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Sleep-like slow oscillations improve 
visual classification through 
synaptic homeostasis and memory 
association in a thalamo-cortical 
model
Cristiano Capone1, Elena Pastorelli1,2, Bruno Golosio  3,4 & Pier Stanislao Paolucci  1

The occurrence of sleep passed through the evolutionary sieve and is widespread in animal species. 
Sleep is known to be beneficial to cognitive and mnemonic tasks, while chronic sleep deprivation is 
detrimental. Despite the importance of the phenomenon, a complete understanding of its functions 
and underlying mechanisms is still lacking. In this paper, we show interesting effects of deep-sleep-like 
slow oscillation activity on a simplified thalamo-cortical model which is trained to encode, retrieve 
and classify images of handwritten digits. During slow oscillations, spike-timing-dependent-plasticity 
(STDP) produces a differential homeostatic process. It is characterized by both a specific unsupervised 
enhancement of connections among groups of neurons associated to instances of the same class (digit) 
and a simultaneous down-regulation of stronger synapses created by the training. This hierarchical 
organization of post-sleep internal representations favours higher performances in retrieval and 
classification tasks. The mechanism is based on the interaction between top-down cortico-thalamic 
predictions and bottom-up thalamo-cortical projections during deep-sleep-like slow oscillations. 
Indeed, when learned patterns are replayed during sleep, cortico-thalamo-cortical connections favour 
the activation of other neurons coding for similar thalamic inputs, promoting their association. Such 
mechanism hints at possible applications to artificial learning systems.

Human brains spend about one-third of their life-time sleeping. Sleep is present in every animal species that has 
been studied1. �is happens notwithstanding two negative facts: the danger caused by sleep, that diminishes the 
capability to defend from predators and other threats, and the reduction of time available for activities targeting 
immediate rewards (e.g. hunting or gathering food). Having survived the evolutionary selection in all species, 
sleep must therefore provide strong advantages. Another notable fact is that newborns’ human brains occupy the 
majority of their time asleep, nevertheless they learn at a very fast rate. For this and other motivations for studying 
sleep, also in relation to consciousness, see e.g.2. Moreover, even if occasional awakening does not seriously impair 
brain biology and cognitive functions, in the long term chronic deprivation of sleep produces measurable e�ects 
on cognition, mood and health3. Experimental studies like1,4 investigated the e�ects of sleep on �ring rates and 
synaptic e�cacies. In1 the authors formulated hypotheses about homeostatic processes occurring during sleep. 
A possible motivation for the brain entering in the sleep activity would be to set a better energy consumption 
regime during next wakefulness cycle. �is might be obtained by reducing �ring rates and the amplitude of 
evoked post-synaptic potentials. It could be reached by pruning non necessary synapses and by reducing synaptic 
weights within the limits imposed by the conservation of adequate coding for memories. In4 Watson et al. propose 
a novel intriguing experimental evidence. �ey used large-scale recordings to examine the activity of neurons in 
the frontal cortex of rats and observed that neurons with di�erent pre-sleep �ring rate are di�erentially modu-
lated by di�erent sleep substates (REM, non-REM and micro arousal). Sleep activity such as slow waves activity 
and sharp-waves ripples have been shown to be bene�cial for memory consolidation5,6 and task performances 
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optimization7. A few computational models have been developed to investigate the interaction of sleep-like activ-
ity and plasticity. In8, the authors showed that Up states speci�cally mediate synaptic down-scaling with bene�cial 
e�ect on signal to noise ratio received by post-synaptic neurons. �e e�ect of thalamo-cortical sleep on pre-stored 
time sequences is explored in9,10.

Here, we focus on sleep mediated memory association and its implications on cognitive tasks performances. 
We present a minimal thalamo-cortical model which, a�er being trained on handwritten characters in unsuper-
vised mode, is induced to express sleep-like dynamics. We measure its e�ects on the classi�cation accuracy, the 
structure of the synaptic matrix and �ring rate distributions with �ndings that are consistent with experimental 
observations4,8,11,12.

