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Abstract
Automatic sleep stage classification with cardiorespiratory signals has 
attracted increasing attention. In contrast to the traditional manual scoring 
based on polysomnography, these signals can be measured using advanced 
unobtrusive techniques that are currently available, promising the application 
for personal and continuous home sleep monitoring. This paper describes a 
methodology for classifying wake, rapid-eye-movement (REM) sleep, and 
non-REM (NREM) light and deep sleep on a 30 s epoch basis. A total of 
142 features were extracted from electrocardiogram and thoracic respiratory 
effort measured with respiratory inductance plethysmography. To improve the 
quality of these features, subject-specific Z-score normalization and spline 
smoothing were used to reduce between-subject and within-subject variability. 
A modified sequential forward selection feature selector procedure was 
applied, yielding 80 features while preventing the introduction of bias in the 
estimation of cross-validation performance. PSG data from 48 healthy adults 
were used to validate our methods. Using a linear discriminant classifier and 
a ten-fold cross-validation, we achieved a Cohen’s kappa coefficient of 0.49 
and an accuracy of 69% in the classification of wake, REM, light, and deep 
sleep. These values increased to kappa = 0.56 and accuracy = 80% when the 
classification problem was reduced to three classes, wake, REM sleep, and 
NREM sleep.
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1. Introduction

A problem with traditional sleep monitoring, known as polysomnography (PSG), is that a 
wide array of potentially sleep-disturbing sensors must be applied to the body and their mea-
surements can only be interpreted by highly trained sleep technicians or scientists. Albeit 
invaluable in the diagnostic of sleep disorders, traditional PSG is rather ill-suited for regu-
lar, non-diagnostic monitoring of sleep and will only introduce more sleep disturbances 
when applied on a daily basis by untrained individuals. This scenario makes apparent a need 
for unobtrusive methods of sleep monitoring, preferably inexpensive and with no training 
required to operate them. Cardiorespiratory monitoring can be unobtrusive and the data can 
be analyzed by a computer, which makes this technology a promising candidate for personal, 
continuous and unobtrusive sleep monitoring.

Cardiorespiratory sleep staging or sleep stage classification is often based on heart rate 
variability (HRV) calculated from electrocardiogram (ECG) and respiratory effort, often from 
respiratory inductance plethysmography (RIP). Usually cardiorespiratory information is com-
bined with body movements from an accelerometer to more accurately distinguish wake from 
sleep. One of the earliest studies that presented a successful machine learning approach to 
cardiorespiratory sleep stage classification with these modalities was done by Redmond and 
Heneghan (2006). Using a set of HRV features to model the autonomic nervous activity and 
a set of respiratory features to model the parasympathetic tone, Redmond and colleagues 
showed the viability of a sleep stage classifier that can generate a simplified hypnogram for 
an entire night indicating, for each 30 s segment, a sleep stage, classified as either wake, 
rapid-eye-movement (REM) sleep, or non-REM (NREM) (wake-REM-NREM or WRN clas-
sification for short). More recent research has shown that it is possible to obtain the same 
cardiorespiratory information from other sensors for sleep stage classification, such as from 
bed-mounted ballistocardiogram (Watanabe and Watanabe 2004, Kortelainen et al 2010) or 
contactless radio frequency (de Chazal et al 2011). Although these studies focused on distinc-
tion between wake, REM sleep, and NREM sleep (without separating NREM sleep in other 
sleep stages) or between wake and sleep (merging REM and NREM sleep), these attempts 
promised that cardiorespiratory methods could one day be completely unobtrusive.

