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Most attempts at training computers for the difficult and time-consuming task of sleep stage classification involve a feature
extraction step. Due to the complexity of multimodal sleep data, the size of the feature space can grow to the extent that it is
also necessary to include a feature selection step. In this paper, we propose the use of an unsupervised feature learning architecture
called deep belief nets (DBNs) and show how to apply it to sleep data in order to eliminate the use of handmade features. Using
a postprocessing step of hidden Markov model (HMM) to accurately capture sleep stage switching, we compare our results to a
feature-based approach. A study of anomaly detection with the application to home environment data collection is also presented.
The results using raw data with a deep architecture, such as the DBN, were comparable to a feature-based approach when validated
on clinical datasets.

1. Introduction

One of the main challenges in sleep stage classification is to
isolate features in multivariate time-series data which can
be used to correctly identify and thereby automate the
annotation process to generate sleep hypnograms. In the
current absence of a set of universally applicable features,
typically a two-stage process is required before training
a sleep stage algorithm, namely, feature extraction and
feature selection [1–9]. In other domains which share similar
challenges, an alternative to using hand-tailored feature
representations derived from expert knowledge is to apply
unsupervised feature learning techniques, where the feature
representations are learned from unlabeled data. This not
only enables the discovery of new useful feature represen-
tations that a human expert might not be aware of, which
in turn could lead to a better understanding of the sleep
process and present a way of exploiting massive amounts of
unlabeled data.

Unsupervised feature learning and in particular deep
learning [10–15] propose ways for training the weight
matrices in each layer in an unsupervised fashion as a pre-
processing step before training the whole network. This has
proven to give good results in other areas such as vision tasks

[10], object recognition [16], motion capture data [17],
speech recognition [18], and bacteria identification [19].

This work presents a new approach to the automatic
sleep staging problem. The main focus is to learn meaningful
feature representations from unlabeled sleep data. A dataset
of 25 subjects consisting of electroencephalography (EEG) of
brain activity, electrooculography (EOG) of eye movements,
and electromyography (EMG) of skeletal muscle activity
is segmented and used to train a deep belief network
(DBN), using no prior knowledge. Validation of the learned
representations is done by integrating a hidden Markov
model (HMM) and compare classification accuracy with
a feature-based approach that uses prior knowledge. The
inclusion of an HMM serves the purpose of improving upon
capturing a more realistic sleep stage switching, for example,
hinders excessive or unlikely sleep stage transitions. It is in
this manner that the knowledge from the human experts
is infused into the system. Even though the classifier is
trained using labeled data, the feature representations are
learned from unlabeled data. The architecture of the DBN
follows previous work with unsupervised feature learning for
electroencephalography (EEG) event detection [20].

A secondary contribution of the proposed method
leverages the information from the DBN in order to perform
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anomaly detection. Particularly, in light of an increasing
trend to streamline sleep diagnosis and reduce the burden
on health care centers by using at home sleep monitoring
technologies, anomaly detection is important in order to
rapidly assess the quality of the polysomnograph data and
determine if the patient requires another additional night’s
collection at home. In this paper, we illustrate how the DBN
once trained on datasets for sleep stage classification in the
lab can still be applied to data which has been collected at
home to find particular anomalies such as a loose electrode.

Finally, inconsistencies between sleep labs (equipment,
electrode placement), experimental setups (number of sig-
nals and categories, subject variations), and interscorer
variability (80% conformance for healthy patients and even
less for patients with sleep disorder [9]) make it challenging
to compare sleep stage classification accuracy to previous
works. Results in [2] report a best result accuracy of around
61% for classification of 5 stages from a single EEG channel
using GOHMM and AR coefficients as features. Works by
[8] achieved 83.7% accuracy using conditional random fields
with six power spectra density features for one EEG signal
on four human subjects during a 24-hour recording session
and considering six stages. Works by [7] achieved 85.6%
accuracy on artifact-free, two expert agreement sleep data
from 47 mostly healthy subjects using 33 features with SFS
feature selection and four separately trained neural networks
as classifiers.