Slow oscillations (SO) are considered the default emergent activity of the cortical network13 and are observed 
during the deepest of physiological non-REM sleep stages as an alternation between Down states (characterized 
by nearly silent neurons) and Up states (in which a subset of neurons goes in a high �ring rate regime) occurring 
at a frequency in the range . Hz[0 5, 4]  (delta band). We set the model SO at a comparable frequency. SO activity 
is expected to play two complementary roles, which are separately mediated by Up states and Down states. Down 
states would play a purely biological function, with a lower immediate impact on cognitive performance. �e role 
of Down states, with a majority of neurons put in a silent state for a long fraction of deep sleep time, would serve 
a restoration purpose, enabling periodic biological maintenance and recovery, as it happens in the whole body 
when at rest14. Our modeling and investigation is focused only on the e�ects mediated by the Up states dynamics. 
During sleep external perceptions are, at least, strongly attenuated, and the majority of the motor system is 
blocked15. For this reason in our model the local interaction between cortex and thalamus is crucial during sleep 
rather than contextual signal coming from other cortical modules and sensory input coming from thalamic 
pathways.

In order to make a biologically realistic learning protocol and to implement the role of the context in the learn-
ing phase, we took inspiration from the “organizing principle” in16 for the Cerebral Cortex, which describes spe-
ci�c computational strategies implemented by the neuronal structure of Layer 5. �e architecture is grounded on 
the separation of intra-areal and inter-areal contextual information (reaching the apical dendrites of pyramidal 
neurons) from the feed-forward �ow of area speci�c information (targeting its basal synapses). Cellular mecha-
nisms, like ++Ca  spikes, promote the detection of coincidence between contextual and specific activity. 
High-frequency bursts of spikes are emitted when the coincidence is detected. Relying on these observation we 
introduced in our model external stimuli mimiking contextual information which changes the e�ective �ring 
threshold of speci�c subsets of neurons during the presentation of examples in the training phase. For each exam-
ple, a vector of features is projected toward a cortical network by a thalamic neural network. Due to the change in 
the perceptual e�ective �ring threshold, spike-timing-dependent-plasticity (STDP) creates stronger bottom-up 
(thalamo-cortical) and top-down (cortico-thalamic) connections between a subset of cortical and the thalamic 
neurons.

In our model we observe that sleep induces both the association of patterns encoding learned images belong-
ing to the same category and a di�erential synaptic down-scaling. �is is also re�ected in a di�erential modula-
tion of �ring rates, producing observations similar to4. We observe that such e�ect, probably related to energetic 
optimization in biological networks, also has bene�cial e�ects on the performances of our network in the image 
recognition task.

Results
We tested the role and the mechanisms of the occurrence of SO in a thalamo-cortical network model which was 
previously trained to learn and recall images (MNIST dataset). �e network model included thalamic relay (tc) 
and reticular (re) neurons in the thalamus, as well as pyramidal neurons (cx) and inhibitory interneurons (in) in 
the cortex (Fig. 1A, see Methods) following a standard minimal structure for thalamico-cortical models17.

Figure 1B shows an example of activity time-course in the cx and tc populations during the training phase, the 
retrieval phase, and the early stage of sleep phase.

Training and pre-sleep retrieval. During the training, 9 di�erent images were presented to the network, 
in a �rst set of runs: 3 instances for each class of digit, for a total of 3 di�erent classes (e.g. 0, 1, 2). In a second 
group of runs, 30 examples per digit constituted the training set. For each image an external stimulus (contextual 
signal) induced a different subset of cx  neurons to code for that specific image, with STDP shaping the 
intra-cortical, the thalamo-cortical and the cortico-thalamic connectivity. In order to adopt the prescription in16 
the parameters are set to make the cortical neurons �re during the training only if they receive both sensory and 
contextual stimuli. �is training procedure works even in the extreme case where only one neuron is used to code 
each digit example. However for one or a few neurons, self sustained oscillations would not be well de�ned. For 
this reason we chose a population of 20 cortical neurons for each newly presented example. �e precise number 
of such neurons is not a critical factor as we will discuss later.

A�er the training, images were presented again (retrieval phase) without the external stimulus. �e popula-
tion of neuron responding to the image were the same as the one selected in the training phase by the external 
stimulus, demonstrating the success of the retrieval.

Induction of slow-oscillation. A non-speci�c stimulus at low �ring rate was provided to cortical neurons 
only, while model parameters are modulated (see Methods for details) eliciting the spontaneous occurrence of 
cortically generated Up states and of thalamo-cortical SO (see Fig. 1B).

We relied on the framework of Mean Field theory to obtain a model displaying di�erent dynamical regimes. 
An oscillatory regime, closely resembling Slow Oscillations observed in deep sleep and anesthetized states can be 
induced by introducing a relatively strong recurrent excitation and spike frequency adaptation18,19. We tuned the 
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parameters of the network to make it display SO frequency (between . Hz0 25  and . Hz1 5 ) and Up state durations 
(a few hundred of milliseconds) comparable with experimental observations in deep sleep recordings20,21.

