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Sleep deprivation is a manipulation that allows arousal 
levels to be manipulated to a higher degree than one sees 
in the experimental interventions typically used in cogni-
tive research. The effects of acute sleep deprivation on 
cognition are reversible, so sleep deprivation represents 
a different approach for investigating the underlying pro-
cesses of cognition. Conversely, carefully selected tests of 
cognitive processing can provide new information about 
the effects of sleep deprivation on the brain.

Experimental and modeling studies of the effects of 
sleep deprivation on cognitive performance have thus far 
focused almost exclusively on global outcome measures 
(Durmer & Dinges, 2005; Van Dongen, 2004). Such re-
search has revealed that overall performance declines as 
a function of time spent awake, modulated by circadian 
rhythm (Van Dongen & Dinges, 2005). However, not much 
is known about the effects of sleep deprivation on detailed 
performance outcomes, such as response time (RT) distri-
butions, or on changes in specific cognitive components, 
such as decision processes. Attempts are being made to 
bridge this gap with the use of computational modeling 
that is based on cognitive architectures (Gunzelmann, 
Gluck, Price, Van Dongen, & Dinges, 2007), but these 
efforts need to be informed by precise information regard-
ing which component processes of cognition are affected 
by sleep deprivation and how.

The present study addressed this issue. Participants 
were tested on a two-choice numerosity discrimination 
task at baseline after 57 h of sleep deprivation and again 

following 2 days with recovery sleep. Participants in a 
control group were tested at the same times, but without 
sleep deprivation. In each trial of the two-choice task, be-
tween 31 and 70 asterisks were placed in random positions 
in a 10  10 array, and the participants were instructed to 
judge whether the number was greater than 50 (large) or 
less than 50 (small ). This task was selected because it has 
few memory demands or perceptual limitations (such as 
brief presentation or low contrast), allowing us to focus on 
central cognitive processes and decision processes.

We applied the diffusion model (Ratcliff, 1978, 1988; 
Ratcliff, Cherian, & Segraves, 2003; Ratcliff & Mc Koon, 
2008; Ratcliff & Smith, 2004; Ratcliff, Van Zandt, & 
McKoon, 1999; Smith, 2000; Smith, Ratcliff, & Wolf-
gang, 2004; Voss, Rothermund, & Voss, 2004) to the data 
from each individual participant. From this, we were able 
to obtain estimates of the model parameter values for the 
baseline, deprivation, and recovery sessions in the experi-
mental group, as well as for those in the control group. 
These parameter estimates allowed us to draw conclusions 
about the effects of sleep deprivation on components of 
cognitive processing.

METHOD

Participants
A total of 25 participants (13 women; age range, 22–38 years) 

completed the study. The participants were screened with physical 
examinations, urine and blood chemistry tests, and questionnaires 
to ensure they were physically and psychologically healthy and free 
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eliminated. The left-hand panels show the proportion of 
“large” responses as a function of eight numerosity cat-
egories representing eight groups of numbers of asterisks 
(31–35, 36–40, 41–45, 46–50, 51–55, 56–60, 61–65, 
66–70), and the right-hand panels show mean RT for 
“large” and “small” responses, as a function of the number 
of asterisks. Response proportions were very similar for 
the experimental and control groups in the baseline and 
recovery sessions; but in the sleep-deprivation session, 
the experimental participants showed a loss of accuracy, 
as compared with the control participants’ accuracy lev-
els. In the baseline session, RTs from the experimental 
and control groups were similar. In the sleep-deprivation 
session, the experimental group exhibited mean RTs 
over 200 msec longer than those exhibited by the control 
group. In the recovery session, the experimental group had 
slightly slower responses than those by the control group, 
but performance was almost back to baseline levels. These 
results are consistent with the documented overall effects 
of sleep deprivation on cognitive performance (Durmer & 
Dinges, 2005; Van Dongen & Dinges, 2005).