The goal of this work is not to replicate the R&K system
or improve current state-of-the-art sleep stage classification
but rather to explore the advantages of deep learning and
the feasibility of using unsupervised feature learning applied
to sleep data. Therefore, the main method of evaluation is
a comparison with a feature-based shallow model. Matlab
code used in this paper is available at http://aass.oru.se/∼mlt.

2. Deep Belief Networks

DBN is a probabilistic generative model with deep archi-
tecture that searches the parameter space by unsupervised
greedy layerwise training. Each layer consists of a restricted
Boltzmann machine (RBM) with visible units, v, and hidden
units, h. There are no visible-visible connections and no
hidden-hidden connections. The visible and hidden units
have a bias vector, c and b, respectively. The visible and
hidden units are connected by a weight matrix, W, see
Figure 1(a). A DBN is formed by stacking a user-defined
number of RBMs on top of each other where the output
from a lower-level RBM is the input to a higher-level RBM,
see Figure 1(b). The main difference between a DBN and a
multilayer perceptron is the inclusion of a bias vector for the
visible units, which is used to reconstruct the input signal,
which plays an important role in the way DBNs are trained.

A reconstruction of the input can be obtained from the
unsupervised pretrained DBN by encoding the input to the
top RBM and then decoding the state of the top RBM back to
the lowest level. For a Bernoulli (visible)-Bernoulli (hidden)
RBM, the probability that hidden unit h j is activated given
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Figure 1: Graphical depiction of (a) RBM and (b) DBN.

visible vector, v, and the probability that visible unit vi is
activated given hidden vector, h, are given by

P
(

h j | v

)

=
1

1 + expb j+
∑

i Wi jvi

P(vi | h) =
1

1 + expci+
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j Wi jh j
.

(1)

The energy function and the joint distribution for a given
visible and hidden vector are

E(v, h) = h
T

Wv + b
T

h + c
T

v

P(v, h) =
1

z
expE(v, h).

(2)

The parameters W, b, and v are trained to minimize the
reconstruction error. An approximation of the gradient of
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the log likelihood of v using contrastive divergence [21] gives
the learning rule for RBM:

∂ logP(v)

∂Wi j
≈
〈

vih j

〉

data
−
〈

vih j

〉

recon
, (3)

where 〈·〉 is the average value over all training samples. In
this work, training is performed in three steps: (1) unsuper-
vised pretraining of each layer, (2) unsupervised fine-tuning
of all layers with backpropagation, and (3) supervised fine-
tuning of all layers with backpropagation.

3. Experimental Setup

3.1. Automatic Sleep Stager. The five sleep stages that are at
focus are awake, stage 1 (S1), stage 2 (S2), slow wave sleep
(SWS), and rapid eye-movement sleep (REM). These stages
come from a unified method for classifying an 8 h sleep
recording introduced by Rechtschaffen and Kales (R&K)
[22]. A graph that shows these five stages over an entire night
is called a hypnogram, and each epoch according to the R&K
system is either 20 s or 30 s. While the R&K system brings
consensus on terminology, among other advantages [23], it
has been criticized for a number of issues [24]. Even though
the goal in this work is not to replicate the R&K system, its
terminology will be used for evaluation of our architecture.
Each channel of the data is divided into segments of 1
second with zero overlap, which is a much higher temporal
resolution than the one practiced by the R&K system.

We compare the performance of three experimental
setups as shown in Figure 2.