In previous work (Long et al 2014d, 2014) we proposed methods to simultaneously 
classify wake, REM sleep, light sleep (NREM stage S1 and S2), and deep sleep or slow 
wave sleep (stage S3 and S4) using respiratory activity in order to estimate an overnight 
wake-REM-light-deep sleep (WRLD) hypnogram. In comparison with WRN classification, 
achieving WRLD classification would allow a more adequate assessment of sleep since 
deep sleep is thought by some researchers to be important in several cortical and physiologi-
cal processes, such as energy conservation (Berger and Phillips 1995), cerebral restoration 
(Benington and Heller 1995), and memory processing and consolidation (together with 
sleep spindles which occur during NREM stage 2) (Stickgold 2005, Walker 2009). In that 
work, we also reviewed the state-of-the-art in sleep stage classification with cardiac and/
or respiratory activity. The methods presented there will be used to benchmark the method 
proposed in this paper. In addition, two studies with comparable results have been proposed 
by Domingues et al (2014) and Willemen et al (2014). However, these works only report 
results on a three-class task (WRN classification) or use non-standard one-minute epochs 
for classification, respectively.
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This paper presents a methodology for automatic sleep stage classification based on 
machine learned models of the autonomic nervous system during sleep from ECG and RIP 
signals. Compared to previous studies, our methodology includes novel features, new feature 
post-processing methods, and a refined feature selection method which guarantees that no bias 
is introduced in the validation of the algorithm while avoiding the use of a hold-out validation 
set. These methods are applied for three-class (WNR) and four-class (WRLD) sleep stage 
classification of healthy subjects.

2. Materials and methods

2.1. Data sets

The data set was the same as used in earlier work (Long et al 2014d, 2014) and comprised 
full single-night polysomnographic (PSG) recordings of 48 subjects (27 females) acquired in 
the SIESTA project (Klosch et al 2001). All subjects were healthy sleepers with a Pittsburgh 
Sleep Quality Index (Buysse et al 1989) of less than 6 and had no regular sleep complaints nor 
earlier diagnosis of sleep disorders. The subjects had an average age of (± )41.3 16.1  years at 
the time of the recording. Full subject demographics can be found in our earlier work (Long 
et al 2014d). Sleep stages were scored by trained sleep technicians in six classes according 
to the R and K rules (Rechtschaffen and Kales 1968). In the scope of this study, S1 and S2 
were merged in a single L (light sleep) class and S3 and S4 were merged in a single D (deep 
sleep) class. Each PSG recording comprised, besides the standard signals required for sleep 
scoring, modified lead II ECG, and (thoracic) respiratory effort recorded with respiratory 
inductance plethysmography (RIP). QRS complexes were detected and localized from ECG 
signals using a combination of a Hamilton–Tompkins detector (Hamilton and Tompkins 1986, 
Hamilton 2002) and a post-processing localization algorithm (Fonseca et al 2014). Prior to 
feature extraction, RIP signals were filtered with a 10th order Butterworth low-pass filter with 
a cut-off frequency of 0.6 Hz, after which baseline was removed by subtracting the median 
peak-to-through amplitude (Long et al 2014d).

2.2. Feature extraction

We extracted a set of 142 features from cardiac and respiratory activity, and from cardiore-
spiratory interaction (CRI) using a sliding window centered on each 30 s epoch, guaranteeing 
sufficient data to capture the changes in autonomic activity (Malik et al 1996). Since some fea-
tures are computed based on windows which exceed the epoch length, epochs at the start and 
end of each recording required a special handling: for each such feature, all epochs for which 
the window crosses the boundaries of the recording were marked as invalid; the feature values 
for these epochs were interpolated during post-processing using spline fitting (section 2.2.4).