�e activity (Fig. 1B) during the initial stages of simulated SO displays that Up states are independently sus-
tained by populations coding for di�erent memorized images. However, thanks to the cortico-thalamo-cortical 
pathways each population tends to recruit other populations sharing similar thalamic representations. Indeed 
when a population initiates an Up states, it activates thalamic patterns similar to the one responsible for the acti-
vation of the population itself during the retrieval phase. �is is what we call top-down prediction. �e thalamus, 
in turn, activates all the other populations which coded for a similar thalamic input. Across the sleep period, 
thanks to the cortico-cortical plasticity, the co-activation of populations coding for similar predicted synaptic 
input becomes a more and more prominent feature.

Effects on the synaptic matrix of slow-oscillations. We �rst considered the case with the training 
set composed of 3 classes and 3 examples per class. A�er the training stage the system undergoes a 600s period 
of sleep. During this stage the activation of groups of neurons associated to di�erent training examples induces, 
through STDP, not only a synaptic pruning but also the creation of stronger synapses between groups of neurons 
that share enough commonality in the features they received during the training.

�is e�ect can be noticed comparing the structure of the synaptic matrix before and a�er sleep as in Fig. 2A,B, 
that reports the change from the initial �at structure (which re�ects the individual training examples) towards a 
hierarchical structure (embedding the categories of learned digits).

Indeed we can observe that novel synapses are created among examples in the same digit category 
(Fig. 2A-le�). At the same time the system undergoes a down-scaling of the strongest synapses, those linking 
neurons coding for the same image (Fig. 2A-right). �e di�erential e�ect on synapses can also be observed in 
Fig. 2C, where the histogram of synaptic weights a�er-sleep is reported. �e synapses between patterns encoding 
for di�erent learned images of the “same class” and those between “di�erent classes” (respectively orange and 
green distribution in Fig. 2C) are originally drawn from the same distribution by de�nition (see Methods), while 
a�er sleep they are clearly di�erentiated.

Figure 1. �alamo-cortical model and protocol description. (A) Sketch of the structure of the simpli�ed 
thalamo-cortical model considered, which is composed of an excitatory and an inhibitory population both for 
the cortex (cx, in) and for the thalamus (tc, re). Connectivity structure is represented by solid lines. �e visual 
input is fed into the model through the thalamic population, mimicking the biological visual pathways. In the 
training phase a lateral stimulus enhances a speci�c subset of cx neurons to preferentially represent the stimulus. 
(B) Activity produced during training phase, pre-sleep retrieval and the �rst 40s of SO activity in the cx (top) 
and tc (bottom) populations. Only �rst 180 neurons in tc population are shown for visual purposes. In the 
training 3 instances of 3 classes of digits (0,1,2) are learned by the network. In the replay during sleep, thalamo-
cortical connections promotes the activation of neurons coding for similar patterns of activity, causing the 
potentiation of cortico-cortical connections between neurons representing digits of the same class. A general 
depression reduces the largest synaptic weights. Post SO retrieval is not shown.
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Effects on the post-sleep activity. �e change in structure of the synaptic weights matrix modi�es the 
activity expressed by the network in the retrieval phase. �is can be appreciated looking at the di�erence of the 
correlations between groups of neurons before and a�er sleep (see Fig. 3A).

Figure 3B reports the di�erence among correlations evaluated a�er and before sleep. It shows decorrelation 
(blue squares) of populations encoding di�erent classes, and correlation (red regions) of the ones coding the same 
class. Such information is reported also in Fig. 3C, showing the correlation changes for populations in the same 
class (blue) and in di�erent classes (green). Such e�ect might provide bene�ts in retrieval and classi�cation tasks.

�e consistency of such result is testi�ed by Fig. 4. �ere, the same simulation is performed for di�erent train-
ing sets (di�erent examples of 0,1,2 digits). All simulations show that the synapses between neurons in the same 
class are the more reinforced (Fig. 4A, orange versus green) and that their internal representation has an increased 
correlation (Fig. 4B, blue versus green).

Mechanistic interpretation. We propose that such e�ect is due to the interplay between cortico-thalamic 
predictions and thalamo-cortical connections. In other words when a group of neurons undergoes an Up state it 
formulates a prediction in the thalamus by activating a thalamic pattern similar to the one received during train-
ing. In turn, the thalamus projects to the cortex and activates those populations trained for similar input patterns. 
�is mechanism promotes the connections between populations of neurons coding for the images of the same 
class through STDP. To prove this, we reproduced the same experiment switching o� the cortico-thalamic predic-
tion and reported the result in Fig. 4C,D. It is evident that there is no sign of the preferential association observed 
in the control condition, nor in the synaptic structure (Fig. 4C), neither in the internal representation (Fig. 4D).