3.1.1. Feat-GOHMM. A Gaussian observation hidden
Markov model (GOHMM) is used on 28 handmade features;
see the appendix for a description of the features used.
Feature selection is done by sequential backward selection
(SBS), which starts with the full set of features and greedily
removes a feature after each iteration step. A principal
component analysis (PCA) with five principal components is
used after feature selection, followed by a Gaussian mixture
model (GMM) with five components. The purpose of the
PCA is to reduce dimensionality, and the choice of five
components was made since it captured most of the variance
in the data, while still being tractable for the GMM step.
Initial mean and covariance values for each GMM
component are set to the mean and covariance of annotated
data for each sleep stage. Finally, the output from the GMM
is used as input to a hidden Markov model (HMM) [25].

3.1.2. Feat-DBN. A 2-layer DBN with 200 hidden units in
both layers and a softmax classifier attached on top is used
on 28 handmade features. Both layers are pretrained for 300
epochs, and the top layer is fine-tuned for 50 epochs. Initial
biases of hidden units are set empirically to−4 to encouraged
sparsity [26], which prevents learning trivial or uninteresting
feature representations. Scaling to values between 0 and 1
is done by subtracting the mean, divided by the standard
deviation, and finally adding 0.5.
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Figure 2: Overview of three setups for an automatic sleep stager
used in this work. The first method, feat-GOHMM, is a shallow
method that uses prior knowledge. The second method, feat-DBN,
is a deep architecture that also uses prior knowledge. And, lastly, the
third method, raw-DBN, is a deep architecture that does not use any
prior knowledge. See text for more details.

3.1.3. Raw-DBN. A DBN with the same parameters as feat-
DBN is used on preprocessed raw data. Scaling is done by
saturating the signal at a saturation constant, satchannel, then
divide by 2∗ satchannel, and finally adding 0.5. The saturation
constant was set to satEEG = satEOG = ±60µV and satEMG =

±40µV. Input consisted of the concatenation of EEG, EOG1,
EOG2, and EMG. With window width, w, the visible layer
becomes
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⎤
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. (4)

With four signals, 1 second window, and 64 samples per
second, the input dimension is 256.

3.2. Anomaly Detection for Home Sleep Data. In this work,
anomaly detection is evaluated by training a DBN and
calculating the root mean square error (RMSE) from the
reconstructed signal from the DBN and the original signal. A
faulty signal in one channel often affects other channels for
sleep data, such as movement artifacts, blink artifacts, and
loose reference or ground electrode. Therefore, a detected
fault in one channel should label all channels at that time
as faulty.

Figure 3 shows data that has been collected at a healthy
patient’s home during sleep. All signals, except EEG2, are
nonfaulty prior to a movement artifact at t = 7 s. This
movement affected the reference electrode or the ground
electrode, resulting in disturbances in all signals for the
rest of the night, thereby rendering the signals unusable by
a clinician. A poorly attached electrode was the cause for
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Figure 3: PSG data collected in a home environment. A movement
occurs at t = 7 s resulting in one of the electrodes to be misplaced
affecting EOG1 and both EEG channels. EOG2 is not properly
attached resulting in a faulty signal for the entire night.

the noise in signal EEG2. Previous approaches to artifact
rejection in EEG analysis range from simple thresholding
on abnormal amplitude and/or frequency to more complex
strategies in order to detect individual artefacts [27, 28].

4. Experimental Datasets

Two datasets are used in this work. The first consists of 25
acquisitions and is used to train and test the automatic sleep
stager. The second consists of 5 acquisitions and is used to
validate anomaly detection on sleep data collected at home.

4.1. Benchmark Dataset. This dataset has kindly been pro-
vided by St. Vincent’s University Hospital and University
College Dublin, which can be downloaded from PhysioNet
[29]. The dataset consists of 25 acquisitions (21 males 4
females with average age 50, average weight 95 kg, and
average height 173 cm) from subjects with suspected sleep-
disordered breathing. Each acquisition consists of 2 EEG
channels (C3-A2 and C4-A1), 2 EOG channels, and 1 EMG
channel using 10–20 electrode placements system. Only one
of the EEG channel (C3-A2) is used in this work. Sample rate
is 128 Hz for EEG and 64 Hz for EOG and EMG. Average
recording time is 6.9 hours. Sleep stages are divided into
S1: 16.7%, S2: 33.3%, SWS: 12.7%, REM: 14.5%, awake:
22.7%, and indeterminate: 0.1%. Scoring was performed by
one sleep expert.