2.2.1. Cardiac features. Considering cardiac activity, 86 cardiac features were computed 
from the QRS complexes detected in the ECG signal. Time domain features, computed over 
nine epochs, include mean heart rate, mean heartbeat interval (detrended and non-detrended), 
standard deviation (SD) of heartbeat intervals, difference between maximal and minimal 
heartbeat intervals, root mean square and SD of successive heartbeat interval differences, and 
percentage of successive heartbeat intervals differing by  >50 ms (Malik et al 1996, Redmond 
et al 2007). We also computed the mean absolute difference and different percentiles (at 10%, 
25%, 50%, 75%, and 90%) of detrended and non-detrended heart rates and heartbeat intervals 
(Ylmaz et al 2010, Willemen et al 2014) as well as the mean, median, minimal, and maximal 
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likelihood ratios of heart rates (Basner et al 2007). In the frequency domain, the features 
included the logarithmic spectral powers in the very low frequency band (VLF) from 0.003 
to 0.04 Hz, in the low frequency band (LF) from 0.04 to 0.15 Hz, in the high frequency band 
(HF) between 0.15 to 0.4 Hz, and the LF-to-HF ratio (Busek et al 2005), where the power 
spectral densities were estimated over nine epochs. The spectral boundaries were adapted 
to the corresponding peak frequency, yielding their boundary-adapted versions (Long et al 
2014c). We also computed the maximum module and phase of HF pole (Mendez et al 2010) 
and the maximal power in the HF band and its associated frequency representing respira-
tory rate (Redmond et al 2007). Features describing non-linear properties of heartbeat inter-
vals were quantified with detrended fluctuation analysis (DFA) over 11 epochs (Kantelhardt  
et al 2001) and its short-term (α1), long-term (α2), and all time scaling exponents (Iyengar  
et al 1996, Penzel et al 2003), progressive DFA with non-overlapping segments of 64 heart-
beats (Telser et al 2004), windowed DFA over 11 epochs (Adnane et al 2012), and multi-scale 
sample entropy (MSE) over 17 epochs (length of 1 and 2 samples with scales of 1–10) (Costa 
et al 2005). Approximate entropy of the symbolic binary sequence that encodes the increase 
or decrease in successive heartbeat intervals over nine epochs was also calculated (Cysarz et al 
2000). In addition, we propose new features based on a visibility graph (VG) and a difference 
VG (DVG) method to characterize HRV time series in a two-dimensional complex network 
where samples are connected as nodes in terms of certain criteria (Lacasa et al 2008, Long 
et al 2014a). The network-based features, computed over seven epochs, comprised the mean, 
SD, and slope of node degrees and number of nodes in VG- and DVG-based networks with a 
small degree (⩽3 for VG and ⩽2 for DVG) and a large degree (⩾10 for VG and ⩾8 for DVG), 
and assortativity coefficient in the VG-based network (Shao 2010, Long et al 2014a, Zhu et 
al 2014).

2.2.2. Respiratory features. Concerning respiratory activity, 44 features were derived from 
RIP signals. In the time domain, we estimated the variance of the respiratory effort signal, 
the respiratory frequency and its SD over 150, 210, and 270 s, the mean and SD of breath-
by-breath correlation, and the SD in breath length (Redmond et al 2007). One of our pre-
vious studies (Long et al 2014d) introduced respiratory amplitude features for sleep stage 
classification, including the standardized mean, standardized median, and sample entropy of 
respiratory peaks and troughs (indicating inhalation and exhalation breathing depth, respec-
tively), median peak-to-trough difference, median volume and flow rate for complete breath 
cycle, inhalation, and exhalation, and inhalation-to-exhalation flow rate ratio. These features 
were adopted in this work. Besides, we also computed the similarity between the peaks and 
troughs by means of the envelope morphology using a dynamic time warping (DTW) metric 
(Berndt and Clifford 1994). From the respiratory spectrum, the respiratory frequency and its 
power, the logarithm of the spectral power in VLF (0.01–0.05 Hz), LF (0.05–0.15 Hz), and 
HF (0.15–0.5 Hz) bands, and the LF-to-HF ratio were estimated (Redmond and Heneghan 
2006). Respiratory regularity was measured by means of sample entropy over seven epochs 
(Richman and Moorman 2000, Long et al 2014d) and self-(dis)similarity based on DTW and 
dynamic frequency warping (DFW) (Long et al 2014b) and uniform scaling (Long et al 2014) 
were derived. The same network analysis features as for HRV were also computed for breath-
to-breath intervals.

2.2.3. Cardiorespiratory interaction features. Numerous studies have shown that the interac-
tion between cardiac and respiratory activity varies across sleep stages (Ichimaru et al 1990, 
Cysarz et al 2004, Long et al 2014a). The power associated with respiratory-modulated heart-
beat intervals was quantified over windows of nine epochs (Ichimaru et al 1990). In addition, 
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we also extracted the VG- and DVG-based features for CRI (Long et al 2014a). These resulted 
in a total of 12 CRI features in our feature set.

