the model might learn to always predict the class with the majority of samples. A typical workaround is 
to undersample or oversample the training samples belonging to various classes such that the model is trained 
with roughly equal number of samples from each class. In this paper, we followed oversampling of classes using 
Synthetic Minority Over-sampling Technique (SMOTE)25. SMOTE generates new samples by interpolation of 
random samples with their nearest neighbors. In our work, we used the SMOTE implementation in the imbal-
anced-learn python  package26 with a sampling strategy to resample all classes to have roughly equal number of 
training samples.

Performance metrics. As our data is heavily imbalanced, the classi�cation performance of our experiments was 
evaluated using F1-score and Average Precision, i.e. area under the Precision-Recall curve. Note that SMOTE 
was only applied to the training data, this why we still need to account for data imbalance in the performance 
evaluation. F1-score is the harmonic mean of precision and recall with high F1-scores indicating good clas-
si�cation performance. F1-scores of individual classes are averaged to obtain the overall F1-score, i.e. macro-
averaging, to treat all classes equally. Additionally, we report Cohen’s Weighted Kappa coe�cient for Sleep-wake 
classi�cation results to facilitate comparisons with other  studies27.

F1-scores are computed using predicted classes chosen with speci�c thresholds. However, the precision-recall 
curve gives a better picture of the classi�cation performance since it plots recall vs precision by varying thresh-
olds. Better classi�cation performance is indicated by curves tending towards the top right. �e area under the 
precision-recall curve, i.e. Average Precision, gives a quanti�able measure of performance with Average Precision 
of 1 indicating best performance.

Training and evaluation. �e resampled features were used to train random forests  models28. Classi�cation 
using Random forests works by training multiple decision trees with subsets of the data and averaging the deci-
sion tree outputs to address over�tting. �e features were normalized to have zero mean and unit standard 
deviation before training.

We used a nested cross-validation approach, involving: �vefold inner cross-validation to optimise hyper 
parameters, and a �vefold outer cross-validation to obtain generalisation performance. �is means that 5 × 5 
models were trained in the process, out of which �ve models from the outer cross-validation can be used as an 
ensemble on new data.

In the inner cross-validation, a randomized hyperparameter search was used to choose the number of trees 
from (100, 150, 200, 300, 400, 500) and the tree depth from (5, 10, 15, 20, Full). Other random forests param-
eters were retained as default as speci�ed by the scikit-learn package. Each inner cross-validation fold splits 
the training data into training and validation data (4:1) where the validation data is used to choose the optimal 
hyperparameters i.e. number of trees and tree depth, for each fold based on Average Precision. Hence, each inner 
cross-validation fold will use a di�erent random forests model tuned optimally for its corresponding training 
data. �e outer cross-validation is used to obtain both F1-scores and Average Precision (AP) for generalization 
performance. For the outer cross-validation, the data is split into training and validation partitions such that 
participants in both partitions do not overlap. �is ensures that the algorithm does not learn any patterns spe-
ci�c to participant behavior. To ensure that the output is not spurious, we smoothed the prediction probabilities 
of the individual random forest models over a 5-min rolling window before computing performance metrics. 
Finally, a le� out test set with 24 individuals is used to obtain the generalisation performance of the ensemble of 
the models generated in the outer cross-validation using averaged prediction probabilities. �e same ensemble 
of models is used in “Nap detection”.

Sleep–wake classification. In order to benchmark the performance of our models for sleep-wake clas-
si�cation, we used the previously published vanHees  approach20 as baseline. In addition, we also used the 
 implementations21 of  Sadeh6 and Cole-Kripke5 approaches for comparison. Both these approaches use aggre-
gated actigraphy counts with a zero-crossing technique to perform sleep–wake classi�cation.

vanHees approach. To estimate sleep, van Hees et al.9 proposed a heuristic algorithm using accelerometer data. 
�is algorithm uses (lower) arm angle relative to the gravitational component estimated from accelerometer data 
to di�erentiate between sleep and wakefulness states. �e arm angle is estimated as:

(2)LIDS =
100

activity count + 1

(3)anglez = tan−1





az
�

a2x + a2y



.
180

π
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where, ax , ay , and az are median values of the three accelerometer axes computed over a rolling �ve-second 
window. �e vanHees algorithm performs the following steps to distinguish between Sleep and Wake states: 

1. Average Z-angles for every 5 s.
2. Identify the time window where the angle does not change by more than 5 ◦ for at least 5 min.
3. Label corresponding time windows as sleep.