All signals are preprocessed by notch filtering at 50 Hz
in order to cancel out power line disturbances and down-
sampled to 64 Hz after being prefiltered with a band-pass
filter of 0.3 to 32 Hz for EEG and EOG, and 10 to 32 Hz
for EMG. Each epoch before and after a sleep stage switch is
removed from the training set to avoid possible subsections
of mislabeled data within one epoch. This resulted in 20.7%
of total training samples to be removed.

A 25 leave-one-out cross-validation is performed. Train-
ing samples are randomly picked from 24 acquisitions in
order to compensate for any class imbalance. A total of
approximately 250000 training samples and 50000 training
validation samples are used for each validation.

4.2. Home Sleep Dataset. PSG data of approximately 60
hours (5 nights) was collected at a healthy patient’s home
using a Embla Titanium PSG. A total of 8 electrodes were
used: EEG C3, EEG C4, EOG left, EOG right, 2 electrodes for
the EMG channel, reference electrode, and ground electrode.
Data was collected with a sampling rate of 256 Hz, which
was downsampled to match the sampling rate of the training
data. The signals are preprocessed using the same method as
the benchmark dataset.

5. Results

5.1. Automatic Sleep Stager. A full leave-one-out cross-
validation of the 25 acquisitions is performed for the three
experimental setups. The classification accuracy and confu-
sion matrices for each setup and sleep stage are presented
in Tables 1, 2, 3, and 4. Here, the performance of using
a DBN based approach, either with features or using the
raw data, is comparable to the feat-GOHMM. While the
best accuracy was achieved with feat-DBN, followed by raw-
DBN and lastly, feat-GOHMM, it is important to examine
the performances individually. Figure 4 shows classification
accuracy for each subject. The raw-DBN setup gives best, or
second best, performance in the majority of the sets, with
the exception of subjects 9 and 22. An examination of the
performance when comparing the F1-score for individual
sleep stages indicates that S1 is the most difficult stage to
classify and awake and slow wave sleep is the easiest.

For the raw-DBN, it is also possible to analyze the learned
features. In Figure 6, the learned features for the first layer
are given. Here, it can clearly be seen that both low and high
frequency features for the EEG and high and low amplitude
features for the EMG are included, which to some degree
correspond to the features which are typically selected in
handmade feature selection methods.

Some conclusions from analyzing the selected features
from the SBS algorithm used in feat-GOHMM can be made.
Fractal exponent for EEG and entropy for EOG were selected
for all 25 subjects and thus proven to be valuable features.
Correlation between both EOG signals was also among
the top selected features, as well as delta, theta, and alpha
frequencies for EEG. Frequency features for EOG and EMG
were excluded early, which is in accordance to the fact that
these signals do not exhibit valuable information in the
frequency domain [30]. The kurtosis feature was selected
more frequently when it was applied to EMG and less
frequently when it was applied to EEG or EOG. Features of
spectral mean for all signals, median for EMG, and standard
deviation for EOG were not frequently selected. See Figure 5
for errors bars for each feature at each sleep stage.

It is worth noting that variations in the number of
layers and hidden units were attempted, and it was found
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Table 1: Classification accuracy and F1-score for the three experimental setups.

Accuracy (mean ± std)
F1-score

Awake S1 S2 SWS REM

f eat-GOHMM 63.9 ± 10.8 0.71 0.31 0.72 0.82 0.47

feat-DBN 72.2 ± 9.7 0.78 0.37 0.76 0.84 0.78

raw-DBN 67.4 ± 12.9 0.69 0.36 0.78 0.83 0.58
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Figure 4: Classification accuracy for 25 testing sets for three setups.