Diffusion Model
The diffusion model is designed to explain the cogni-

tive processes involved in making simple two-choice deci-
sions. The model separates the quality of evidence enter-
ing a decision from the decision criteria, as well as from 
nondecision processes. Decisions are assumed to be made 
by a noisy process that accumulates information over time, 
from a starting point z toward one of two response criteria, 
or boundaries: a and 0 (Figure 2). When a boundary is 
reached, a response is initiated. The rate of accumulation 
of information is called the drift rate (v), and it is deter-
mined by the quality of the information extracted from 
the stimulus in perceptual tasks and the quality of match 
between the test item and memory in lexical decision and 
memory tasks. The mean of the distribution of times taken 
up by the nondecision component (the combination of en-
coding, response execution, etc.) is labeled Ter. Within-
trial variability (Gaussian-distributed noise) in the accu-
mulation of information from the starting point toward the 
boundaries results in processes with the same mean drift 
rate terminating at different times (producing RT distribu-
tions) and, sometimes, terminating at the wrong boundary 
(producing errors).

The values of the components of processing are as-
sumed to vary from trial to trial, under the assumption 
that participants cannot accurately set the same param-
eter values from one trial to another (e.g., Laming, 1968; 
Ratcliff, 1978). Across-trial variability in drift rate is 
normally distributed with SD , across-trial variability in 
starting point is uniformly distributed with range sz, and 
across-trial variability in the nondecision component is 
uniformly distributed with range st. This across-trial vari-
ability allows the model to fit the relative speeds of correct 
and error responses (Ratcliff et al., 1999). In signal detec-
tion theory, which deals only with accuracy, all sources 
of across-trial variability would be collapsed onto one 
parameter—namely, variability in evidence across trials. 
In contrast, in diffusion model fitting, the separate sources 

of traces of drugs. They were good sleepers (getting between 6 and 
10 hours per night), reported themselves as being neither extreme 
morning nor extreme evening types, and had no sleep or circadian 
disorder (including normal baseline polysomnogram). They had 
not traveled between time zones in the prior 3 months and had not 
worked shifts in the prior month. The participants were required to 
maintain their habitual sleep schedule in the week before the study, 
as monitored by sleep/wake logs, time-stamped voice recordings of 
bedtimes and rising times, and wrist actigraphy (wrist-worn activ-
ity monitoring). They had normal or corrected-to-normal vision. 
The study was approved by the Institutional Review Board of Wash-
ington State University, and all of the participants gave written in-
formed consent.

Design
The participants were in the lab for 6 consecutive nights (7 days). 

They were randomized to either a sleep-deprivation condition 
(12 participants) or a control condition (13 participants). On Days 1 
and 2, all of the participants had baseline sleep (10 h in bed each 
night). They practiced the numerosity discrimination task for 10 min 
twice on Day 1. On Day 3, participants in the experimental condition 
began 62 h of continuous wakefulness. At 17:00 on that day, while 
9 h awake, they took their baseline test. Two days later, at 17:00, 
while 57 h awake (48 h after Test 1), they took their second test. After 
the 62 h of wakefulness, participants were allowed 2 recovery nights 
(10 h in bed each night). At 17:00 on the last day (48 h after Test 2), 
they took their recovery test. The control participants were tested at 
the same times but had sleep (10 h in bed) each night throughout the 
study. Participants continually stayed inside the isolated, environ-
mentally controlled laboratory during the study and were behavior-
ally monitored at all times by trained research assistants.

Procedure
Cognitive performance was tested on a two-choice numerosity 

discrimination task. On each trial, a number of asterisks between 31 
and 70 was generated and placed in random positions in a 10  10 
array of blank characters in the upper left-hand corner of an LCD 
monitor (from a viewing distance of 57 cm, the width of the asterisk 
array was 4º, and the height was 9º). Varying the number of asterisks 
causes performance accuracy to vary from near-ceiling (100% ac-
curate) to near-floor (50% accurate) levels, providing a full range 
of values for this dependent variable for the purpose of modeling. 
They were clearly visible, light characters presented against a dark 
background. The participants were asked to press the “/” key if the 
number of displayed asterisks was judged to be large and the “z” 
key if the number was judged to be small. Each test array remained 
on the screen until a response was made. “Small” responses to ar-
rays of 31 to 50 asterisks and “large” responses to arrays of 51 to 
70 asterisks were counted as correct. Feedback on the accuracy of a 
response was provided by displaying the word “error” or “correct,” 
as appropriate, on the screen for 500 msec after each response was 
made. There were 30 blocks of 40 trials (all the numbers of asterisks, 
from 31 to 70) per test session. The participants were instructed to 
respond quickly and accurately, but not so quickly that they would 
hit the wrong key. The participants were also informed that they 
could take a break between blocks of trials. Examples of large and 
small numbers of asterisks were shown before the session to provide 
participants with a reference.

