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Abstract

A rapidly expanding scientific literature supports the frequent co-occurrence of sleep and circadian disturbances following

mild traumatic brain injury (mTBI). Although many questions remain unanswered, the preponderance of evidence sug-

gests that sleep and circadian disorders can result from mTBI. Among those with mTBI, sleep disturbances and clinical

sleep and circadian disorders contribute to the morbidity and long-term sequelae across domains of functional outcomes

and quality of life. Specifically, along with deterioration of neurocognitive performance, insufficient and disturbed sleep

can precede, exacerbate, or perpetuate many of the other common sequelae of mTBI, including depression, post-traumatic

stress disorder, and chronic pain. Further, sleep and mTBI share neurophysiologic and neuroanatomic mechanisms that

likely bear directly on success of rehabilitation following mTBI. For these reasons, focus on disturbed sleep as a

modifiable treatment target has high likelihood of improving outcomes in mTBI. Here, we review relevant literature and

present a research agenda to 1) advance understanding of the reciprocal relationships between sleep and circadian factors

and mTBI sequelae and 2) advance rapidly the development of sleep-related treatments in this population.
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Introduction

Every year in the United States, at least 2.5 million

Americans seek medical attention for traumatic brain injury

(TBI).1 Most of these injuries are classified as mild (mTBI), defined

as a Glasgow Coma Scale score of 13 to 15.2,3 Most sequelae resolve

without treatment within 3 months following injury. However,

symptoms such as fatigue, poor cognitive performance, difficulties

performing activities of daily living, depressed mood, post-traumatic

stress, and chronic pain can develop and persist for years.

Importantly, insufficient and disturbed sleep are among the most

common complaints following mTBI, reported by 50% (range: 30

to 85%) of patients.4 Sleep disturbances can develop during the

acute, subacute, or chronic phase post-mTBI. Not only can poor

sleep cause further neurodegeneration, but insufficient and dis-

turbed sleep also likely independently contribute to morbidity and

long-term sequelae of mTBI.4 Evidence from epidemiologic, clinical,

and experimental non-TBI cohorts demonstrates that insufficient and

disturbed sleep worsens outcomes in depression,5 post-traumatic

stress disorder,6 and chronic pain,7 and impairs cognitive and func-

tional performance,8 to name several. Poor sleep can precede, exac-

erbate, and prolong each of these conditions, with profound negative

impact on health-related quality of life (HrQOL) and increased eco-

nomic costs, including health-care utilization and disability.9

For these reasons, the past decade has seen an explosion of

interest in the relationship between sleep and mTBI.10–13 Although

there is consensus regarding the frequent co-occurrence and clear

adverse outcomes associated with sleep complaints in mTBI, less is

known about the mechanisms by which mTBI impacts sleep and

circadian health or the natural history of sleep complaints following
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mTBI. These relationships are complex and bidirectional; ad-

vancing understanding will require serial assessment during the

acute, subacute, and chronic phases following brain injury. To date,

few longitudinal studies have been conducted and those typically

assess sleep at only two time-points.

Preliminary findings suggest that focused sleep interventions can

improve not only disturbed sleep but also HrQOL and functional

outcomes following mTBI.14,15 These findings are consistent with

results reported from non-mTBI samples, suggesting that targeted

sleep treatments can improve sleep as well as other key outcomes in

patients suffering depression,5 post-traumatic stress disorder

(PTSD),16 and chronic pain.17,18

This review synthesizes key findings regarding sleep and mTBI

in adults, with emphasis on advancing understanding of the tem-

poral and interactive relationships between sleep and mTBI se-

quelae, to guide treatment development. Sleep physiology,

measurement of sleep, and sleep disorders occurring in the context

of mTBI are briefly discussed. Next, the salience of sleep for sev-

eral common and debilitating consequences of mTBI (depression,

PTSD, and chronic pain) are explored. Finally, a research agenda is

presented, with the synergistic aims of elucidating the temporal and

interactive relationships between sleep and mTBI outcomes, and

identifying strategies and time-points for sleep-focused targeted

prevention and treatment in mTBI.

Sleep Physiology

Trauma to the brain can disrupt multiple aspects of sleep-wake

function. Sleep and wakefulness follow a natural, endogenous

rhythm that is regulated by the interaction between a homeostatic

process (Process S) and a circadian timing process (Process C).19

Process S is a homeostatic drive that decreases alertness and in-

creases with each hour of wakefulness, then dissipates during

sleep. It is believed to be mediated, at least in part, by the extracel-

lular biochemical substrate adenosine, which is known to increase

with prolonged wakefulness. Process C is a circadian alerting signal

and is regulated primarily in the suprachiasmatic nucleus (SCN) of

the anterior hypothalamus. This intrinsic pacemaker confers circa-

dian rhythmicity of approximately 24.2 h to sleep, wakefulness, and

all physiologic functions that vary across the day, including body

temperature, blood pressure, and hormone secretion, including cor-

tisol and melatonin.20,21 As homeostatic pressure for sleep increases

throughout the day, the circadian alerting signal rises in parallel to

facilitate wakefulness.22 Then, like homeostatic pressure toward

sleep, the circadian alerting signal also subsides during the biologic

night.22 Process C is modulated partly by melatonin secreted by the

pineal gland. Melatonin secretion is itself regulated by exposure to

light, particularly short-wavelength (i.e., blue) light. When light

enters through the eyes (including transmission through closed

eyelids), photic stimuli are transmitted via retinohypothalamic and

retinogeniculohypothalamic pathways to the SCN; in turn, melatonin

secretion is suppressed.23,24 Melatonin levels are low during the day

then rise in the evening, which suppresses central nervous system

arousal and sets the stage for sleep onset.25 The single most accurate

marker for assessing circadian phase is the onset of melatonin se-

cretion under conditions of low light (i.e., dim-light melatonin onset

[DLMO]). As evidenced throughout this review, sequelae of mTBI

can include alterations in homeostatic sleep drive and/or circadian

rhythmicity, thus altering the propensity for sleep and wakefulness

during the 24-h day.

Sleep is defined by cortical-electrical activity or other physio-

logic parameters (e.g., electrooculography) and is comprised of two

distinct states. Consensus recommendations and standardized cri-

teria for defining different stages of human sleep have been pub-

lished elsewhere.26 In adult humans, non-rapid eye movement

(NREM) sleep comprises 75–80% of sleep, with the remainder in

rapid eye movement (REM) sleep. NREM and REM sleep are

distinct and mutually exclusive physiological states. During NREM

sleep (subdivided into stages N1, N2, and N3, or slow wave sleep

[SWS]), electroencephalogram (EEG) activity becomes increas-

ingly synchronized, and the arousal threshold increases, resulting in

progressive difficulty in forced awakening. Conversely, REM sleep

is characterized by EEG activation similar to or higher than waking

levels for many brain regions, excluding the frontal cortical

structures, rapid eye movements, and skeletal muscle atonia.

NREM and REM sleep are believed to perform independent yet

complementary physiologic and mental restorative functions.27

Table 1 summarizes key characteristics of sleep stages in adults, as

well as results of a recent meta-analysis of sleep architecture in

patients with TBI compared with non-TBI controls.