2.2.4. Feature post-processing. In order to reduce the impact of physiological differences 
and equipment-related variations from subject to subject, the features of each subject were first 
Z-score normalized by subtracting their mean and dividing by their SD. Further, it is known 
that the sleep pattern of healthy adults progresses with several cycles throughout the night 
 (Carskadon and Dement 2011). For example, REM and NREM sleep alternate with 4–6 cycles 
of about 90–110 min with deep sleep usually dominating the NREM periods during the first 
half of the night. This suggests that the autonomic physiological response with its associated 
sleep stage is time-variant across the night for each subject. For this reason, we were motivated 
to smoothen each feature for each subject by means of a cubic spline fitting method (De Boor 
2001). This is also expected to help reduce signal measurement noise and variability within 
subjects for each sleep stage conveyed by the feature values. The latter can be caused by body 
movements, conscious breathing control, internal physiological variations, or other external 
factors such as changes in environmental noise and temperature during bedtime sleep. Instead 
of other simpler low-pass filters, spline fitting was chosen since it can interpolate feature values 
which could not be computed, for example due to motion artifacts (about 10% observed in our 
data set) or at the start and end of each recording for features computed with windows exceed-
ing the epoch duration. This procedure allows all epochs in each recording to be classified.

Let t represent a sequence of feature values v   =   {v1, v2, ..., vn} at their corresponding time 
(or epoch) indices t   =   {t1,t2, ...,tn} (in 30 s), then a relation between them can be modeled by

ε= ( ) + ( = )v h t i n    1, 2, ..., ,i i i (1)

where h is a smoothing (spline) function, εi are independent and identically distributed residu-
als. The smoothing function can be estimated by minimizing the objective function (i.e. penal-
ized sum of square) such that

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫∑ ″λ= [ − ( )] + ( )

=

h v h t h t tˆ arg min d ,
h

i

n

i i
t

t

1

2 2
n

1

 (2)

where λ is a smoothing parameter that controls the trade-off between residual and local varia-
tion. The smoothing function can be expressed by cubic B-splines as basis functions and 
determined via least squares approximation (Unser 1999, De Boor 2001).

For a specific overnight recording with a total of m epochs, it is divided in s continuous 
segments ( = ⌈ ⌉s m n/ ), designated as smoothing splines. Each segment can then be modeled by 
the spline function, yielding a general spline fitting for the epochs over the entire recording.  
n represents the smoothing window size where a larger n translates to a smoother fitting curve. 
In this work, a window size of nine epochs for modeling splines was experimentally found to 
be appropriate for the task of sleep stage classification.

2.3. Classifier

This work used a multi-class Bayesian linear discriminant with time-varying prior probabili-
ties (Redmond et al 2007), similar to that used in previous work (Long et al 2014d). For each 
epoch, the selected class (D, L, R, or W) is the class ωi that maximizes the posterior probabil-
ity given an feature vector x (Duda et al 2000),

ω ( ) = [ ( )]x xarg max gi
i

i (3)
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with the the discriminant function gi for each class given by

μ μ ω( ) = − ( − ) Σ ( − ) + ( )− tx x xg
1

2
ln P ,i i

t
i i

1 (4)

where μi is the average feature vector for class i, Σ is the pooled covariance matrix for all 
classes, and ω( )tP ,i  is the prior probability for class i at time (since lights off) t. All parameters 
were estimated during training.

2.4. Feature selection

To select the final list of features we used a wrapper feature selection method based on sequen-
tial forward selection (SFS) (Whitney 1971) using as criterion the Cohen’s kappa coefficient 
of agreement κ (Cohen 1960) on the training set. This measure of agreement between the 
classification predictions and the ground-truth annotations is more adequate than traditional 
measures of accuracy for this problem since there is a strong imbalance between classes  
(L epochs, for example, account for more than 50% of all epochs in the data set) and this 
 coefficient factors out chance agreement, compensating for class imbalance.