RESULTS

Summaries of the accuracy and RT data for the experi-
mental and control groups for the three sessions are shown 
in Figure 1. Responses from the first block of each ses-
sion, short ( 280 msec) and long ( 5,000 msec) outlier 
RTs in all blocks (less than 1.7% of the data in the sleep-
deprivation session and less than 0.2% of the data for the 
other sessions), and the first response in each block were 
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Figure 1. Accuracy and mean response time (RT), as a function of numerosity category for the three 
sessions and two participant groups. Note that mean error RTs for the two extreme numerosity cat-
egories are not plotted; there were some participants with zero error responses in those categories.
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Figure 2. Illustration of the diffusion model with starting point z, 
boundary separation a, and drift rate v. Three sample paths are 
shown, illustrating variability within the decision process, and cor-
rect and error response time (RT) distributions are illustrated.
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were kept constant across numerosity categories in each 
session, because it is routinely assumed that participants 
cannot change their decision criteria or adjust the dura-
tion of other components of processing as a function of 
the quality of the stimulus being presented. All of the pa-
rameters of the model were allowed to vary between ses-
sions, because practice could alter any of the parameters. 
The model can be seen as decomposing accuracy and RT 
data for correct and error responses into distinct cognitive 
processes.

Fits of the Diffusion Model
To display the data and the diffusion model fits, we com-

puted the average over participants for quantile RTs (see 
Figure 3A) and for the proportion of “large” and “small” 
responses as a function of the numerosity categories. We 
also averaged the parameter estimates over participants and 
computed the corresponding model predictions; we then 
generated the quantile probability functions. To display the 
quality of fit of the model to the data, Figure 3B shows 
the observed and predicted quantile RTs (vertical) and 
the proportion of “large” and “small” responses (horizon-
tal), as a function of the number of asterisks (numerosity 
categories) presented. These graphs contain information 
about all of the data and model predictions of the experi-
ment: the probabilities of correct and error responses and 
the shapes of the RT distributions for both correct and error 
responses. As Figure 3B shows, the probability of a “large” 
response varied from near 1 for stimuli with large numbers 
of asterisks to near 0 for stimuli with small numbers of 
asterisks (cf. Figure 1). Median RT increased for the more 
difficult stimuli (numbers of asterisks close to 50), with 
most of the slowing coming from the skewing of the RT 
distributions, because the .9 quantile RTs increased much 
more than did the .1 quantile RTs.

Parameter Estimates
The average model parameter estimates are shown in 

Table 1 and plotted in Figure 4, as a function of session 
and experimental versus control groups. For the sleep-
deprivation session, relative to the baseline and recovery 
sessions and to the control group, boundary separation in-
creased, drift rates decreased, variability in starting point 
and nondecision components increased, and the propor-
tion of contaminants increased.

The parameter values represent the behavior of com-
ponents of processing in the experiment, and we used 
their values to interpret the effects of sleep deprivation on 
performance in the two-choice task. Two-way mixed ef-
fects ANOVAs of each of the parameters for the three ses-
sions  experimental and control groups were performed; 
the results are shown in the Table 2 note. Table 2 shows 
planned statistical comparisons between the experimental 
group and the control group, as well as between the sleep-
deprivation session and the baseline and recovery sessions. 
For the baseline and recovery sessions, there were almost 
no significant differences between the experimental and 
control groups. For all comparisons between the sleep-
deprivation session and the corresponding control session 
and for all comparisons between the sleep-deprivation 

of across-trial variability are identified. Thus, if simulated 
data are fit by the model, then, for example, variability 
in drift rate is not incorrectly recovered as variability in 
starting point (Ratcliff & Tuerlinckx, 2002). The success 
of parameter identifiability comes partly from the require-
ment that the model is fit to both the correct and the error 
RT distributions, which provide very tight constraints on 
the model (see Ratcliff, 2002).