From a neurophysiologic perspective, transitioning between

sleep and wake is highly complex. Numerous interactions take

place among several hypothalamic and brainstem nuclei. Among

the most studied regions are the ventrolateral preoptic (VLPO)

Table 1. Sleep-Related EEG Activity Stage

EEG frequency Features
Key neural
pathways Hypothesized function

% of TST in
healthy adults

Wakefulness Alert- beta
Relaxed- alpha (8–13 Hz)

N1 Theta (4–7 Hz) Lightest sleep stage, slow
eye movements

Cortex Transitional state 2–5%

N2 Theta (4–7 Hz) K-complex, spindles Thalamo-cortical
circuit

45–55%

N3 Delta (0.5–2 Hz) Hypersynchronized slow
wave activity

Thalamus Physical repair
(growth hormone)

15–20%

REM Low-amplitude,
mixed frequency

Sawtooth waves, atonia,
sharply peaked eye
movements

PPT/LDT Memory consolidation 20–25%**

*REM sleep is reduced in traumatic brain injury relative to matched controls.56

EEG, electroencephalogram; TST, total sleep time; REM, rapid eye movement; PPT, pedunculopontine tegmental nucleus of pans and midbrain; LDT,
laterodorsal tegmental nucleus of pans and midbrain.
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nucleus, where sleep is regulated, and the posterior lateral hypo-

thalamus, where wakefulness is regulated. Table 2 highlights key

neurotransmitters and brain centers implicated in sleep-wake

transitions. Although sleep and wakefulness exist on a continuum,

in healthy individuals sleep inhibits wakefulness, and vice versa.

Similarly, NREM and REM sleep are mutually exclusive, inhibi-

tory processes reflecting discrete neurophysiologic states.28 In light

of this complex neurophysiology, it is perhaps not surprising that

mTBI can result in injury to sensitive neuronal structures and the

essential connections that they exhibit. As discussed below, alter-

ations in normal sleep or wakefulness can develop, as can frank

sleep-wake disturbances and circadian dysregulation.

Measurement of Sleep

Sleep is typically measured via overnight polysomnography

(PSG), objective actigraphy, subjective sleep diaries, and self-

report questionnaires (Table 3). PSG includes assessment of elec-

trical activity via EEG, muscle tone via electromyogram (EMG),

and eye movements via electrooculogram, along with cardiac and

respiratory measures. In addition, daytime sleep studies such as the

maintenance of wakefulness test and more commonly, the multiple

sleep latency test (MSLT), can provide valuable objective insight

into the ability to maintain wakefulness and objective daytime

sleepiness, respectively. The MSLT is considered the measurement

standard for sleepiness and consists of a series of planned daytime

naps roughly 2 h apart. Latency to sleep is recorded and averaged

across naps. Despite the utility of these tests for measuring sleep-

iness, such laboratory testing is resource-intensive and may not

always be necessary to achieve a research objective. As a result,

investigators seeking an objective measure of rest-activity cycles

have also employed actigraphic monitoring in adult29–35 as well as

adolescent mTBI samples.36 An actigraph is a small, wristwatch-

size device that is typically worn on the non-dominant hand.

Models range from relatively inexpensive, typically non-validated

commercial activity monitors to those with research-grade triaxial

processors. Among healthy adults32 and individuals with sleep

disorders,37 actigraphy is an accepted proxy for some sleep and

circadian patterns and parameters and a frequently used outcome

measure in sleep-related clinical trials.

Although not an objective measure, subjective sleep diaries are a

standard approach to measuring self-reported sleep patterns over

time, and sleep diaries have been utilized as an outcome measure

in patients with mTBI.14,38,39 Only two questionnaires have been

validated against objective measures of sleep in patients with

TBI40–42: the Pittsburgh Sleep Quality Index (PSQI)43 and the

Epworth Sleepiness Scale (ESS).44 Finally, high-density EEG (hd-

EEG) and sleep neuroimaging methods also have provided insight

into localized and neural underpinnings of healthy and disrupted

sleep and have advanced understanding of circadian variation in

brain function.45–47

Each of these approaches to measuring sleep has strengths and

weaknesses. The optimal measurement strategy for any given sci-

entific endeavor should be guided by the research question, popu-

lation of interest, feasibility, and other considerations. Readers are

referred elsewhere for a detailed discussion regarding pros and cons

of various approaches to research measurement of sleep in mTBI.10

Unfortunately, the quality of the literature regarding sleep in TBI is

variable and difficult to interpret because studies have used in-

consistent measurement of sleep. There is yet no consensus re-

garding standardized sleep assessment nor a set of sleep-related

common data elements in mTBI research, as has been developed

for other aspects of TBI.48 Nonetheless, multi-method assessment

of sleep and circadian patterns, including both objective and sub-

jective measures, should be included whenever possible.10

Table 2. Sleep-Related Neurotransmitters

Neurotransmitter Site of origination
Wake promoting

or sleep promoting Relative activity Comments

Adenosine Extracellular space Sleep NREM>REM>>Wake Metabolized during NREM sleep
GABA VLPO Sleep NREM>>REM>Wake Main NREM neurotransmitter
Melatonin Pineal gland Sleep NREM>REM>Wake Converted from serotonin in the

pineal gland
Glutamate Cortex Wake Wake = REM>NREM Main CNS excitatory

neurotransmitter
Dopamine Substantia nigra Wake Wake = REM>NREM Neither wake nor sleep promoting;

active in dreams
Orexin (hypocretin) Hypothalamus Wake Wake>>REM = NREM Regulates REM-on and REM-off
Acetylcholine Basal forebrain Wake Wake> = REM>>NREM Most active wake, but also REM

sleep (REM-on)
Norepinephrine Locus ceruleus Wake Wake>NREM>>REM Suppresses REM (REM-off)
Serotonin Dorsal raphe nucleus Wake Wake>NREM>>REM Suppresses REM (REM-off)
Histamine Tuberomamillary nucleus Wake Wake>>NREM>REM

>> connotes a greater difference than >
NREM, non-rapid eye movement; REM, non-rapid eye movement; VLPO, ventrolateral preoptic; CNS, central nervous system.

Table 3. Objective and Subjective Differences in Sleep

between TBI and Non-TBI Controls

Measure TBI vs. non-TBI control n

Polysomnography
Sleep onset latency SMD = 0.29 (CI: 0.08, 0.51) 342
Wake after sleep onset SMD = 0.60 (CI: 0.33, 0.87) 224
Sleep efficiency SMD = -0.47 (CI: -0.89, -.06) 298
Total sleep time SMD = -0.37 (CI: -0.59, -0.16) 348

Questionnaire
PSQI SMD = 1.02 (CI: 0.65, 1.39) 703
ESS SMD = 0.40 (CI: 0.17, 0.62) 858

Data from Sommerauer and colleagues.56

TBI, traumatic brain injury; SMD, standard mean difference, PSQI,
Pittsburgh Sleep Quality Index; ESS, Epworth Sleepiness Scale.
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Poor Sleep Quality in TBI