To demonstrate the speci�c role of SO activity, we repeated the same experiment replacing the sleep like activ-
ity with an awake like asynchronous activity. We set the same adaptation strength b and →win cx used during train-
ing and retrieval. In this case we did not observe signi�cant changes in the synaptic matrix structure, with absence 

Figure 2. SO e�ects on connectivity structure. (A) Synaptic weights matrix of the recurrent connectivity of cx 
population, before (le�) and a�er (right) the occurrence of sleep-like activity. �e yellow squares represent high 
weights emerged between neurons encoding the visual input related to the same object (single instance of 0, 1, 2 
… image). Red solid lines separate the neurons encoding visual inputs related to di�erent classes of objects (0, 1, 
2 …). (B) Scatter-plot of the same synaptic weights before and a�er sleep. (C) Synaptic weights a�er sleep, 
separated in three groups, synapses between neurons encoding the same object (yellow), the same class (but not 
the same object, orange) and di�erent classes (green).
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of synaptic down-scaling (homeostasis) and no association of memories. �is is due both to the absence of the 
speci�c spatio-temporal structure of the activity that characterizes the SO state and the lower �ring rate (indeed 
asynchronous state has a lower �ring rate than Up states).

Post-sleep improvement in a classification task. Finally, we evaluated the e�ect of sleep-like activity 
on the performance of a set of classi�cation task trials. Networks were exposed to example and test images drawn 
from all the ten classes of digits in the MNIST dataset. Each simulation trial used a di�erent test set of 250 images, 
and a set of 3 training examples per digit (30 training instances in total, also randomly extracted for each classi-
�cation trial). Each network was exposed to the training examples using the same protocol discussed above for 
the simpler retrieval task (see Methods for details). For each test image, the classi�cation was determined looking 
for the class of the neuron responding with the higher �ring rate. We note that class labels were used only during 
classi�cation and not during the training that was completely unsupervised.

We observed a net increase in the classi�cation accuracy across the sleep period. Figure 5A reports in blue the 
time course of accuracy increase as a function of the sleep time. A�er 3000s of sleep, the improvement was on 
average . ± .6 0% 0 5% (accuracy rose from .58 0% to .64 0%, average performed over 24 simulations). In absence of 
thalamic feedback the improvement is signi�cantly lower (Fig. 5A red line), proving that the memory association 
due to the cortico-thalamo-cortical interaction is bene�cial to performance in a classi�cation task.

Figure 5B reports the average weights evolution as a function of sleep time. Synapses between groups of neu-
rons encoding for di�erent instances of the same digit class (yellow solid line) were on average strongly poten-
tiated, much more than the ones connecting training examples belonging to di�erent classes (green solid line). 
Synapses interconnecting neurons representing individual training instances were down-scaled (orange solid 
line). When the thalamo-cortical feedback was switched o� (same colors, dashed lines) this di�erential e�ect did 

Figure 3. SO e�ects on internal representation. (A) Activity correlation between all pairs of populations 
representing the single images before (le�) and a�er (right) sleep. (B) Correlation di�erence between a�er 
and before sleep. (C) Histogram of correlation di�erences for populations encoding the same class (blue) and 
di�erent classes (green).

Figure 4. Analysis of populations: synaptic weights and comparison between correlations with and without 
cortico-thalamic predictions. (A) Average ratio between weights post- and pre- sleep for each simulation (top). 
�e di�erent categories are separated in di�erent colors. Yellow: synapses connecting neurons coding for the 
same image, orange: di�erent image of the same class of digits and green: di�erent classes. (B) �e average 
change in correlation between post- and pre- sleep for each simulation (top) and histogram of the distribution 
over all the simulations (n = 6, bottom). Blue: same class, green: di�erent classes. (C,D) as in A-B but in absence 
of cortico-thalamic connections.
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not happen. �is is the same e�ects already reported for the case with 9 training examples (Fig. 2, simpler retrieval 
task). We veri�ed that the same qualitative results are obtained also for the cases in which each example is coded 
by 10, 15 and 25 cortical neurons (not shown).