In almost all RT studies (e.g., Ratcliff, 1979, 1993), 
some proportion of responses are spurious contaminants, 
which have previously been explicitly modeled in ap-
plications of the diffusion model (Ratcliff & Tuerlinckx, 
2002) as random delays in processing. Thus, predicted 
RTs are mixtures of pure diffusion model processes and 
diffusion model processes with a delay added (usually 
0%–2%), which means that contaminant processes are 
just as accurate as processes without contaminants. In 
this application, we used the simplest alternative assump-
tion we could by representing contaminants as random 
guesses (Vandekerck hove & Tuerlinckx, 2007) that were 
uniformly randomly distributed over the range from the 
shortest to the longest RT for each numerosity category. 
Thus, the predicted RT distribution is a probability mix-
ture of diffusion model processes and random guesses. 
Random guesses can be distinguished from the assump-
tion of an added random delay because random guesses 
reduce accuracy, as was shown in the sleep-deprivation 
data. Unlike the assumption of random delays added to 
diffusion model RTs, the assumption of random guesses 
means that these processes are outside the diffusion model 
processing assumptions. Although it may seem that this 
assumption provides a lot of model freedom, no additional 
model parameters are added beyond the proportion of 
contaminants, and the ability of the mixture to account for 
RT distributions (discussed below) supports the assump-
tion. Note that recovery of diffusion model parameters is 
reasonably robust to the assumed form of the contami-
nant distribution; for example, if exponentially distributed 
contaminants are simulated and the recovery program as-
sumes uniformly distributed contaminants, the model pa-
rameters are recovered well (Ratcliff, 2008).

The diffusion model was fit to the accuracy and RT 
distributions using a standard chi-square method (Ratcliff 
& Tuerlinckx, 2002). The values of all of the parameters, 
including the variability parameters, are estimated simul-
taneously from the data by fitting the model to all of the 
conditions of an experiment. It was assumed that “large” 
responses to large stimuli were symmetric with “small” 
responses to small stimuli; that is, drift rates were equal, 
but with opposite signs. Thus, there were four distinct 
drift-rate parameters (v1–v4) for the eight numerosity cat-
egories. However, participants can have a bias in the zero 
point of drift, so a drift criterion, vc (analogous to the cri-
terion in signal detection theory), was added to each drift 
rate (Ratcliff & McKoon, 2008). Because the values for 
the drift rate parameter for the two middle, most difficult 
numerosity categories (i.e., v4, for 46–50 and 51–55 as-
terisks) were small and variable, they were not used in our 
statistical analyses; but they did help constrain the model 
fits. All of the parameters of the model (except drift rate) 
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Figure 3. Response time (RT) quantiles and response proportions. Panel A shows an RT distribution histogram (the circles joined by 
lines), with the quantile RTs identified on the abscissa and as rectangles with .2 area between the .1, .3, .5 (median), .7, and .9 quantiles 
and .095 area between extremes, the .005 and .1 quantiles and the .9 and .995 quantiles (we use .005 and .995 for illustration as being 
a little less variable than the maximum and minimum). Panel A shows that the six rectangles between and outside the five quantiles 
approximate the density function rather well. Panel B shows quantile probability functions for “large” and “small” responses for the 
three sessions in the experimental group (Session 1 baseline, Session 2 sleep-deprived, and Session 3 recovery) and in the control group. 
The quantile RTs in each vertical line of Xs from the bottom to the top are the .1, .3, .5 (median), .7, and .9 quantiles, respectively. The 
Xs represent the data, and the Os joined with lines represent the predicted quantile RTs from the diffusion model. The eight columns 
of Xs in each graph are for eight different stimulus categories—namely, 31–35, 36–40, 41–45, 46–50, 51–55, 56–60, 61–65, and 66–70 
asterisks for “large” responses; for “small” responses, the columns of Xs are for the same eight stimulus categories, but in the opposite 
order. The horizontal position of the columns of Xs indicates the response proportion for that category. Note that extreme error quan-
tiles could not be computed for some of the numerosity categories because there were too few errors for some participants, so only the 
median RT value is plotted.
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Table 1 
Parameter Values Averaged Over Participants