The literature consistently reports that TBI is associated with

reports of poor subjective sleep quality as well as impairments in

objectively measured sleep continuity. For example, between

30–70% of patients with mixed-severity TBI report subjective

complaints of sleep-wake disturbances.49–53 Indeed, a recent meta-

analysis of controlled studies (N = 16) found that relative to non-

TBI controls, patients with mixed-severity TBI report poorer

subjective sleep quality as measured by the PSQI, including the

global score as well as all subscale scores.54 Similarly, relative to

non-TBI controls, patients with mixed-severity TBI also report

greater levels of daytime sleepiness, with increased scores on the

ESS.54 On PSG, relative to non-TBI controls, patients with mixed-

severity TBI demonstrate longer sleep onset latency (SOL), in-

creased wake after sleep onset, poorer sleep efficiency (i.e., total

time asleep/total time in bed), and reduced total sleep time (TST).54

Unfortunately, as is common throughout the literature, this

study aggregated findings across studies of varying TBI severity

(Table 4). Unfortunately, studies of sleep disturbances among in-

dividuals with well-characterized mTBI have been limited. Several

recent studies specific to mTBI are presented below. On the whole,

extant literature suggests that subjective complaints of poor sleep

quality and insomnia are more common among patients with mTBI,

whereas hypersomnia is more common and more persistent among

individuals with moderate and severe TBI. Future studies will

benefit from more refined classification of TBI severity and injury

characteristics.

Despite gross differences in subjective and objective measures

of sleep quality, findings regarding differences in sleep architecture

have been less consistent. In the recent meta-analysis by Grima and

colleagues,54 only a non-significant trend toward increased latency

to REM was detected; no other differences in sleep stages were

observed between TBI and non-TBI controls. Nonetheless, it is

important to appreciate that the literature is plagued by lack of

measurement standardization of sleep, inconsistent operational

definitions of sleep disorders, and heterogeneous samples with

varying levels of TBI severity. For example, the controlled studies

included in the aforementioned meta-analysis included participants

of mixed TBI severity, including multiple injury subtypes and

mechanisms of injury. When combined with small sample sizes,

this limitation makes it difficult to detect subtler but potentially

important changes in sleep neurophysiologic activity in mTBI, such

as increased SWS, which has been associated with regenerative

effects such as axonal sprouting and synaptic remodeling. Several

studies not meeting inclusion criteria for the Grima and colleagues

meta-analysis55–57 have reported increased SWS in TBI patients

relative to matched healthy controls, suggesting a potential neu-

rorecuperative role for SWS following TBI.

Sleep disturbances in mTBI

As emphasized throughout this review, ample evidence supports

the high prevalence of sleep complaints following mTBI. For ex-

ample, Theadom and colleagues58 conducted a study among adults

>16 years with mTBI (N = 341) and measured sleep at baseline

(< 4 days), and 1, 6, and 12 months post-injury. At 1 year follow-up,

41.4% of participants reported poor subjective sleep quality, and

21.0% screened positive for insomnia disorder. Further, sleep

complaints at baseline were associated with worsened outcomes at

12 months, including post-concussive symptoms, mood, cognition,

and community integration. Finally, results indicated that sleep

troubles can emerge early or late within the first year following

injury. Although 44.9% of participants reported improved sleep

between 6 and 12 months, an additional 38.9% reported worsened

sleep.58

Table 4. Objective and Subjective Measures of Sleep

Measure Description

Overnight polysomnography Considered the measurement standard of sleep. Includes assessment of electrical activity via
electroencephalography (EEG), muscle tone via electromyogram (EMG), and eye
movements via electrooculogram (EOG), along with cardiac and respiratory measures.

Daytime polysomnography Multiple sleep latency test (MSLT) and Maintenance of wakefulness test (MWT) can
provide valuable insight into objective sleepiness and ability to maintain wakefulness,
respectively. MSLT is required for diagnosis of narcolepsy.

Actigraphy Small, wristwatch-size device that is typically worn on the non-dominant hand. Models
range from relatively inexpensive, non-validated commercial activity monitors to those
with research-grade processors. Actigraphy has been employed in TBI.36

Sleep diary Standardized approach to measuring self-reported sleep patterns over time, and sleep diaries
have been utilized as an outcome measure in patients with mTBI.14,40,41

Advanced sleep measurement methods High-density EEG (hd-EEG) and sleep neuroimaging have advanced understanding of
localized and neural underpinnings of healthy and disrupted sleep, including circadian
variation in brain function.47–49

Questionnaire
Pittsburgh Sleep Quality Index (PSQI) Nineteen-item self-report questionnaire that assesses sleep quality and disturbances over a

1-month time interval. The PSQI has adequate psychometric properties and has been
validated for insomnia in TBI.45,201

Insomnia Severity Index (ISI) Seven-item self-report questionnaire that assesses perceived sleep disturbance and daytime
consequences. The ISI possesses excellent psychometric properties and is the most
commonly used insomnia measure.202

Epworth Sleepiness Scale Eight items assess likelihood of falling asleep in common daytime situations, for example
watching television or as a passenger in a car. Scores are summed to determine subjective
sleepiness.203

TBI, traumatic brain injury; mTBI, mild traumatic brain injury.
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Others also have reported that subjective sleep complaints are

common and associated with worsened outcomes following mTBI.

For example, in a cross-sectional study using online questionnaires,

Towns and colleagues59 found that 92% of 158 individuals with

history of mTBI reported poor sleep quality, which was positively

associated with post-concussive symptoms. Sullivan and col-

leagues60 administered online questionnaires to 61 individuals with

self-reported mTBI within the past 6 months. After controlling for

confounding variables, only current sleep-related impairment (as

measured by the Patient-Reported Outcomes Measurement Sys-

tem; PROMIS) was significantly associated with current neurobe-

havioral symptoms.60 Similarly, Mollayeva and colleagues61 found

69.2% of employed individuals with delayed recovery from mTBI

to suffer insomnia. Insomnia was associated with pain, depression,

anxiety, and wake time variability.61 In a separate investigation,

Mollayeva and colleagues62 conducted a cross-sectional study of

insomnia among employed individuals with mTBI (N = 92).

Compared with workers with low disability, those with high dis-

ability reported more insomnia, depression, anxiety and pain.

Moreover, in a fully adjusted model, only insomnia was predictive

of work disability, highlighting the adverse economic conse-

quences of insomnia in this population.62

Subjective sleep complaints are more common among individ-

uals with mTBI than among matched controls and patients with

more severe injuries. For example, Sullivan and colleagues63 ad-

ministered questionnaires to patients with mTBI (n = 33) and

matched controls (n = 33). Individuals with mTBI reported more

sleep disturbances, more severe insomnia complaints, greater wake

after sleep onset, and greater sleep-related impairment. However,

no differences in TST, SOL, SE, excessive daytime sleepiness, or

sleep timing were observed.63 In a study among 112 patients in a

Veterans Affairs Polytrauma Rehabilitation Center, Farrell-

Carnahan and colleagues64 found 29% of patients met diagnostic

criteria for insomnia, which was significantly more common among

those with mTBI (43%) than among those with moderate-severe

TBI (22%).

In addition to subjective sleep complaints, individuals with

mTBI also demonstrate objective sleep disturbances. Mollayeva

and colleagues65 administered PSG to individuals diagnosed with

mTBI (N = 40). Compared with established norms, individuals with

mTBI demonstrated more nocturnal wakefulness and less N2 and

REM sleep. Other studies have included control participants. For

instance, Arbour and colleagues66 administered 2 nights of PSG to

patients with mTBI (n = 34) and matched healthy controls (n = 29).