Such di�erential mechanism occurred together with a general synaptic depression (see Fig. 5C, thalamus on 
and thalamus o� in solid and dashed line respectively). We notice that the average down-scaling is very similar 
for simulations executed in absence and presence of thalamic feed-back, allowing for a fair comparison of the 
two conditions. As a consequence of such general synaptic depression the SO frequency decreases over time (see 
Fig. 5C, inset) consistently with experimental observations12.

We observe that an optimal range of SO frequencies is important to obtain the reported results. Indeed an 
extremely low Up state occurrence would make weaker the speci�c cortico-thalamo-cortical association. On the 
other hand a very high Up state occurrence frequency would increase the probability to randomly associate di�er-
ent classes of digits. Both scenarios would impair the positive e�ect of the sleep period on network performances.

Firing rates also underwent a di�erential modulation. Neurons with pre-sleep low activity became more active 
a�er sleep (and vice versa). Figure 5D displays a scatter of time averaged single neuron activity during the classi�-
cation task, before and a�er the 3000s sleep period (data are drawn from 8 simulations). �e distribution of indi-
vidual �ring rates is rotated respect to the bisector line (red dashed line). �e average di�erence of activity a�er 
and before sleep is positive for low values of pre-sleep �ring rates and negative for high pre-sleep rates (see inset 
of Fig. 5D). �is prediction is similar to what observed in4, strengthening the biological plausibility of our model.

Figure 5. Sleep e�ects on a classi�cation task. (A) Change in classi�cation accuracy across over 30 sleep epochs 
(100s each). Blue and red are respectively the conditions in which thalamus is on and o�. �e improvement 
in accuracy is averaged over 30 simulation trials. SEM is reported in the shading. (B) Average synaptic 
potentiation and depression over 30 sleep epochs. �e colors indicate connections between neurons coding the 
same instance (yellow), di�erent instances of the same class (green) and instances of di�erent classes (orange). 
Dashed and solid lines represent the comparison between the conditions in which thalamus is on and o�. 
(C) Average synaptic depression over all the synapses. (inset) Average decrease of SO frequency across sleep 
time, average over 4 simulations. (D) Scatter of single neurons activity in 8 simulations averaged over time in a 
classi�cation task before and a�er 3000s of sleep. Inset, average di�erence of activity a�er and before sleep as a 
function of activity before sleep.
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Discussion
We propose a minimal thalamo-cortical model that classi�es images drawn from the MNIST set of handwritten 
digits. During a training phase, spike-timing-dependent-plasticity (STDP) sculptures a pre-sleep synaptic matrix 
and creates top-down synapses toward the thalamus. �en, the network is induced to produce deep-sleep-like 
slow oscillations (SO)19,22, while being disconnected from sensory and lateral stimuli and driven by its internal 
activity. During sleep Up states, thalamic cells are activated by top-down predictive stimuli produced by cortical 
groups of neurons and respond with a forward feedback, recruiting other cortical neurons.

In our model it was of utmost importance to obtain a biologically accurate reproduction of the association/
coincidence mechanism described in16 between sensory (from thalamus) and contextual stimuli (from external 
poisson processes). To do this properly would require a dedicated spiking neuronal model. �e implementation 
of such model in neural simulation engines is a current topic of development for the community. In this study 
we approximated the coincidence mechanism through a careful subthreshold setting of both the contextual and 
sensory inputs impinging in cortical neurons. In the training phase the neuron only �red whether both contextual 
and sensory input was received. Our study proves the goodness of the coincidence mechanism for a fast learning 
on few examples only presented once, providing an additional motivation for the development of a dedicated 
model.

One delicate point is that the contextual signal facilitates the learning of each example in a di�erent group of 
neurons. Even if mixed selectivity neurons are fundamental in neural coding23, and are indeed created in our sim-
ulation during sleep, this work adopted this disjoint representation of the contextual facilitation signal, also with 
the purpose of simplifying the understanding of the association mechanism itself. However we note that, in �rst 
approximation, this mechanism would not be unreasonable in the cortex in several circumstances, for at least the 
following reasons. First, we are o�en exposed to individual examples of objects embedded in di�erent contexts. A 
second argument in favour is that the internal state of the brain that dominates the creation of the contextual sig-
nal is never the same, even if external conditions are similar. Moreover, the coding for each internal state is sparse 
and long-range connections bringing contextual information are themselves sparse. Contextual signals with low 
degree of overlap are therefore plausible. �e sparse selectivity of contextual signal facilitates the creation of a 
wide, orthogonal internal representation of individual examples, but lacks of generalization of low levels feature. 
Bottom-up sensory stimuli of examples belonging to the same class should present a high degree of overlap. We 
demonstrated that sleep could help overcoming this problem, inducing speci�c association of examples sharing 
commonality in low level features. �is e�ect might be bene�cial also to machine learning (ML) algorithms which 
currently lack this generalization feature and is relevant for cerebral neural networks.