Session  a  Ter   sz  v1  v2  v3  v4  po  st  vc  z  2

Experimental Group
 Baseline .151 .428 .171 .066 .546 .416 .271 .093 .003 .138  .007 .075 101
 Sleep-deprived .189 .401 .216 .130 .403 .318 .198 .083 .101 .165  .011 .089 163
 Recovery .151 .420 .209 .083 .615 .491 .308 .110 .001 .113  .005 .076 101
Control Group
 Baseline .152 .428 .179 .069 .558 .452 .300 .097 .007 .139  .004 .073  88
 Control .136 .426 .165 .061 .549 .453 .294 .099 .012 .127  .005 .064  79
 Recovery .132 .412 .156 .061 .579 .456 .311 .100 .014 .119 .002 .064  81

Note—a, upper boundary of accumulation of information over time; Ter, mean of the distribution of times taken up by the non decision 
component, in seconds. , sz, and st represent across-trial variability in drift rate, in starting point, and in the nondecision component, 
respectively. v1, v2, v3, and v4 represent the four distinct drift-rate parameters for the eight numerosity categories (see the text for 
details). po, proportion of contaminants; vc, drift criterion; z, starting point of accumulation of information over time. 2 represents 
the goodness-of-fit index with critical value 102 for 76 degrees of freedom. For a total of k numerosity categories and a model with 
m parameters, the degrees of freedom are k(12  1)  m, where 12 comes from the number of bins between and outside the response 
time quantiles for correct and error responses for a single category (minus 1, because the total probability mass must be 1). There were 
k  8 numerosity categories in the experiment and m  12 parameters in the model, so df  88  12  76.
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stimulus, but were random guesses (contaminants). How-
ever, there were large individual differences.

Individual Differences
Most of the participants in the experimental group 

showed a degradation in the components of cognitive pro-
cessing from the baseline session to the sleep-deprivation 
session and a rebound in the recovery session. Boundary 
separation was higher in the sleep-deprivation session for 9 
of 12 participants, and the proportion of contaminants was 
larger for 11 of 12 participants. Most of the participants 
in the sleep-deprivation group showed a decrease in drift 
rate from the baseline session to the sleep- deprivation ses-
sion and an increase to the recovery session. These results 
show that the main conclusions apply to most individuals 
in the study and are not the result of there having been just 
a few participants showing a large effect and others show-
ing no effect. That said, systematic individual differences 
in the response to sleep deprivation were observed, as has 
been documented before (Van Dongen, Baynard, Maislin, 
& Dinges, 2004).

Contaminant Responses
The effect of sleep deprivation on the proportion of 

contaminants indicates that sleep-deprived participants 
produced more responses that were not based on the stim-
ulus, but were random guesses. However, there were large 
individual differences: In the sleep-deprivation session, 
5 participants had under 4% contaminants, 5 had between 
8% and 11% contaminants, and 2 participants had over 
30% contaminants. This high estimate of the proportion 
of contaminants for those 2 participants was corroborated 
by accuracy values in the highest accuracy categories of 
around 70% for the sleep-deprivation session and over 
95% in the baseline and recovery sessions. In the baseline 
and recovery sessions, none of the participants in the ex-
perimental group had over 3% contaminants. These obser-
vations are, again, consistent with previously documented 
individual differences in cognitive responses to sleep dep-
rivation (Van Dongen et al., 2004).

session and the baseline and recovery sessions in the ex-
perimental group, there were significant differences for 
the following: boundary separation (one comparison was 
marginally significant), variability in starting point across 
trials, drift rates for the easier numerosity categories, pro-
portion of contaminants, and variability in the duration of 
nondecision processes (one comparison was marginally 
significant). Although these comparisons involved mul-
tiple t tests, the results are consistent and clear. To sum-
marize, the estimates for a, sz, v1, v2, v3, po, and st from the 
sleep-deprivation session are different from the estimates 
for the baseline and recovery sessions, as well as from all 
of the sessions in the control group.

The differences in the parameter estimates led to the 
following interpretation of the effects of sleep depriva-
tion on the two-choice numerosity discrimination task. 
When deprived of sleep, most participants adopted mod-
erately more conservative decision criteria (larger bound-
ary separation), thus requiring more evidence for making 
a response. However, this was not a large difference, as 
compared to the effect that was seen with speed–accuracy 
manipulations (Ratcliff, Thapar, & McKoon, 2001). Vari-
ability in starting point and in the nondecision compo-
nents of cognition became larger with sleep deprivation. 
The former suggested that participants experienced dif-
ficulty resetting the criteria to the normal range of val-
ues observed in the nondeprivation sessions. The latter 
indicated that participants were more unstable in stimulus 
detection and/or more variable in executing the decision 
process.