Table 2: Confusion matrix for feat-GOHMM.

%
Classified

Awake S1 S2 SWS REM

Awake 72.5 16.8 3.0 2.5 5.2

S1 29.4 31.1 25.6 1.5 12.4

S2 2.0 8.4 71.9 7.1 10.6

SWS 1.1 1.3 9.6 87.8 0.2

REM 11.7 13.3 29.4 2.7 42.9

Table 3: Confusion matrix for feat-DBN.

%
Classified

Awake S1 S2 SWS REM

Awake 75.8 18.2 1.8 0.2 4.1

S1 26.0 37.6 25.1 0.7 10.6

S2 1.0 9.8 73.1 7.2 9.0

SWS 0.4 0.1 13.9 85.5 0.1

REM 1.9 4.0 10.3 0.1 83.7

that an increase did not significantly improve classification
accuracy. Rather, an increase in either the number of layers
or hidden units often resulted in a significant increase in
simulation time, and therefore to maintain a reasonable
training time, the layers and hidden units were kept to a

Table 4: Confusion matrix for raw-DBN.

%
Classified

Awake S1 S2 SWS REM

Awake 68.4 13.4 2.5 0.7 15.1

S1 20.3 33.1 24.8 1.6 20.2

S2 1.0 6.3 76.5 9.1 7.1

SWS 0.1 0.0 11.1 88.8 0.0

REM 21.1 6.9 11.1 0.8 60.1

minimum. With the configuration of the three experimental
setups described above and simulations performed on a
Windows 7, 64-bit machine with quad-core Intel i5 3.1 GHz
CPU with use of a nVIDIA GeForce GTX 470 GPU using
GPUmat, simulation time for feat-GOHMM, feat-DBN, and
raw-DBN were approximately 10 minutes, 1 hour, and 3
hours per dataset, respectively.

5.2. Anomaly Detection on Home Sleep Data. A total of five
acquisitions were recorded at a patient’s home during sleep
and manually labeled into faulty or nonfaulty signals. A DBN
with the raw-DBN setup was trained using the benchmark
dataset. The root mean square error (RMSE) between the
home sleep data and the reconstructed signal from the
trained DBN for the five night runs and a close-up for night
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Figure 5: Error bar of the 28 features. Gray number in background represents how many times that feature was part of best subset from SBS
algorithm (maximum is 25).

2 where an electrode falls off after around 380 minutes can
be seen in Figure 7.

Interestingly, attempts on using the feat-GOHMM for
sleep stage classification on the home sleep dataset resulted
in faulty data to be misclassified as awake. This could be
explained by the fact that faulty data mostly resembles signals
in awake state.

6. Discussion

In this work, we have shown that an automatic sleep stager
can be applied to multimodal sleep data without using any
handmade features. We also compared the reconstructed
signal from a trained DBN on data collected in a home
environment and saw that the RMSE was large where an
obvious error had occurred.

Regarding the DBN parameter selection, it was noticed
that setting initial biases for the hidden units to −4 was an
important parameter for achieving good accuracy. A better
way of encourage sparsity is to include a sparsity penalty term
in the cost objective function [31] instead of making a crude
estimation of initial biases for the hidden units. For the raw-
DBN setup, it was also crucial to train each layer with a large
number of epochs and in particular the fine tuning step.

We also noticed a lower performance if sleep stages were
not set to equal sizes in the training set. There was also
a high variation in the accuracy between patients, even if

they came from the same dataset. Since the DBN will find
a generalization that best fits all training examples, a testing
set that deviates from the average training set might give poor
results. Since data might differs greatly between patients, a
single DBN trained on general sleep data is not specialized
enough. The need for a more dynamic system, especially
one including the transition and emission matrices for the
HMM, is made clear when comparing the hypnograms of a
healthy patient and a patient with sleep disordered breathing.
Further, although the HMM provides a simple solution that
captures temporal properties of sleep data, it makes two
critical assumptions [13]. The first one is that the next hidden
state can be approximated by a state depending only on the
previous state, and the second one is that observations at
different time steps are conditionally independent given a
state sequence. Replacing HMM with conditional random
fields (CRFs) could improve accuracy but is still a simplistic
temporal model that does not exploit the power of DBNs
[32].