Based on power spectral analyses, patients with mTBI demon-

strated significantly worse sleep quality and increased beta power

during NREM, consistent with physiologic hyperarousal. However,

no differences in SWS or sleep spindles were observed.66 Williams

and colleagues67 also administered multiple questionnaires and 1

night PSG to patients with mTBI (n = 9) and controls (n = 9).

Compared with controls, patients with mTBI demonstrated lower

sleep efficiency, shorter REM-onset latency, and longer and highly

variable sleep latencies. Further, quantitative EEG (qEEG) power

spectral analyses revealed higher sigma, theta, and delta power

among patients with mTBI. Importantly, intra-subject variability

was high in the mTBI group, highlighting the heterogeneous nature

of the condition.66

Perhaps the heterogeneity of mTBI partially explains observed

differences in subjective and objective measures of sleep in patients

with mTBI. Gosselin and colleagues68 administered 2 nights PSG

to athletes (n = 11) with multiple concussions (range = 2–9) and

matched controls (n = 11). Relative to controls, athletes with mul-

tiple mTBI demonstrated worse self-reported sleep and poorer

mood, but no differences in PSG or qEEG were observed.66 Si-

milarly, Allan and colleagues69 administered 14 days of actigraphy,

as well as questionnaires and sleep diaries, to patients with recent

mTBI (n = 14) and non-TBI controls (n = 34). Compared with

controls, patients with mTBI reported significantly higher sleep-

related impairment, poorer nightly sleep quality, and higher rates of

clinical insomnia. However, the only difference in actigraphically

measured sleep was that individuals with recent mTBI demon-

strated phase advance, going to bed and arising approximately 1 h

earlier than controls.69

In addition to discrepancies between subjective and objective

measures of sleep, high within-subject sleep variability has been

observed following mTBI. Raikes and Schaefer70 administered two

5-day sessions of actigraphy and sleep diaries, 30 days apart, to

young adults with acute concussion (n = 6) and matched controls

(n = 10). Individuals with mTBI demonstrated greater nocturnal

sleep duration as well as a higher coefficient of variation as mea-

sured via actigraphy and sleep diary. Further, variability in sleep

duration persisted for 30 days.70 In non-TBI samples, such night-to-

night variability has been associated with a broad range of adverse

health consequences and warrants further study among mTBI

samples.

In light of the frequent occurrence and adverse consequences of

sleep disturbances in mTBI, investigators have sought to identify a

causal link between sleep and mood outcomes. Mantua and col-

leagues71 conducted a study to examine sleep-dependent emotional

processing among individuals with chronic mTBI (n = 40) and

controls (n = 41). Participants viewed negative and neutral images

both before and after a 12-h period including or not including sleep,

and memory recognition was assessed at session two. Based on

PSG and compared with controls, mTBI participants had less REM

sleep, longer latency to REM sleep, and more subjective sleep

complaints. Consolidation of negative images was only observed in

the non-mTBI group, and only non-mTBI participants habituated to

negative images. These results suggest sleep and wake-dependent

emotional processing might underlie poor emotional outcomes

associated with chronic mTBI.71

Sleep Disorders in mTBI

Sleep pathologies are described in terms of insufficient sleep

quantity, altered sleep architecture, clinical sleep disorders, and

circadian misalignment. Sleep and circadian disturbances are as-

sociated with numerous and potentially severe daytime conse-

quences. Data from epidemiologic, clinical, and experimental

studies of poor sleep demonstrate diminished psychomotor per-

formance and increased accident risk; poor cognitive function; ir-

ritability and depressed mood; and impaired endocrine, metabolic,

immune, inflammatory, and cardiovascular function.72,73 Although

a detailed discussion is beyond the scope of this review, recent

guidelines suggest 7–8 h of sleep per night is required for optimal

health and functioning among adults.74,75 Table 5 presents common

sleep and circadian disorders common in mTBI, and outlines

standard treatments.

Clinical assessment of sleep complaints

Although there is no standardized sleep assessment battery fol-

lowing mTBI, a recent national working group recommended

multi-method assessment of sleep and sleep disturbances whenever

possible.10 In addition to the standardized subjective and objective

measures described above, a careful clinical history is essential.

SLEEP AND CIRCADIAN HEALTH FOLLOWING MTBI IN ADULTS 2619
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Clinical assessment should seek to establish the temporal relation-

ship between sleep complaints and mTBI. The assessment should

also account for the mechanism and severity of injury, as blast

injuries have been associated with insomnia whereas blunt trauma

injuries have been associated with sleep-disordered breathing and

hypersomnolence.49 It is also crucial to identify factors that can

influence sleep, such as depression, PTSD, and chronic pain, as well

as medication use. Table 6 includes recommended domains to in-

clude in a clinical sleep history.

Insomnia

Insomnia, defined as difficulty falling asleep and/or difficulty

staying asleep with associated daytime consequence, is the most

common sleep disorder following mTBI,4 reported by between 30–

65% of patients with chronic mTBI. Features of insomnia include

prolonged sleep onset latency, increased wake after sleep onset, and

poor sleep quality.49,76,77 Interestingly, insomnia is also more

common in those with mTBI relative to those with moderate or

severe TBI.49,76,77 Although sleep disturbances can develop during

the acute (0–7 days), subacute (7–90 days), and chronic phase

(> 90 days) of mTBI, it is often difficult to determine the cause(s) of

insomnia, in part because insomnia has well-documented bidirec-

tional relationships with the most common sequelae of mTBI, in-

cluding depression,78 PTSD,6 and chronic pain.7 Often a symptom

of these or other so-called ‘‘primary’’ disorders, it is now widely

recognized that insomnia can quickly take on a life of its own and

warrant independent treatment even after the underlying disorder is

treated. Reflecting this evolved understanding, the Diagnostic and

Statistical Manual of Mental Disorders, 5th Edition (DSM-5) no-

sology eliminated conceptualizations including ‘‘primary’’ and

‘‘secondary’’ insomnia in favor of the more accurate ‘‘insomnia

disorder.’’79

The National Institutes of Health,80 American College of Phy-

sicians,81 and American Academy of Sleep Medicine,82 along with

other leading organizations agree that cognitive behavioral treat-

ment of insomnia (CBTI) should be considered first-line treatment

for chronic insomnia.82–87 CBTI is a time-limited, behaviorally

focused treatment that has demonstrated effectiveness for im-

proving not only sleep but also comorbid conditions88,89 including

but not limited to depression,5 PTSD,16 chronic pain,17,18 and al-

cohol and substance dependence.90,91 A small uncontrolled study14

as well as case reports15 have found CBTI to improve sleep in TBI

patients of mixed severity,14 and a Department of Veterans Affairs

sleep health program that incorporated multiple components of

CBTI was found to improve outcomes in patients with persistent

TBI symptoms.92 Nonetheless, additional studies are needed. CBTI

is of particular interest for mTBI because it is highly amenable to

telehealth approaches,93 thus enabling remote provision of services

following discharge from Level 1 trauma centers, where many

mTBI are initially diagnosed. Table 7 presents common treatment

components of CBTI.

