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Sleep disturbances are commonly reported in Alz­
heimer's disease (AD). They include primarily a low 
percentage of slow-wave sleep (SWS), a high percentage 
of stage 1 sleep and a high percentage of time spent 
awake in bed (1-5). However, other anomalies have 
been observed more specifically for rapid eye move­
ment (REM) sleep. A low percentage of REM sleep has 
been reported, which worsens with the progression of 
cognitive dysfunctions (3). A highly variable latency 
to the first REM sleep period has also been found (l). 
Several studies have shown a slowing of electroen­
cephalographic activity (EEG) during wakefulness in 
AD (3,6-9), but more recently, EEG slowing was found 
to be more prominent in REM sleep than in wakeful­
ness (10-12). That initiation and maintenance of REM 
sleep depends upon cholinergic networks has been 
shown in animals (see reference 13 for review) and in 
humans (see reference 14 for review). Many compo­
nents of REM sleep are thought to be under the com­
mand of executive cholinergic neurons located in the 
dorsolateral pontine tegmentum (DLPT). Two higher 
structures are nonetheless important in the cortical ac­
tivation process, namely the thalamus (13,15,16) and 
the nucleus basalis of Meynert (NBM) in the basal 
forebrain (13,15,17). The NBM is the major source of 
cholinergic innervation to the cerebral cortex (18). 

A deficit in the cholinergic system is one of the first 
and most marked biochemical changes in AD. In par­
ticular, a marked reduction in the number of cholin­
ergic neurons in the NBM has been found in AD pa-
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tients (19). No marked cell loss, however, has been 
reported in the cholinergic populations of the brain­
stem in patients with mild AD (20,21), although neu­
rofibrillary tangles have been found (21,22). 

The present study aimed to provide further infor­
mation on nocturnal sleep of patients with AD. The 
results presented here will be discussed with respect to 
the role of brainstem and forebrain cholinergic pop­
ulations in REM sleep for human subjects. 

METHODS 

Ten patients (mean age: 60.6 years) meeting the 
NINCDS-ADRDA criteria of probable Alzheimer'S 
disease (23) were studied. All patients underwent a 
clinical neurological investigation, including a com­
puterized tomographic scan. They had a modified 
Hachinski ischemia score of 4 or less. Patients were at 
mild to moderate stages of AD, that is, stages 3 and 4 
of the Global Deterioration Scale (24), and had a mean 
score of 20.6 ± 5.3 on the Mini-Mental State exami­
nation (MMSE) (25). Blood analyses revealed no other 
causes of dementia. Ten volunteers (mean age: 58.3 
years; MMSE: 29.3 ± 1.0) served as paired control 
subjects. The study was approved by the hospital ethics 
committee. 

All subjects were recorded in the sleep laboratory 
for 2 consecutive nights; only data from the second 
night were used. In addition to standard sleep param­
eter analyses (26), amplitude spectral analyses were 
performed on artifact-free sections from both awake 
(eyes closed) and REM sleep EEG sections recorded 
from fronto-central (F3-C3, F4-C4), parieto-occipital 
(P3-01, P4-02) and temporo-temporal (T3-T5, T4-
T6) leads. In two AD patients and their controls, tem­
poralleads were not available. An index ofEEG slow­
ing was calculated as the ratio of slow frequencies (delta 
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TABLE 1. Sleep architecture in 10 AD patients and 10 controls 

Controls AD 
(mean ± SEM) (mean ± SEM) pa 

Total sleep time (minutes) 434.7 ± 13.78 431.0 ± 22.99 ns 
Sleep latency (minutes)b 19.03 ± 5.75 15.23 ± 4.14 ns 
Waking (%) 13.16± 1.67 15.95 ± 3.56 ns 
Stage I (%) 15.23 ± 1.34 20.98 ± 4.06 ns 
Stage 2 (%) 59.12 ± 1.98 61.66 ± 3.59 ns 

K-complex densityc 1.46 ± 0.11 0.77 ± 0.11 0.0015 
Spindle densityc 1.43 ± 0.20 0.37±0.11 0.0015 

SWS (%) 8.36 ± 2.03 5.10 ± 0.98 ns 
REM sleep (%) 17.29 ± 1.00 12.26 ± 1.54 0.049 

Number of periods 4.4 ± 0.31 4.3 ± 0.47 ns 
Period duration (minutes)d 24.75 ± 2.47 17.68 ± 2.02 0.023 
Efficiency (%) 73.1 ± 3.74 70.6 ± 5.02 ns 
Latency (minutes) 86.0 ± 17.34 92.2 ± 18.27 ns 
Density (%), 30.3 ± 4.31 21.9 ± 2.56 ns 
Atonia (%) 93.0 ± 2.44 94.9 ± 2.03 ns 
Phasic EMG (%Y 9.85 ± 1.26 9.05 ± 2.42 ns 
EEG slowing index' 1.27 ± 0.06 2.43 ± 0.24 0.0002 

a Mann-Whitney rank sums. 
b Sleep latency criteria = three consecutive epochs (1 minute) of stage I or one epoch of any other sleep stage. 
c Mean number per minute of stages 2 + 3. 
d Mean duration of REM periods. 
, Calculated for REM periods of similar duration in both groups. 
f Calculated for the same number of REM 2-second epochs in both groups. 
• (delta + theta)/(alpha + beta). 