We observed di�erences in the synaptic structure and in the activity expressed before and a�er the sleep-like 
period. Indeed SO induced two e�ects that are both bene�cial and biologically plausible. �e �rst is a reduction 
in the strength of synapses inside neural populations created by the training on speci�c examples, the second 
is a simultaneous increase of synapses that associate examples of characters belonging to the same category of 
digits. �e �nal structure of the synaptic matrix is more complex and hierarchically organized. Moreover, the 
correlation of groups of neurons during post-sleep retrieval activity re�ects the hierarchical structure supported 
by the underlying synaptic matrix, with stronger cooperation between groups of neurons trained by di�erent 
examples belonging to the same class. Also, during the sleep phase, the network displays a rich internal dynamics 
that evolves across sleep time. Indeed, the composition of neuronal groups recruited during the Up states changes 
sensibly between the initial and the �nal stages of sleep.

We also investigated the bene�ts of such e�ects on the image classi�cation task on the MNIST dataset, �nd-
ing an increase in classi�cation performance. �is improvement is due to both the described mechanisms. First 
the synaptic down-scaling prevent the system from signal saturation, improving the sensibility of the network. 
Second, the association due to thalamo-cortical interaction brings di�erent groups of neurons to cooperate, lead-
ing to a more reliable result during the classi�cation task.

Interestingly, our simulations produce dynamical change predictions that are coherent with recent biological 
observations. First we observed that the SO frequency decreases during the sleep period. �is is due to the asym-
metric STDP we used, and is consistent with experimental observations, where a decrease in SO frequency is 
observed over night12. �is also serves as a protection mechanism, to stop Up state mediated associations before 
a possible catastrophic divergence to a fully connected network. Second, we found that neurons with low levels of 
activity before sleep increased their �ring rate a�er sleep and vice-versa, which is very similar to the global e�ect 
of sleep observed in4, strengthening the biological relevance of our model.

We stress that SO activity is fundamental to achieve the results discussed in this paper, while asynchronous 
state lacks the spatio-temporal structure suited to provide the memory association and the synaptic down-scaling 
that we observed. Up states did not simultaneously occur in all the groups of neurons, but only populations 
coding for images in the same class were likely to co-activate. �e high level of simultaneous �ring rates induced 
stronger synapses between group of neurons coding for examples belonging to the same class, while popula-
tions of di�erent classes remained largely una�ected. Also, the high �ring rate promoted a generalized synaptic 
down-scaling thanks to the asymmetric STDP rule. Such speci�c synaptic organizations would not be possible 
during asynchronous activity.

One of the main peculiarities of this work is that, despite being biologically oriented, it investigates the e�ects 
of SO activity on networks that perform ML relevant tasks. �is follows a path of works in which di�erent tasks 
(such as image recognition and categorization) are performed in networks which are constrained to use biolog-
ically plausible mechanisms such as STDP plasticity and spike-based signal transmission24–27. In this framework 
the impact of the interaction between sleep-like activity and plasticity on the network performances and dynam-
ics has never been addressed. Indeed, in every day life humans and machines might be exposed, in di�erent 
spatial, temporal or social context, to instances of external objects belonging to the same class. Still, they could 
not immediately realize that they are correlated, e.g. because driven by the urgent need to solve the current task. 
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�e association of examples sharing similar low-level features could be performed a�er the learning, e.g. during 
sleep. With this work, we demonstrated a �rst mechanism by which sleep can be bene�cial for both human and 
arti�cial intelligence.

We acknowledge that in our model there are some strong assumptions, that make the network stereotyped and 
still far from biological reality. For example cortical neuron are initially set to encode trained images in a way that 
is completely disjoint using orthogonality in the contextual signal. Despite this is not completely unreasonable in 
some extent (as discussed above), it is known that mixed selectivity neurons are fundamental in neural coding23 
everywhere, and indeed are created in our model during sleep induced association. We plan to include mixed 
selectivity in the contextual signal in future work.