Healthy versus poor sleepers. We analyzed the sleep–wake classi�cation based on the health state of the partici-
pants. Poor sleepers are those participants who have been diagnosed with various sleep disorders while healthy 
sleepers are those without any sleep disorders.

Nonwear detection. Periods of nonwear less than 30 min will go undetected with available heuris-
tic  approaches14,16. We investigated whether nonwear periods can be determined at a higher resolution with 
machine learning (random forests). �e ground truth labels for our nonwear classi�cation are de�ned based on 
two assumptions: �e accelerometer is worn during the PSG recording as prescribed by the study protocol and 
supervised by the researcher, and the accelerometer is not worn outside the PSG recording, according to the 
study protocol. Only if the standard deviation in the acceleration signal per 15 min is larger than 13.0 mg (1 mg 
= 0.00981 m/s2 ) these 15 min outside the PSG recording are labelled as wear. Here, the threshold of 13.0 mg is 
borrowed from the Heuristic van Hees approach.

Sleep stage classification. �e various stages in sleep classi�cation can be organized into a hierarchy of 
classes as shown in Fig. 4. �ese follow the standard neurobiological de�nitions of sleep. We grouped N1 and N2 
because they are more similar than N2 and N3, particularly from an electrophysiological perspective (e.g., EEG 
and EMG). Classifying accelerometer samples according to this hierarchy might help understand the discrimi-
native properties (if any) of the data to perform nonwear detection, sleep–wake and sleep stage classi�cation. 
Hence, we perform hierarchical classi�cation of samples using random forests as described in “Random forests”.

For hierarchical classi�cation, we trained a random forest model for every non-leaf node to classify samples 
into one of its child nodes. Since the samples belonging to each node are imbalanced, we balanced the training 
samples for each non-leaf node using SMOTE with the sklea rnhie rarch icalc lassi �cat ion implementation.

Nap detection. We combined the random forest models for sleep–wake and wear-nonwear classi�cation 
as presented in this paper to distinguish: Nonwear, Sleep, and Wake, and applied these to real-life (out of the 
lab) the accelerometer data. Total weekly napping time was calculated as the total duration of all classi�ed sleep 
episodes that last at least 15 minutes and are outside the Sleep Period Time Window. Here, Sleep Period Time 
Window was guided by the available sleep log. A t-test, Pearson’s correlation coe�cient and scatter plot are used 
to inspect the relation. �e data from 109 individuals as used are a sub-sample of the Whitehall II Study  data9 

Figure 4.  Hierarchy of classes used in sleep stage classi�cation.

https://github.com/globality-corp/sklearn-hierarchical-classification
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over-sampled with individuals who report nap behaviour, detailed information on the data and sampling can be 
found in the Supplementary information.

Ethical approval and informed consent. �e studies were approved by the University College London 
ethics committee (85/0938), NRES Committee North East Sunderland ethics committee (12/NE/0406), Univer-
sity of Pennsylvania ethics committee (819591), and VU University Medical Center Amsterdam, respectively. 
Methods reported in this manuscript were performed in accordance with relevant guidelines and regulations 
covered by the aforementioned ethics approval committees. All participants provided informed consent.

Data availability
�e classi�cation models developed in this paper are available as open access data on Zenod o29. �e  R30 package 
GGIR was previously developed for the processing of accelerometer  data22. We enhanced GGIR to be able to 
embed the sleep classi�cation models written in Python as explained in the GGIRp ackag eVign ette31. Speci�c code 
to use this functionality in combination with the models from this paper can be found here. �e combination of 
the code and GGIR package allow for sleep classi�cation and nonwear classi�cation of raw accelerometer data. 
�is involves data extraction, pre-processing, feature extraction, and sleep or nonwear classi�cation. Raw data 
from the polysomnography study in Newcastle has been made open access available in anonymized format on 
zenodo.org32. Data from the University of Pennsylvania are available through the National Institute of Mental 
Health data archive. Whitehall II data, protocols, and other metadata are available to the scienti�c community. 
Please refer to the Whitehall II data sharing policy which can be found here.
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