+ theta) over fast frequencies (alpha + beta). Ratios 
from the three regions of both hemispheres were pooled 
to produce a single EEG slowing score. 

RESULTS 

As shown in Table 1, no differences were found be­
tween AD patients and controls for total sleep time, 
sleep latency, percentage of time spent awake, or per­
centage of time in any of the stages of NREM sleep. 
However, AD patients did show a decreased density 
ofK-complexes and of sleep spindles. AD patients also 
showed a lower percentage of REM sleep and shorter 
REM sleep periods but did not differ from controls on 
other REM sleep variables. 

The EEG slowing index was significantly greater for 
AD patients than for controls in both wakefulness (1.23 
vs. 0.63; Mann-Whitney p < 0.002) and REM sleep 
(2.43 vs. 1.27; p < 0.0002). Moreover, a significant 
group (AD patients, controls) x state (wakefulness, 
REM sleep) interaction [F(1 ,17) = 21.24; p < 0.0003] 
indicated that the between-group difference was more 
pronounced for REM sleep than for wakefulness. 

DISCUSSION 

The most robust difference observed in our AD pa­
tients was the slowing of both waking and REM sleep 
EEGs. This EEG slowing in AD has been characterized 
in previous studies to be the result of both an increase 
in slow-frequency power and a decrease of fast-fre-
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quency power (11,12). The more prominent EEG slow­
ing observed in REM sleep in AD patients can be 
explained by the heightened influence of cholinergic 
inputs for this state. Many of the noncholinergic inputs 
that are involved in cortical activation during wake­
fulness, namely noradrenaline, serotonin and hista­
mine, are "silent" during REM sleep (27-29). Thus, 
cortical activation during REM sleep is more depen­
dent (than during wakefulness) on the basalo-cortical 
cholinergic system, the system which is rapidly degen­
erating in AD. Although this explanation ofEEG slow­
ing in AD focuses on the NBM, the importance of the 
thalamus in EEG activation is not in dispute. Steriade 
and colleagues (13,30) have demonstrated the pri­
mordial role of glutamatergic thalamocortical neurons 
in EEG desynchronization for both wakefulness and 
REM sleep. However, because the thalamus does not 
seem to be significantly affected by AD (31), EEG slow­
ing observed in AD probably reflects degeneration of 
the NBM. On the other hand, the EEG remained de­
synchronized in wakefulness and REM sleep compared 
with NREM sleep; this residual level of desynchron­
ized activity probably reflects the integrity of the glu­
tamatergic thalamocortical system. 

The lower REM sleep percentage observed in AD 
patients could also be attributed to the degeneration 
of the NBM. The NBM ensures cortical desynchroni­
zation not only through direct activation of the neo­
cortex, but also by suppressing the rhythm-generator 
mechanisms (spindling and slow rhythms) of the re­
ticulo-thalamic system (17). If the NBM is impaired, 
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the inhibition it usually exerts on the rhythm-generator 
system might also be weakened, leading to the ob­
served curtailment of REM sleep periods. 

Variables related to the initiation of REM sleep (la­
tency, number of REM periods) and to its characteristic 
features (atonia, EMG phasic activity, REMs) were 
unaffected in Our AD patients. Because these variables 
are controlled by DLPT cholinergic populations, these 
negative findings likely reflect the fact that DLPT neu­
rons are spared in early AD (20,21). 

There is no simple explanation for the decrease in 
K-complex and sleep spindle density in our AD pa­
tients. On one hand, two studies have also reported a 
reduction in sleep spindles following lesions of the bas­
al forebrain (32,33), but these lesions extended beyond 
the NBM to probably also affect noncholinergic NREM 
sleep-active neurons. On the other hand, because the 
impaired NBM in AD cannot fully inhibit the nucleus 
reticularis thalami - the spindle generator - one would 
expect, on the contrary, the number of sleep spindles 
to increase. In any case, a similar reduction in the 
number of K-complexes and sleep spindles has also 
been reported in other dementing disorders with dif­
ferent neurobiological characteristics (34,35). 

Discrepancies in results for NREM sleep variables 
between previous studies and the present study may 
be due to the fact that our patients were less impaired 
than patients in many of these other studies, except 
the study by Vitiello et al. (4). Consideration of the 
severity of the disorder is critical because it has been 
demonstrated that the magnitude of sleep-related 
changes increases with increasing severity of the illness 
(3). However, it may also be that the relatively small 
sample size of the present study was unable to dem­
onstrate more than statistical trends toward decreased 
SWS, increased stage 1 sleep and increased wakefulness 
during sleep. 
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