In addition to CBTI, there are a number of Food and Drug Ad-

ministration (FDA)–approved insomnia medications (i.e., sedative

hypnotics).94 Non-benzodiazepine receptor agonists such as zol-

pidem, zopiclone, and eszopiclone are commonly prescribed.

However, no randomized studies have assessed the safety or effi-

cacy of these or other medications in persons with TBI, and hyp-

notics have been found to increase risk for dementia among TBI

patients.95 Similarly, current TBI treatment guidelines recommend

avoiding benzodiazepines when possible due to the risk of myriad

adverse effects including disinhibition and cognitive dysfunction

Table 6. Elements of Clinical Sleep History

Conducted by Fictitious Nurse, Ms. BAMS-RN

B Bedtime � Time in bed
� Time lights out
� Perceived sleep latency

A Awakenings � Number
� Timing
� Perceived duration
� Reasons (e.g., nocturia, rumination)

M Maladaptive
sleep
behaviors

� Alcohol within 2 h of bed
� Caffeine within 6 h of bed
� Inconsistent pre-sleep routine or engaging

in stimulating activities before bed:
planning, worry, professional activities,
housework, finances, computer
� TV/electronics in bed or bedroom

S Snoring � Loud snoring
� Snorting/gasping
� Witnessed apneas

R Risetime � Time awake
� Time out of bed
� Feel refreshed
� Dry mouth
� Headache

N Naps � Timing
� Duration
� Other daytime sleepiness

From Wickwire and colleagues.218 Reprinted with permission.

Table 7. Common Components of Cognitive-Behavioral Treatment for Insomnia

Sleep restriction therapy205 Sleep restriction seeks to relieve insomnia by improving sleep efficiency (SE). Patients are instructed to
reduce their time in bed to slightly above their total sleep time. Once patients have achieved 90% SE
(i.e., 90% of time in bed is spent asleep), time in bed is systematically increased.

Stimulus control206 Stimulus control seeks to restrict bedroom activity to sleep and sex. Patients are also instructed to decrease
the impact of potential environmental distractions, for example, by wearing earplugs to reduce ambient
noise.

Cognitive therapy207 Cognitive therapy for insomnia seeks to correct erroneous beliefs and worry regarding the amount of sleep
one requires and the potential consequences of poor sleep.

Relaxation or
mindfulness208,209

Relaxation has an extensive empirical basis as an effective intervention for numerous psychophysiological
and stress-related disorders. More recent efforts have included mindfulness in insomnia protocols, as an
alternate strategy to reduce physiologic hyperarousal and cognitive rumination.

Sleep hygiene Sleep hygiene seeks to eliminate sleep-interfering behaviors such as excessive or poorly-timed caffeine
consumption.
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(outcomes independently associated with mTBI), as well as phys-

iologic dependence.96,97 Sedative hypnotics including in particular

benzodiazepines should be used with great caution among patients

with mTBI, and appropriate counseling and careful monitoring are

essential.

Circadian dysregulation

Circadian dysregulation is common following mTBI.29 Careful

assessment of circadian rhythmicity will accurately distinguish

insomnia from circadian rhythm sleep disorders (CRSDs). Possible

mechanisms for the increase in CRSDs post-TBI include altered

melatonin production, which has been observed in humans,55 and/

or decreased melatonin receptors, which have been observed fol-

lowing experimental TBI in animal models.98 These alterations are

highly salient not only due to changes in circadian rhythmicity

following TBI but also because melatonin affords protection from

neurotrauma, at least in animal models.99 Surprisingly, to date only

one study has evaluated the impact of melatonin on sleep in TBI. In

a small study of patients with mixed-severity TBI, Kemp and

colleagues found 5 mg melatonin to be associated with within-

subject improvements in daytime alertness, but no changes in sleep

onset latency, sleep duration, or sleep quality were observed.100

More recently, in a small study (N = 13) of patients with mixed TBI

and compared with placebo, 3 weeks of nightly administration of

8 mg ramelteon, a melatonin-receptor agonist, significantly in-

creased TST and mildly increased SOL.35 Importantly, significant

improvements in neurocognitive performance also were detected.35

Further investigation of melatonin therapy in mTBI is warranted.

Fatigue

In addition to disturbed sleep, daytime fatigue is a common and

potentially disabling consequence of mTBI. Up to 70% of mTBI

patients experience significant daytime fatigue, which negatively

impacts numerous functional domains, including workplace pro-

ductivity. Preliminary evidence supports the use of blue-wavelength

light (BL) to reduce daytime fatigue among patients with TBI of

mixed severity. Sinclair and colleagues observed large reductions in

daytime fatigue and moderate reductions in daytime sleepiness fol-

lowing 4 weeks of timed morning BL exposure (45 min in the

morning; k max = 465 nm, 84.8 lW/cm2, 39.5 lux, 1.74 Å* 1014

photons/cm2/sec).101 Similar findings have been reported regarding

the impact of BL on sleepiness and improved physical balance fol-

lowing 6 weeks of timed (30 min) BL among patients with

mTBI.102,103 Interestingly, despite the fact that morning light expo-

sure is known to suppress melatonin and thus help entrain the cir-

cadian rhythm, none of the BL studies to date have detected changes

in sleep quality subsequent to administration of BL.101–103

Heterogeneous injury characteristics and small sample sizes

may explain these non-significant findings. Regardless, because BL

is safe, inexpensive, and known to increase positive affect and

neurocognitive performance, it is a particularly appealing combi-

nation target for incorporating a fatigue management component to

sleep-related interventions in mTBI.

Post-traumatic increased sleep need

Several studies demonstrate increased total sleep time among

TBI patients post-injury, which persists for years.51 Further, rela-

tive to non-TBI controls, TBI patients underestimate their need for

sleep post-injury. For example, Sommerauer and colleagues found

that patients with TBI of mixed severity slept an additional 2.5 h per

24 h period while concurrently underestimating their need for

sleep.56 This increased need for sleep has been termed ‘‘pleio-

somnia’’104 and has been hypothesized to result from loss of wake-

promoting, histamine-producing neurons in the tuberomammillary

nucleus.105 Among patients with mTBI, however, the picture is less

clear. A recent study by Suzuki and colleagues106 found that 29% of

mTBI patients with moderate-to-severe pain at 1 month post-injury

demonstrated increased sleep need, including sleeping >8 h at night

and napping during the day. Although this prevalence of increased

sleep need is notable, it is lower than the prevalence rates reported

in samples among individuals with mixed severity TBI. In aggre-

gate, these findings highlight the need for advanced understanding

of mechanisms of sleepiness post-mTBI and suggest routine as-

sessment of TST and estimated sleep need in people with mTBI.