The mean of drift rates v1, v2, and v3 for the most ac-
curate numerosity categories decreased from .411 for the 
baseline session to .307 for the sleep-deprivation session, 
and then increased again to .438 for the recovery session. 
The change induced by sleep deprivation was substantial, 
suggesting that central information processing was af-
fected by sleep deprivation—specifically, the cognitive 
processes that extracted an estimate of the relative nu-
merosity of the asterisk array. Sleep-deprived participants 
also produced more responses that were not based on the 

Table 2 
p Values for Planned Comparisons of Parameters

Comparison of Sessions  a  Ter   sz  v1  v2  v3  v4  po  st  vc  z

Session 1
 Experimental vs. control .961 .997 .766 .868 .812 .411 .336 .730 .248 .970 .373 .862
Session 2
 Experimental vs. control .008* .279 .076 .000* .013* .011* .006* .255 .028* .023* .467 .021*

Session 3
 Experimental vs. control .122 .701 .016* .161 .527 .490 .948 .503 .065 .765 .728 .118
Experimental Group Only
 Sleep-deprived vs. baseline .055 .232 .118 .000* .003* .020* .012* .465 .017* .065 .429 .164
 Sleep-deprived vs. recovery .042* .392 .755 .003* .000* .002* .003* .064 .015* .004* .570 .179

Note—a, upper boundary of accumulation of information over time; Ter, mean of the distribution of times taken up by the nondecision 
component, in seconds. sz, and st represent across-trial variability in drift rate, in starting point, and in the nondecision component, re-
spectively. v1, v2, v3, and v4 represent the four distinct drift-rate parameters for the eight numerosity categories (see the text for details). po, 
proportion of contaminants; vc, drift criterion; z, starting point of accumulation of information over time. Session 1, baseline; Session 2, 
sleep-deprived (or control); Session 3, recovery. Group  session interactions are as follows: For a, F(2,46)  7.40; for Ter, F(2,46)  
4.20; for F(2,46)  2.34; for sz, F(2,46)  7.04; for v1, F(2,46)  8.77; for v2, F(2,46)  10.39; for v3, F(2,46)  6.07; for po, F(2,46) 

 8.08; for st, F(2,46)  4.2. The critical value was F.95(2,46)  3.2. *p  .05.
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Thus, such a deficit in this simple two-choice task argues 
for a potent effect of sleep deprivation on ability to effec-
tively extract information from stimuli.

In the sleep-deprivation condition, as compared with 
the baseline condition, participants also adopted moder-
ately more conservative decision criteria, which suggests 
some compensation for poorer processing in extracting in-
formation from the stimulus. Also, variability in the start-
ing point across trials was larger, and variability in the 
nondecision component of processing across trials was 
modestly but significantly larger. These increases suggest 
a reduction in the ability to reset the decision process to 
the same starting point and suggest an increase in variabil-
ity in the encoding and response-output processes.

There was a notable increase in the proportion of con-
taminants, indicating that sleep-deprived participants 
made more random responses, albeit with large individual 
differences. There was no trade-off across participants be-
tween the proportion of contaminants and other model 
parameters; all of the other components of processing had 
similar trends across participants, as a function of sleep 
deprivation.

There was no increase in the duration of the nondeci-
sion component of processing, which represents the dura-
tion of stimulus-encoding and response-output processes 
as a function of sleep deprivation. Also, there was no in-
crease in the variability in drift rate across trials, which 
suggests that sleep deprivation simply lowers the quality 
of the output from stimulus processing on all trials rather 
than lowering the quality considerably on some trials but 
hardly at all on other trials.