In many machine learning studies supervised feature selection is often applied on the entire 
data set, even if the training and validation are kept separate (for example using cross-vali-
dation). This common pitfall is known to introduce a bias in the evaluation of a classifier’s 
performance, which will often be overestimated (Smialowski et al 2010). Although keeping 
a hold-out set for validation would solve this problem, the limited size of the data set would 
either mean that the model learning would be based on potentially insufficient examples, 
or that the classifier would be evaluated on a very small sample, potentially unrepresenta-
tive of the problem at hand. Instead, the feature selection procedure was executed by strictly 
separating, on an iterative procedure akin to cross-validation, the training and validation sets. 
For each iteration, unbound SFS was applied using as criteria the classification performance 
obtained in the training set of each iteration. The final number of features was chosen as the 
smallest number S that yield a certain percentage of the maximum training kappa obtained 
across all iterations. The final list of selected features was chosen as the S features most often 
selected during the process.

The discriminative power of selected features was evaluated with the absolute standardized 
mean distance (ASMD) between the feature values of two classes, computed as

σ
= ¯ − ¯x x

ASMD 1 2
 (5)

where x̄1 and x̄2 are the sample means for class 1 and 2 and σ is the pooled sample SD.

2.5. Validation and evaluation

After feature selection is performed and the set of features is chosen, the classification results 
per subject were evaluated using a ten-fold cross-validation procedure. The kappa coefficient 
for all subjects in the data set as well as the average and pooled performance were then calcu-
lated. In addition to the kappa coefficient, we also computed the traditional metric accuracy, 
i.e. the percentage of correctly identified epochs. For kappa and accuracy, the results were 
computed both after pooling the predictions over all epochs of all subjects and after averaging 
the performance for each subject.
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3. Results and discussion

3.1. Feature selection

Figure 1 indicates the kappa coefficient obtained in the training set of each iteration of the 
feature selection procedure, for a varying number of features. As illustrated, the maximum 
average training performance is obtained for 105 features, with an average kappa of 0.58. Also 
clear in the figure, is a plateau in performance between 70 and 100 features. This suggests that 
the number of features can be greatly decreased without affecting the training performance. 
A small feature set is often desirable to prevent over-fitting to the training data, as long as it is 
not so small that the model cannot learn the characteristics of the problem.

By choosing different operating points in figure 1, we can choose a smaller feature set at 
the expense of a reduction in training performance. By allowing a reduction of 1% in training 
performance (from the maximum kappa of 0.58–0.57), we can reduce the number of features 
from 150 to 80 features (a reduction of 23.8%). Below this number there is a statistically sig-
nificant (after a Wilcoxon signed-rank test, with p  <  0.05) decrease in training performance 
and further decreasing the number of features will likely lead to a decrease in classification 
performance after cross-validation. Using as criteria the smallest number of features which 
does not cause a statistically significant decrease below the maximum training performance, 
we chose a total of S   =   80 features.

After ranking all features by the number of times they were selected during the iterative 
feature selection procedure and selecting the 80 features with the highest count, we found that 
all features in the final feature set were selected in at least 5 of the 10 iterations (with a mean 
count of 7.67) with 14 features having been selected in all 10 iterations. This illustrates the 
robustness of the modified SFS method: despite their simplicity and computational efficiency, 
sequential selection algorithms are known to suffer from a so-called ‘nesting effect’, poten-
tially leading to sub-optimal feature sets (Pudil et al 1994). By iteratively performing several 
unbound SFS searches on different training sets and keeping only the features that are selected 
most often, this effect was reduced, as attested by the large number of iterations each feature 
in the final set was selected.

Figure 1. Training performance per iteration and average training performance during 
feature selection. Maximum performance and performance for the selected number 
of features are indicated with markers (in parenthesis, the number of features and the 
corresponding performance).
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For brevity only the 14 features selected in all iterations will be discussed further. Table 1 
indicates the discriminative power of each feature using the pooled ASMD. It was computed 
for each pair of classes after aggregating the feature values for all subjects and also the 90th 
percentile of the ASMD (in parenthesis) obtained for each feature, for all individual subjects. 
Pooled ASMD values below 0.5 were omitted and 90th percentile ASMD values below 1 were 
omitted.