Post-traumatic hypersomnolence and post-traumatic
narcolepsy

Daytime sleepiness is a common and frequently disabling conse-

quence of TBI, including mTBI. Between 50–85% of TBI patients

report hypersomnolence.49,50 A hypothesized central mechanism

involves damage to essential neural wakefulness circuits including

orexin (hypocretin) producing cells in the hypothalamus.11 In a

seminal study of patients with mixed TBI severity, Baumann and

colleagues found cerebrospinal fluid (CSF) hypocretin to be low or

undetectable within 4 days following injury.107 However, CSF hy-

pocretin levels had normalized for most patients by 6-month follow-

up.107 Similarly, although most hypersomnolence remits over time

following mTBI, between 10–53% of patients experience persistent

symptoms.49–51,53,107–109 In addition to the increased sleep need de-

scribed above, clinical sleep disorders that might occur include post-

traumatic hypersomnia (PTH) and post-traumatic narcolepsy (PTN)

can occur and should be evaluated when excessive daytime sleepiness

persists for 3 months or more. Both PTH and PTN require objective

documentation of sleepiness as evidenced by the MSLT, described

above. Among U.S. adults, the mean daytime latency to sleep is

11.4 min.110,111 By contrast, among patients with TBI, PTH is diag-

nosed with a mean sleep latency <8 min on the MSLT. Similarly, PTN

is diagnosed by mean sleep latency <8 min with the occurrence of >2

sleep onset REM periods (SOREMs) during the MSLT.

During the acute and subacute phases of mTBI, treatment of

daytime sleepiness should focus on ensuring adequate sleep and

restoring and optimizing the sleep-wake cycle. Once daytime

sleepiness becomes chronic, interferes with rehabilitation, or PTH

or PTN is diagnosed, targeted treatment is warranted. To date, there

are no FDA-approved medications for PTH or PTN, highlighting a

clear research need. Psychostimulant (e.g., methylphenidate, am-

phetamines) and non-amphetamine wake-promoting medications

(e.g., modafinil, armodafinil) are often prescribed off-label for the

treatment of excessive daytime sleepiness, but only a small number

of studies have evaluated their safety and efficacy among patients

with TBI. Double-blind randomized controlled trials have found

modafinil as well as its newer R isomer, armodafinil, to reduce

subjective and objective measures of sleepiness in patients with

TBI of mixed severity.112,113 However, no improvements in day-

time fatigue were observed, highlighting the complex and multi-

factorial nature of daytime complaints in this population.

Obstructive sleep apnea

Although the prevalence of obstructive sleep apnea (OSA) is

higher among patients with TBI than in the general population, the

true prevalence of OSA in this population is not yet known.4,11
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Nonetheless, evidence suggests that OSA worsens neurocognitive

performance including memory and attention among patients with

TBI, even after controlling for TBI severity.114 Standard of care

treatment for OSA remains positive airway pressure (PAP) therapy.

Among non-TBI patients, PAP improves neurocognitive perfor-

mance and executive functioning, but not all individuals overcome

pre-treatment cognitive deficits despite successful treatment of

OSA. Importantly, the impact of OSA treatment on neurocognitive

recovery in mTBI has not been studied. Maximizing PAP adher-

ence among people with TBI is of particular and timely interest.

Although PAP is highly effective when used properly, it is well-

documented that many patients struggle to adjust to the therapy.115

Future investigations must consider patient preferences and other

potential barriers to PAP adherence among persons with mTBI. For

example, in addition to physical injuries, many patients with mTBI

suffer comorbid insomnia and/or PTSD, both of which can nega-

tively impact PAP adherence.116,117–119 Alternatives to PAP such

as oral appliance therapy should be explored in patients with mild-

moderate OSA.120 In summary, considering the hypoxemia asso-

ciated with OSA and its known impact on neurocognitive function,

treatment of OSA in people with mTBI represents an important area

for future research.

Sleep and Neuropsychiatric Comorbidities in mTBI

Sleep and depression in mTBI

Depressive disorders are common among persons with TBI, with

an estimated first-year post-TBI depression frequency in the range

of 25% to 50%.121 For example, among 559 patients with TBI

followed for 1 year post-injury, 53% met diagnostic criteria for

major depressive disorder (MDD).122 Impressively, 73% of these

individuals had no prior history of depression. Although the low

rate of prior depression suggests a causal relationship between TBI

and depression in this sample, the issue is far from resolved.

Studies have generally focused on at least two independent but

potentially synergistic mechanisms through which TBI could result

in MDD. The first is situational. There is a clear relationship be-

tween post-TBI depression and poorer functional and health-related

outcomes.121,122 The depressive symptoms reflect an adjustment

disorder related to the stress of the TBI and subsequent difficulties

and disability that result from the injury. A second possible

mechanism through which TBI could contribute to mood symptoms

could be ‘‘organic,’’ in that damage to specific neural systems

might directly influence changes in mood. For example, TBI often

results in disruption of the neuroendocrine system, which can

contribute to cognitive and affective dysfunction.123,124 Another

way in which specific neurological damage associated with TBI can

influence mood regulation is through the presence of microbleed

lesions. In a study utilizing susceptibility-weighted imaging, the

distribution and range of microbleeds in the frontal, parietal, and

temporal lobes was significantly correlated with post-TBI depres-

sion.125 Similarly, CT scans positive for intracranial lesions have

been associated with depression at 3-months post injury.

A robust scientific literature spanning many decades highlights

the centrality of sleep complaints to depressive and other mood

disorders. For example, sleep disturbance is one of the nine core

symptoms of MDD,79 and there is evidence that changes in sleep

often precede and even contribute to a depressive episode.126

Among patients with TBI, a relatively small prospective study

(N = 101) demonstrated that poor sleep within the first 3 months of a

first-time closed-head injury predicted increased neuropsychiatric

symptoms (depression, apathy, anxiety) over the subsequent 12

months.127 Nonetheless, the causal relationship between sleep and

depression remains unclear.78 Thus, considering the effects of TBI

on sleep as evidenced throughout this review, it is important to

understand how changes in sleep might create vulnerabilities to

mood disorders following TBI. Because sleep and mood difficulties

are often co-occurring conditions following TBI,128 understanding

how these relationships might impact treatment in people with TBI

is another essential research objective.

Although previous research has demonstrated changes in neural

systems following both TBI and depression independently, little

research has examined the possible mediating relationship of sleep

between TBI and depression. One potential mechanism through

which sleep might influence depression in TBI is through the

negative impact of sleep disruption on cognitive function.129 Dis-

ruptions of sustained attention are common in mild and moderate

TBI and are negatively correlated with long-term outcome and

quality of life.130,131 At the same time, insufficient and disturbed

sleep adversely impact cognitive function, including sustained at-

tention. Although the extent to which poor sleep might contribute

to alterations in attention in TBI remains poorly understood,132

evidence suggests that attention control mediates the relationship

between sleep and depressive symptomatology. In a study asses-

sing sleep patterns among college students across a 3-week period,

poorer sleep quality was associated with greater increase in de-

pressive symptoms, and that the relationship between sleep and

mood changes was mediated by changes in attention control.133

Specifically, increased sleep difficulties and changes in the stability

of circadian rhythms influenced attention control, which subse-

quently resulted in increased depressive symptoms. Thus, changes

in sleep quality might contribute to the development of depression

through cognitive impairments such as reduced attention control.

An additional indirect pathway through which sleep might influ-

ence depression is via chronic pain, which is common in TBI (see

below).134 Indeed, a recent study tested a related hypothesis.135

Among a large pool (N = 2622) of chronic pain patients, new sleep

disturbances were found to triple the probability of the develop-

ment of depression. Although the specific mechanisms remain

unclear, this research supports the potential mediating role of sleep

between physical pain/disability and the development of mood

symptoms in TBI.