While a clear advantage of using DBN is the natural
way in which it deals with anomalous data, there are some
limitations to the DBN. One limitation is that correlations
between signals in the input data are not well captured.
This gives a feature-based approach an advantage where, for
example, the correlation between both EOG channels can
easily be represented with a feature. This could be solved by
either representing the correlation in the input or extending
the DBN to handle such correlations, such as a cRBM [33].
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(a) (b)

(c) (d)

Figure 6: Learned features of layer 1 for (a) EEG, (b) EOG1, (c) EOG2, and (d) EMG. It can be observed that the learned features are of
various amplitudes and frequencies and some resemble known sleep events such as a K-complex or blink artifacts. Only the first 100 of the
200 features are shown here.

Regarding the implemented feat-GOHMM, we have tried
our best to get as high accuracy with the setup as possible.
It is almost certain that another set of features, different
feature selection algorithm, and/or another classifier could
outperform our feat-GOHMM. However, we hope that
this work illustrates the advantages of unsupervised feature
learning, which not only removes the need for domain
specific expert knowledge, but inherently provides tools for
anomaly detection and noise redundancy.

It has been suggested for multimodal signals to train a
separate DBN for each signal first and then train a top DBN
with concatenated data [34]. This not only could improve
classification accuracy, but also provide the ability to single
out which signal contains the anomalous signal. Further,
this work has explored clinical data sets in close cooperation
with physicians, and future work will concentrate on the
application for at home monitoring as sleep data is an area
where unsupervised feature learning is a highly promising
method for sleep stage classification as data is abundant and
labels are costly to obtain.

Appendix

A. Features

A total of 28 features are used in this work.
Relative power for signal y in frequency band f is

calculated as

yPrel

(

f
)

=
yP
(

f
)

∑ f5
f= f1

yP
(

f
)

, (A.1)

where y( f )P is the sum of the absolute power in frequency
band f for signal y. The five frequency bands used are
delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–
20 Hz), and gamma (20–64 Hz).

The median of the absolute value for EMG is calculated
as

EMGmedian = median

⎛

⎝

N
∑

k=1

|EMG(k)|

⎞

⎠. (A.2)
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Figure 7: RMSE for five night runs recorded at home (bottom). Color-code of RMSE for night run 2 where the redder areas more anomalous
areas of the signal. EOG2 falls off at around 380 minutes (top).

The eye correlation coefficient for the EOG is calculated as

EOGcorr =
E
[(

y1 − µy1

)(

y2 − µy2

)]

σy1σy2

, (A.3)

where y1 = EOGleft and y2 = EOGright.
The entropy for a signal y is calculated as

yentropy = −

8
∑

k=1

nk
N

ln
nk
N

, (A.4)

where N is the number of samples in signal y, and nk is the
number of samples from y that belongs to the kth bin from a
histogram of y.

The kurtosis for a signal y is calculated as

ykurtosis =
E
[

y − µ
]4

σ4
, (A.5)

where µ and σ are the mean and standard deviation, respec-
tively, for signal y.

The spectral mean for signal y is calculated as

yspectralmean =
1

F

f5
∑

f= f1

y
(

f
)

Prel
· f , (A.6)

where F is the sum of the lengths of the 5 frequency bands.
Fractal exponent [35, 36] for the EEG is calculated as

the negative slope of the linear fit of spectral density in the
double logarithmic graph.

Normalization is performed for some features according
to [37] and [30]. The absolute median for EMG is normal-
ized by dividing with the absolute median for the whole EMG
signal.
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