There are competing hypotheses about the underlying 
mechanisms of the effects of sleep deprivation on perfor-
mance in cognitive tasks. One hypothesis suggests that 
sleep loss specifically affects cognitive processes medi-

To show that the assumption of randomly distributed 
contaminants is reasonable, we used the data from the 
participant with the largest proportion of contaminants to 
evaluate the fit of the model to the RT distribution. This 
participant had similar proportions of “large” responses 
across five of the numerosity categories. The average pro-
portion of “large” responses was .755, and the mean RT 
was 867 msec (the five categories had proportions rang-
ing from .714 to .789 and mean RTs ranging from 794 to 
875 msec); the estimated proportion of contaminants was 
.38. The left panel of Figure 5 shows the data histogram 
with the predicted distribution generated from the model 
parameters with the contaminant assumption; the right 
panel shows the predicted distribution generated from 
the same model parameters but with zero contaminants. 
The right panel shows that the tail of the distribution is 
mispredicted; but the left panel, with the assumption of 
uniform random guesses, shows the long, elevated tail that 
adequately describes the data.

DISCUSSION

In this study, the effects of sleep deprivation on distinct 
cognitive processes in a two-choice decision paradigm 
were investigated. Data were fit with the diffusion model, 
which has previously been applied successfully in a num-
ber of other domains (see Ratcliff & McKoon, 2008). The 
diffusion model accounts for both speed and accuracy of 
processing in a unified approach. The model analysis of 
our data showed that processes that produced evidence 
from the stimulus entering the decision process were im-
paired substantially by sleep deprivation: Drift rates de-
creased by about 30% relative to baseline values. This is 
a large effect, especially considering that the two-choice 
task requires few, if any, perceptual or memory demands. 
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ated by the prefrontal cortex (PFC; Harrison, Horne, & 
Rothwell, 2000), thereby degrading higher-order cognitive 
functions, such as decision making (Harrison & Horne, 
2000). Our results are consistent with this hypothesis be-
cause drift rates (central cognitive processes involved in 
producing evidence from the stimulus) were reduced by 
sleep deprivation. However, the effects of sleep deprivation 
were not exclusively on such processes, so the hypothesis is 
only partially consistent with the experimental findings.

Another hypothesis, known as the state instability hy-
pothesis (Doran, Van Dongen, & Dinges, 2001), postu-
lates that sleep deprivation induces an escalating “state 
instability” that is particularly evident in experimental 
tasks requiring sustained attention. This hypothesis posits 
that sleep deprivation induces moment-to-moment fluctu-
ations in sustained attention due to the influence of sleep-
initiating mechanisms. Our results are consistent with 
the state instability hypothesis, in that sleep deprivation 
increased the number of contaminants (guesses), skewed 
the RT distributions (Dinges & Kribbs, 1991) partly by in-
creasing separation of decision criteria, and increased the 
across-trial variability in the starting point of the decision 
process, as well as in the nondecision component. State 
instability may also affect attentional networks (Posner, 
2008) and, thereby, the functioning of the PFC (Durmer 
& Dinges, 2005), which could explain the degradation of 
stimulus processing. Although this argument needs to be 
demonstrated experimentally, the state instability hypoth-
esis has the potential to provide the most comprehensive 
explanation of the present findings, although the hypoth-
esized moment-to-moment fluctuations in sustained at-
tention would seem to extend to other aspects of cognition 
as well. The challenge is to unambiguously link these hy-
potheses to components of processing in explicit models 
so they can be subjected to experimental tests.

The nature and scope of the cognitive impairments re-
sulting from sleep deprivation have been debated for more 
than a century (Doran et al., 2001; Horne, 1993; Kleit-
man, 1923; Lim & Dinges, 2008; Patrick & Gilbert, 1896; 
Williams, Lubin, & Goodnow, 1959). However, progress 
has been slowed by a tendency to focus on global per-
formance outcomes, with little research being done to 
examine the effects of sleep deprivation on distinct cogni-
tive processes. Using the diffusion model, we were able to 
study the effects of sleep deprivation on distinct cognitive 
processes. Within the framework of current theories about 
the effects of sleep deprivation on cognition (see Dinges 
& Kribbs, 1991; Harrison & Horne, 2000), the present 
results suggest that sleep deprivation degrades both atten-
tional arousal (through state instability) and central pro-
cessing. Indeed, our findings show that sleep deprivation 
has wide-ranging effects on brain functioning, affecting 
multiple, distinct components of cognition.
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