Also, we plan to perform large scale simulations of Slow Wave Activity (SWA) on cortical areas with biolog-
ically plausible long-range lateral connections, and columnar organization (see Pastorelli et al.28), this way sup-
porting the integration of contextual lateral information in cortical model with retino-topical organization. We 
speculate that the introduction of such spatial extension might allow our model to express the sub-state speci�city 
observed in4 and support the di�erent features of Slow Oscillations and Micro Arousal states. On the long term, 
such a detailed approach should enable a comparison of simulation results with experimental measures of slow 
waves propagation patterns and transitions across di�erent stages of sleep.

In the framework we proposed it will be interesting to test and compare di�erent hypotheses of sleep func-
tions, some of which are not yet unified in a coherent framework1,4. We hope to contribute to refine these 
hypotheses: they could �nd a conciliation path according to our preliminary simulation results, that point to the 
possibility of having SO promoting both a hierarchical association of memories and di�erential synaptic home-
ostasis mechanisms.

Our approach is also promising in the direction of biologically plausible ML, and in the next future we aim to 
obtain networks with superior recognition accuracy, and test out network on more complicated image datasets.

In15 the authors discuss the role of sleep in relation with the Integrated Information �eory (IIT) of conscious-
ness. We remark that the groups of neurons created by the pre-sleep training resemble the elementary mecha-
nisms of the conceptual framework described in IIT29. �e increase in complexity among the groups resulting 
from sleep, clearly visible in the �nal synaptic matrix structure, could be viewed as a step towards the creation of 
higher order mechanisms. �is should be associated to changes in the distribution of probabilities of the states 
accessible to the system itself and on a change of its causal power. �is model might constitute a simpli�ed biolog-
ical computational setup to investigate this kind of conceptual framework.

Methods
Network architecture. �e network, which is designed to be a minimal thalamo-cortical model17 (see 
Fig. 1), is composed of two populations of cortical neurons (one excitatory cx and one inhibitory in) and two 
thalamic populations (one excitatory tc and one inhibitory re).

The role of cortical inhibitory neurons in our model is to provide a shared inhibition supporting a 
winner-take-all mechanism. Indeed when a part of the whole network responds to a speci�c input, the rest of the 
network is inhibited. A classical choice to approximate a biological cortical network is to set a 4:1 ratio between 
excitatory and inhibitory neurons. Keeping a �xed excitatory:inhibitory ratio is not critical for the model here 
presented. In our runs, the ratio varied from 4:1 to 1:1 because for simplicity we kept the number of inhibitory 
�xed in all simulations, while we increased the number of excitatory with to the number of training examples.

�e connection probability is = .p 1 0 for the populations connected by the arrows in Fig. 1. �e untrained 
synaptic weights are = −→w 4in cx , =→w 60cx in , =→w 10tc re , = −→w 10re tc , = −→w 1in in , = −→w 1re re . A subset 
of synapses ( →wcx cx, →wcx tc, →wtc cx) is plastic: their initial value and plasticity rules are speci�ed later-on.

�e contextual signal is a Poissonian train of spikes which mimics a contextual signal coming from other brain 
areas and selectively facilitates neurons to learn new stimuli. �e top-down prediction is the signal �owing through 
→cx tc connections, predicting the thalamic con�guration which activated a speci�c cortical activity pattern.

Pre-processing of visual input. Images are pre-processed through the application of the histogram of 
oriented gradients (HOG) algorithm. �e size of original images is 28 × 28 pixel. Histograms are computed using 
cells of 14 × 14 size that are applied on the images using a striding step of 7 pixels, resulting in 9 histograms per 
image. Each cell provides an histogram with 9 bins, each bin assuming a real value. Each bin is then transformed 
into a vector of 4 mutually exclusive truth values. In summary, each image has been transformed in a vector of 
324 binary features. �e resulting visual input is presented to the network through the thalamus, where each 
feature provides a binary input to a di�erent thalamic cell. Each cell receives a Poisson spike train with average 
�ring rate that is 30 kHz only when the element of the feature vector is 1. �e speci�c number of thalamic neurons 
used in the model is related to the speci�c pre-processing algorithm and the number of levels used to code the 
pre-processing output.

Network size and training set. �e number of thalamic (tc) neurons is the same as the dimension of the 
feature vector produced by the pre-processing of visual input ( =N 324th ). �e cortical population is composed 
of groups of 20 neurons for each image in the training set. In a �rst set of runs, the training set is composed of 9 
images, with 3 di�erent examples for 3 di�erent digits (0, 1, 2). In this case the number of cortical neurons is 

=N 180cx . In a second run, the number of training examples has been raised to 30 images (3 examples per digit, 

=N 600cx ). �e number of inhibitory neurons are =N 200in  and =N 200re  (thalamic inhibition).