Sleep and PTSD in mTBI

Substantial evidence demonstrates that physical trauma can

cause TBI and concurrently trigger development of subsequent

PTSD.136–144 In military samples the prevalence estimates of PTSD

in individuals with chronic mTBI vary between 18% and 79%,145

compared with 11% to 30% in individuals without mTBI.146 Si-

milarly, veterans who screen positive for TBI are 3.3 times more

likely to meet criteria for PTSD than veterans with a negative TBI

screen.147 The increased prevalence of PTSD is important because

PTSD can worsen outcomes in people with mTBI. For example,

comorbid PTSD and TBI result in higher prevalence of cognitive

and functional impairments148 including reduced attentional per-

formance,149 more frequent and severe headaches,150 other pain-

related complaints, mood disorders, other anxiety disorders, and

substance use disorders,13,151,152 than either condition alone.153–155

Sleep disturbances are common in both PTSD and mTBI and are

more common among those with comorbid PTSD and mTBI than

among those with either condition alone. Further, they demonstrate

complex reciprocal relationships. For example, sleep disturbances

that precede or develop shortly after mTBI are a known risk factor

SLEEP AND CIRCADIAN HEALTH FOLLOWING MTBI IN ADULTS 2623



for development of subsequent PTSD, as well as for development

of multiple neuropsychiatric conditions.156–158 Chronic sleep dis-

turbances also contribute to other types of emotional, cognitive,

social, and functional impairments including increased suicidality,

increased mood lability and impulsivity, impaired cognitive per-

formance and vigilance, absenteeism, and motor vehicle and work-

related accidents,159–161 which are also hallmarks of both PTSD

and TBI. The convergence of these observations suggests that sleep

disturbances independently and synergistically contribute to poor

functional outcomes and psychiatric comorbidity in PTSD and TBI.

Treating sleep disturbances and sleep and circadian disorders in

patients with PTSD can improve not only sleep but also as daytime

PTSD symptoms and mood disturbances.6,16,88,162–164 In TBI

samples, preliminary evidence also suggests that sleep-focused

treatments targeting insomnia can alleviate cognitive and mood

symptoms, as well as fatigue.14,15,165 There are promising early

reports that prazosin, a noradrenergic alpha-1 antagonist used in the

treatment of PTSD-related nightmares, may improve both sleep

quality and cognitive performance in adults with mTBI.166 In ag-

gregate, these findings provide further support for the viability of

sleep-focused treatments in comorbid PTSD and TBI.

Sleep and chronic pain in mTBI

Chronic pain, most commonly headache, is among the most

prevalent, persistent, and disabling sequelae of TBI, impacting 15

to 75% of patients in months and years following the initial inju-

ry.135,167,168 As with sleep disturbances, chronic headache is sig-

nificantly more prevalent among individuals with mTBI than

among those with moderate or severe TBI.135,169 The pathophysi-

ology of headache disorder in mTBI, however, remains poorly un-

derstood and somewhat controversial.134,169,170 It has been proposed

that headache complaints in mTBI might be more closely asso-

ciated with secondary psychiatric sequelae, especially PTSD,171

than with mTBI itself. Nonetheless, numerous studies demon-

strate that compared with individuals with mTBI but without

chronic pain, those with mTBI and persistent headaches and other

pain conditions report increased rates and more severe neuro-

psychiatric sequelae, including PTSD, depression, and sleep dis-

turbances.172–174 Further, on the whole, the data suggest that

associations between mTBI and headache do not appear to be fully

mediated by these conditions.134,175

Headache complaints might be due to unique injury-related

pathophysiology or share a common underlying pathophysiology

with neuropsychiatric symptoms, such as aberrant brainstem-

related hyperarousal. Complex mutually interacting relationships

among headaches, anxiety, sleep disturbances, and mood alter-

ations are likely and have yet to be adequately studied in mTBI.175

To date, minimal data describe the temporal relationship between

sleep and pain symptoms in mTBI. Cross-sectional studies, how-

ever, indicate that the presence of pain significantly increases the

risk of comorbid insomnia in mTBI.176,177 This is consistent with

the general chronic pain literature demonstrating that from 50–88%

of patients with chronic pain report clinically significant and ob-

jective sleep disturbances.7,178 Although little is known about the

effects of pain on sleep in mTBI, a case-control qEEG study

demonstrated that mTBI patients with pain demonstrated increased

fast frequency EEG activity over multiple frequency bands during

REM sleep (i.e., alpha-gamma), reduced slow wave activity in both

REM and NREM sleep, and increased NREM beta activity.179

These finding suggest that pain in mTBI may associated with

abnormal sleep microstructure, indicative of cortical hyperarousal

during sleep. Similar abnormalities have been found in patients

with insomnia disorder and are linked with the perception of poor

sleep continuity, despite relatively normal gross sleep architecture

findings.180 Although few prospective studies have evaluated the

evolution of sleep and pain symptoms in mTBI, several epidemi-

ological studies demonstrate that self-reported poor sleep quality

confers an approximately 2- to 3-fold risk for developing a new

onset chronic insomnia over 1 to 3 years, even after controlling for

traditional psychosocial risk factors.181–184

These studies also demonstrate that poor sleep predicts pain

persistence, increased pain severity, and the progression of

emergent musculoskeletal pain and from regional to widespread

pain.181–184

Conversely, a chronic widespread pain study found that pa-

tients who report good sleep quality spontaneously remit at three

times the rate of patients reporting poor sleep.185 Similarly, several

acute non TBI-related injury studies also have demonstrated that

poor sleep predicts the transition from acute to chronic pain after

injury.186,187

A recent chart review study determined that relative to mTBI

patients without sleep complaints, those reporting poor sleep

quality at 10 days were three times more likely to develop con-

comitant headaches within the first 6 weeks of injury.188

These and similar data strongly suggest that sleep disruption

should be independently targeted in mTBI and future research is

needed to determine if such interventions improve pain and other

neuropsychiatric outcomes. It is important to note that headaches

are not the only type of pain experienced by patients with mTBI, as

many patients sustain other bodily injuries (15–28%) at the time of

the mTBI,189 which might contribute to sleep disruption and sub-

sequent increased risk for pain chronification.

Although the pathophysiology of mTBI headache and other

chronic pain disorders remains poorly understood, emerging data

suggest the possibility that impaired descending pain modulatory

systems, which are with linked with pain chronification in the non-

TBI literature, may play a role similar role in mTBI.190–192 For

example, in a case control study by Defrin and colleagues,191 mTBI

patients with headache exhibited impaired adaptation to tonic heat

pain and deficient conditioned pain modulation (i.e., reduced en-

dogenous pain inhibitory capacity)193–195 compared with healthy

controls and to well-matched mTBI patients without headaches.