The top features are clearly discriminative for different pairs of classes which helps explain 
the relatively large number of features selected. Additionally, it is interesting to observe that 
there is one feature (median likelihood ratio) which does not have a pooled ASMD above 0.5 
for any class pair. However, its 90th percentile ASMD value is larger than 1 for the pairs D/W 
and L/W. This is a good example of a feature which is discriminative for only a subset of the 
subjects (at least 10%) but not for all subjects. The fact that it was selected in every single 
iteration using the wrapper method described in section 2.4 suggests that it is complementary 
to other features for some subjects, helping raise the overall training performance.

A note should be made regarding long-term cardiac features such as α2 or larger-scale MSE 
features. None of these features were part of the final set of features selected with our method. 
One possible explanation for this is related to the length of the time series used to compute 
them. The choice of window sizes (for MSE, 17 epochs, i.e. 8.5 min) represents a compromise 
between having as much data as possible to accurately calculate the features, while at the same 
time not exceeding the average length of a given sleep stage (in our data set, the average length 
of deep and REM sleep periods was found to be 5.1 and 8.7 min, respectively). Although 
theoretically the window sizes we used are sufficient to calculate these features (a window of 
17 epochs corresponds, at an average heart rate of 60 bpm, to 510 samples), it has been sug-
gested that the estimation of sample entropy is low in series shorter than 10m (where m is the 
pattern length, in samples) (Richman and Moorman 2000, Yentes et al 2013). This means that 
for a pattern length of m   =   2 and scales higher than 5, the coarse-grained time series used to 
calculate the sample entropy will have less data points than the suggested limit and the fea-
tures might not be accurate, and therefore, not representative of the autonomic characteristics 
of different sleep stages.

3.2. Cross-validation

Table 2 indicates the overall classification performance obtained after 10-fold cross-valida-
tion using the selected set of 80 features. In addition, it indicates the performance per class, 
obtained by considering each class as the positive class and merging the remaining in a single 
negative class. The highest performance is obtained for R detection, followed by W. The low-
est performance is obtained for L. This is further confirmed by the confusion matrix of table 3 
which shows that the largest proportion of errors occurs when trying to distinguish L from the 
other classes. For all other classes, the percentage of misclassified epochs (relative to the total 
number of epochs) is below 1% except for L.

In order to evaluate the performance of the classifier in a three-class task (WRN), classes 
D and L were merged in a single N (non-REM) class. Table 2 indicates the resulting perfor-
mance. Analyzing the performance of the classifier we see that the classification performance 
rises substantially, to a kappa of 0.56 and an accuracy of 80%. This was expected since a 
large number of classification errors occurred between D and L, and in a WNR task these two 
classes no longer need to be distinguished.

Figure 2 illustrates examples of predicted hypnograms, as compared with the reference, for 
three subjects in the data set: the subject with the worst performance (with κ = 0.17), with the 
median performance (with κ = 0.50) and with the best performance (with κ = 0.69). A possible 
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Table 1. Pooled and 90th percentile ASMD for features selected in all iterations.

Feature D/L D/R D/W L/R L/W R/W

Respiratory features:
VLF spectral power 0.56 1.02 0.86 0.68

(1.34) (1.69) (1.52) (1.26)
LF/HF spectral power ratio 0.56 0.85 0.95 0.70

(1.36) (1.62) (1.10) (1.62) (1.30)
Frequency SD over 270 s 0.79 1.46 1.41 0.84 0.97

(1.20) (1.82) (1.87) (1.38) (1.67) (1.09)
Mean breath-by-breath correlation 0.59 1.03 0.82

(1.27) (1.78) (1.76) (1.61) (1.51) (1.46)
Sample entropy regularity 0.71 0.61 0.55 0.86

(1.67) (1.53) (1.41) (1.49) (1.65)
DTW self-dissimilarity 0.59 0.86 0.86 0.56

(1.62) (1.58) (1.68) (1.39)
Standardized mean of troughs 0.82 1.21 0.97 0.56

(1.41) (1.83) (1.85) (1.19) (1.18) (1.34)
DTW peak-to-trough similarity 0.55

(1.06) (1.34) (1.04) (1.38)
Uniform scaling self-dissimilarity 0.92 1.46 1.16 0.85 0.56