Training algorithm and retrieval. Every time a new training image is presented to the network through 
the thalamic pathway, the facilitation signal coming from the contextual signal provides a 2 kHz Poisson spike 
train to a di�erent set of 20 neurons, inducing the group to encode for that speci�c input stimulus (see the 
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Discussion section for details about this choice). Additionally a 10 kHz Poisson spike train is provided to inhibi-
tory neurons (in) to prevent already trained neurons to respond to new stimuli in the training phase. Synaptic 
weights for Poisson inputs are =w 8tc

poiss , =w 15cx
poiss  and =w 5in

poiss . �e learning mechanism is allowed by sym-
metric (α = .1 0) spike-timing-dependent-plasticity (STDP) present in the →cx cx, →cx tc and →tc cx con-
nections which shapes the weights structure. �e maximum synaptic weight (see STDP eq. 4) are respectively 

=→w 150cx cx
max , =→w 130cx tc

max  and = .→w 5 5tc cx
max . The initial values are =→w 1cx cx

0 , =→w 1cx tc
0  and =→w 1tc cx

0 . 
During the retrieval phase only the 30 kHz input to thalamic cell is provided, while the contextual signal is o�.

Image classification task on MNIST dataset. Notwithstanding the aim to achieve biological plausibility, 
our work is also oriented to perform tasks that are relevant in the machine learning (ML) scenario. Indeed in this 
work we extended a model developed in a previous work, which was designed to perform an image classi�cation 
task relying on a small number of examples. In that model, the contextual signal projected toward cortical neu-
rons selected groups of target neurons during an incremental training of MNIST handwritten characters. �e 
training presented 25 novel characters per training step. A�er each training step, we measured the growth in the 
recognition rate. �e network reached an average recognition rate of 92% (average over 6 simulations) a�er the 
presentation of 300 example characters (i.e. 30 examples per digit).

Slow oscillations. A�er the training stage, the sleep-like thalamo-cortical spontaneous slow oscillations 
activity is induced for a total duration of 600s by providing a non-speci�c Poisson noise inside the cortex (700 Hz) 
and increasing the strength of SFA parameter ( =b 60, in eq. (1)). No external stimulus is provided to tc cells. 
Also, the synaptic weights between inhibitory and excitatory neurons in the cortex is reduced to = − .→w 0 5in cx . 
In this stage asymmetric STDP plasticity (α = .3 0) is active in the recurrent cx  connectivity, inducing 
sleep-induced modi�cation in the synaptic weights structure. �e parameters’ change to obtain the slow oscillat-
ing regime were chosen relying on mean �eld theory framework18,19.

Simulation protocol. �e simulated experimental protocol is composed of 4 phases (see Fig. 1B): the train-
ing phase, where visual patterns are learned by the network, the pre-sleep retrieval phase, in which patterns 
are recalled, the sleep phase and the post-sleep phase. During post-sleep, the network is either exercised on the 
retrieval of previous learned patterns or applied to the classi�cation of novel examples. �e network structure and 
dynamics are compared in the pre- and post- sleep phases.

AdEx neurons. �e neurons in the network are adaptive exponential (adEx) point like single compartment 
neurons.
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where V t( ) is the membrane potential of the neuron and α = e i,  de�nes the excitatory (e) and the inhibitory (i) 
input. �e population dependent parameters are: τm the membrane time constant, C the membrane capacitance, 

El the reversal potential, θ the threshold, ∆V the exponential slope parameter, W  the adaptation variable, a and b 
the adaptation parameters, and 

α
g syn the synaptic conductance, de�ned as
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We define the spiking time of the neuron when the membrane potential reaches the threshold 

θ= + ∆V V5spike . αtk  indicates the times of pre-synaptic spikes received by the neuron from synapse type α with 
characteristic time τα

syn and its synaptic e�cacy 
αQ . Where non speci�ed, the parameters are the standard de�ned 

in the “aeif_cond_alpha” neuron in the NEST simulator.

STDP plasticity. We used spike-timing-dependent-plasticity (STDP) which potentiates wij when spike 
occurs earlier in neuron j (spike time tj) than in neuron i (spike time ti) and viceversa. We considered STDP in its 
multiplicative form30 which is described by the following equation
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where wmax is the maximum weights value, α is the asymmetry parameter between potentiation and depression, 
λ is the learning rate and τ is the STDP timescale.
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Simulation engine. We performed spiking simulation using the NEST simulation engine, the 
high-performance general purpose simulator developed by the NEST Initiative, release 2.1231.
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