Although this finding requires replication, it suggests a possible

pathway through which sleep disturbances might directly contrib-

ute to pain persistence in mTBI, as sleep fragmentation has been

shown to impair conditioned pain modulation (CPM) in healthy

females.196 Deficient CPM 1) predicts the development and tra-

jectory of chronic pain197–200; 2) is associated with enhanced

clinical pain201,202; and 3) has been identified as a central feature of

several idiopathic chronic pain conditions including chronic ten-

sion headache.203–208 Several clinical studies have demonstrated

that the associations between CPM and chronic pain are at least

partially modulated by objective209 and subjective measures of

poor sleep.209–213 Nonetheless, although deficient CPM is one

plausible pathway by which sleep disruption may contribute to

chronic pain in the context of mTBI, investigation of other mech-

anistic pathways through which sleep may confer risk for chronic

pain in mTBI are warranted.

Role of Sleep in Rehabilitation From mTBI

Sleep almost certainly plays an important role in recovery from

mTBI. Sleep is necessary for somatic growth and restoration and is
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directly linked to anabolic processes, including the release of

growth hormone during deep sleep. Further, sleep is vital for neural

growth and neural synaptic plasticity, as well as learning and

memory consolidation.214 Perhaps most interesting, it also has been

demonstrated that among mice, sleep is associated with a signifi-

cant increase in interstitial space and subsequent b-amyloid clear-

ance.215 These findings suggest an essential neuroprotective role

for sleep by eliminating neurotoxic waste. This process is posited

not only to improve neural growth and synaptic plasticity following

mTBI, but also to help ameliorate subsequent neurodegeneration.

The Way Forward: A Research Agenda

As evidenced throughout this review, insufficient and disturbed

sleep, as well as clinical sleep and circadian disorders, are highly

common following mTBI and associated with clear adverse con-

sequences. More important, these modifiable treatment targets have

potential to improve outcomes in mTBI, a complex condition with

few successful clinical trials, guidelines, or evidence-based prac-

tices. In spite of this promise, essential questions remain un-

answered. To develop actionable recommendations to improve

clinical practice and patient outcomes, advanced understanding is

required within six key research domains (Table 8).

First, it is vital to delineate more clearly the natural course of

sleep and sleep disturbances following mTBI. Despite strong evi-

dence that sleep and circadian disturbances are common, little is

known about the onset, remission, or persistence of these com-

plaints. This will require multi-method assessment of sleep in-

cluding subjective and objective measures. To this end, validation

of instruments used to measure sleep and sleep disturbances in

mTBI is needed. Standardized measures of sleep should be incor-

porated into mTBI common data elements, which would help to

ensure large sample sizes and to advance understanding of a vitally

important outcome following mTBI.

Second, there is a dearth of information regarding the mechanisms

associated with sleep and circadian disturbances in mTBI. Under-

standing the functional and/or neuroanatomic and behavioral chan-

ges associated with sleep and circadian disturbances will help

facilitate the development of novel treatment approaches. Future

studies should make an effort to measure TBI severity and mecha-

nism, and to perform analyses that take these variables into account.

Third, greater insight is needed regarding the impact of sleep and

circadian disturbances on key short-term and long-term mTBI

outcomes of interest. This includes the interaction of sleep with

other common sequelae of mTBI, such as depression, PTSD, and

chronic pain. Indeed, a seminal 2013 report from the Institute of

Medicine concluded that there ‘‘dramatic need to understand short-

and long-term effects of concussion.’’216

Literature suggests that among mTBI patients, sleep distur-

bances are associated with worsened neurocognitive function,

PTSD, depression, pain, and health economic outcomes including

increased disability and health care utilization. However, long-term

follow-up is lacking. Future research should investigate the rela-

tionship of sleep to long-term recovery and development of addi-

tional comorbidities following mTBI. Relatedly, little is known

about the impact of mTBI on other conditions, especially chronic

medical conditions involving inflammatory processes, such as di-

abetes and cardiovascular disease, which are known to be highly

comorbid with sleep disorders.

Fourth, in order to advance indicated prevention initiatives, it is

necessary to identify which individuals are at greatest risk for de-

veloping chronic sleep disorders following mTBI. Pre-injury

patient-level factors including neuroanatomy, genetic makeup,

comorbid disease conditions, medication usage, and sleep patterns

Table 8. Research Agenda for Sleep and Circadian Disturbances following mTBI

Domain Research Questions

Measurement 1. What subjective and objective measures of sleep should be included in mTBI common data
elements?

Natural history 2. How do subjective and objective measures of sleep change following mTBI?
3. What is the prevalence of sleep and circadian disorders following mTBI, including onset, remission,

and persistence?
4. How do mechanism of injury and mTBI injury severity impact development of sleep and circadian

disorders?

Short and long-term outcomes 5. What is the relationship between changes in sleep and circadian patterns and key mTBI outcomes of
interest, including health and economic outcomes?

6. How do sleep disturbances interact with other common sequelae of mTBI?

Risk stratification 7. Which pre-injury and clinical factors place individuals at risk for developing chronic sleep and
circadian disorders following mTBI?

8. Can an algorithm identify individuals at risk for chronic sleep and circadian disorders following
mTBI?

Treatment development 9. What modifications are required to adapt and optimize evidence-based sleep and circadian
treatments for mTBI populations?

10. How can evidence-based treatment approaches be combined to address multiple sleep and circadian
comorbidities following mTBI?

11. Can sleep architecture be manipulated to expedite and/or optimize recovery from mTBI?
12. What is the optimal temporal sequence for targeted prevention and/or intervention efforts?

Implementation 13. What are priorities for key stakeholder groups regarding sleep and circadian disorders following
mTBI?

14. What are barriers and facilitators of adoption and integration of evidence-based practices for
assessment, diagnosis, and treatment of sleep and circadian disorders following mTBI?

mTBI, mild traumatic brain injury.
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are all candidate predictors of risk for developing chronic sleep

disorders. Treatment-related factors such as time from injury, co-

morbid injury and illness, and hospital care are likely to impact

outcomes and warrant investigation. In addition, identifying post-

injury disease trajectories is likely to provide not only additional

insight into the disease process and but also temporal guidance

regarding targeted prevention and intervention efforts. This will

require large, well-characterized samples of people with mTBI who

undergo serial assessment of clinical, imaging, and outcomes

characteristics.217

Fifth, there is dramatic need for adaptation, development, re-

finement, and testing of sleep-focused treatments among people with

TBI, to address sleep and circadian disorders once they have become

chronic. Because of their demonstrated effectiveness in other pop-

ulations and favorable risk-benefit profiles, non-drug therapies such

as CBT for insomnia and fatigue management hold particular

promise. In terms of sleep medications, randomized controlled trials

are needed to ensure efficacy and safety among mTBI populations.

Further, research is needed to evaluate the impact of other sleep

disorders in mTBI, including treatments for circadian rhythm

sleep disorders (i.e., bright light therapy, melatonin) and obstructive

sleep apnea (i.e., PAP and oral appliances). Notably, sleep disorders

are highly amenable to telehealth approaches, and this modality

might be particularly useful for increasing access to care for mTBI

patients initially seen in trauma centers far from home. Nonetheless,

evidence among mTBI patients is needed.

Finally, the successful adoption and integration of evidence-

based sleep and circadian practices will require incorporation of

implementation science. Little is known about methods to promote

assessments, treatments, and policies for mTBI in clinical and

public health settings. Implementation science approaches can help

identify barriers and facilitators of sleep-focused treatments in

mTBI populations.
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