(1.47) (1.87) (1.85) (1.50) (1.47) (1.22)
Cardiac (HRV) features:
Mean likelihood ratio 0.86

(1.50) (1.60) (1.09) (1.46) (1.23)
Median likelihood ratio

(1.19) (1.23)
Adapted LF spectral power 0.65 0.88 0.70

(1.47) (1.70) (1.59) (1.09) (1.15) (1.14)
Assortativity coefficient in VG 0.53

(1.34) (1.11) (1.22) (1.44)
Number small-degree nodes in VG 0.59

(1.05) (1.39) (1.32) (1.14) (1.13) (1.24)

Note: the features are described in section 2.2. The pooled ASMD was computed for each pair of classes after ag-
gregating the feature values for all subjects (values below 0.5 were omitted); The 90th ASMD percentiles (in paren-
theses) were obtained after computing the ASMD of each feature, for each subject (values below 1 were omitted)

Table 2. Cross-validation performance for 3 and 4 classes.

Pooled kappa Pooled acc. Mean kappa Mean acc.

WRLD 0.49 0.69 ±0.49 0.13 ±0.69 0.08
D 0.51 0.89 ±0.50 0.17 ±0.89 0.04
L 0.40 0.71 ±0.41 0.14 ±0.71 0.07
R 0.57 0.87 ±0.58 0.19 ±0.87 0.08
W 0.54 0.91 ±0.51 0.18 ±0.91 0.04
WRN 0.56 0.80 ±0.56 0.15 ±0.80 0.08

Note: the pooled performance was computed after aggregating all epochs of all subjects. The 
mean and SD were calculated based on the performance for each individual subject
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explanation for the poor performance obtained for the worst subject is that the model trained 
with the characteristics of the general sample population does not fully capture this subject’s 
cardiac and respiratory expression of different sleep stages. However, despite the low kappa 
coefficient, the predicted hypnogram still exhibits some correct features, namely, most REM 
intervals were detected, albeit with the incorrect length, and the two deep sleep periods were 
also detected. As the performance improves, we see that the predicted hypnograms match 
better the characteristics of the reference hypnogram, and in the best case the most obvious 
mistakes are in the missed detection of brief periods of wake during the night while the rest of 
the sleep stages are correctly predicted. This is likely caused by the use of spline smoothing 
during feature post-processing, which is adequate to capture the slow-changing characteristics 
of most sleep stages, but penalizes short, abrupt changes such as brief periods of awakening.

3.3. Comparison with state-of-the-art

Table 4 compares the results of our work with other studies reported in literature. As indicated, 
only a few studies focused on WRLD classification based on cardiac and/or respiratory signals 
and our results are amongst the best performing. The first observation is that the results of our 
previous work (Long et al 2014), which used only respiratory features, are worse than those 

Table 3. Confusion matrix after cross-validation.

Pred.↓ 
ref.→ D L R W

D 3431 (7.6%) 1949 (4.3%) 5 (0.0%) 97 (0.2%)
L 2969 (6.6%) 19165 (42.6%) 2947 (6.5%) 2302 (5.1%)
R 86 (0.2%) 2071 (4.6%) 5383 (12.0%) 404 (0.9%)
W 31 (0.1%) 952 (2.1%) 243 (0.5%) 2996 (6.7%)

Figure 2. Example of sleep stage reference (top) and predictions (bottom) for the 
subject with the worst performance (left), with the median performance (middle) and 
with the best performance (right).
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produced in the present work, indicating that combining cardiac and respiratory activity can 
lead to an improved classification performance. The study of Hedner et al (2011) achieved 
similar results but they used more signal modalities including peripheral arterial tone, actig-
raphy, and pulse oximetry. The recent study by Willemen et al (2014) also achieved a good 
performance, although it was validated with a younger sample population, excluded 12% of 
the epochs from validation and used a basis of 60 s epochs instead of the standard scoring 
basis of 30 s which makes the results incomparable.

For WRN classification we see that, to the best of our knowledge, our results also outper-
form those reported in almost all of the previous studies. In comparison with one of the best 
performing studies (Domingues et al 2014), we obtain a higher accuracy (albeit a slightly 
smaller kappa) but require one less modality (actigraphy). Regarding the work of Willemen 
et al (2014) it is again important to note that the results in that study were obtained on basis 
of 60 s epochs.

These results suggest that our choice for a Bayesian linear discriminant was appropriate for 
this task. Besides its simplicity, it offers the benefit of a probabilistic framework which allows, 
for instance, the direct use of time-varying prior probabilities to improve classification. In 
comparison with increasingly popular black-box approaches, this classifier has the additional 
advantage that it does not require the tuning of critical parameters such as kernels for support 
vector machines, number of nodes in classification trees or number of hidden layers in neural 
networks.

Table 4. Performance comparison with state-of-the-art.

Reference Modalitiesa N
Age  
(year)

Average 
κ

Average 
accuracy

WRLD
Our work RIP, ECG 48 ±41.3 16.1 0.49 0.69
Our previous workb RIP 48 ±41.3 16.1 0.41 0.65
Isa et al (2011) ECG 16 [ − ]32 56 0.26 0.60
Hedner et al (2011) PAT, PO, ACT 227 OSA ±49 14 0.48 0.66
Willemen et al (2014)c RIP, ECG, ACT 85 (36 subj.) ±22.1 3.2 0.56 0.69
WNR
Our work RIP, ECG 48 ±41.3 16.1 0.56 0.80
Our previous workb RIP 48 ±41.3 16.1 0.48 0.77
Redmond and Heneghan (2006) RIP, ECG 37 OSA ±46.7 10.4 0.32 0.67
Redmond et al (2007) RIP, ECG 31 ±42.0 7.4 0.45 0.76
Mendez et al (2010) BCG 22 (11 subj.) n.a. 0.42 0.72
Kortelainen et al (2010) BCG 18 (9 subj.) [ − ]20 54 0.44 0.79
Migliorini et al (2010) BCG 22 (11 subj.) n.a. 0.55 0.77
Kurihara and Watanabe (2012) BCG 20 22.2 0.48 0.78
Xiao et al (2013) ECG 45 [ − ]16 61 0.46 0.73
Domingues et al (2014) RIP, ECG, ACT 20 ±42.1 9 0.58 0.78
Willemen et al (2014)c RIP, ECG, ACT 85 (36 subj.) ±22.1 3.2 0.62 0.81

a ECG: electrocardiography, RIP: respiratory inductance plethysmography, PAT: peripheral arterial tone, PO: pulse 
oximetry, ACT: actigraphy, BCG: ballistocardiography.
b Long et al (2014).
c 60 s epochs; 12% of all epochs excluded from validation.
Note: all data sets comprise healthy subjects unless indicated. There are other studies in literature which present 
subject-dependent classification results. In this comparison only results obtained with subject-independent schemes 
were considered.
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4. Conclusions

This paper presents a method to identify overnight sleep stages using cardiorespiratory fea-
tures extracted from ECG and RIP signals. These features were post-processed by means of 
subject-specific Z-score normalization and spline smoothing, which helps reduce the influ-
ence of signal noise, between-subject, or within-subject variability in autonomic physiology. 
Eighty features were selected from a set of 142 features using a modified SFS-based feature 
selector designed to avoid biasing the validation performance. Using a linear discriminant 
classifier in a ten-fold cross-validation procedure, the classification results (for both the four-
class WRLD and three-class WRN classification tasks) achieved in this work (table 4) outper-
form most of the previous studies.

As future work it would be interesting to investigate whether this methodology would 
achieve a comparable performance in subjects with sleep disorders such as sleep apnea or 
insomnia. If successful, and given its potential for unobtrusive, prolonged use at home, it 
could represent a significant step towards lowering the costs and complexity of home tests and 
thus complement the current medical practices for diagnosis of sleep disorders.
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