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Abstract

Wearable, multisensor, consumer devices that estimate sleep are now commonplace, but the algorithms used by these 

devices to score sleep are not open source, and the raw sensor data is rarely accessible for external use. As a result, these 

devices are limited in their usefulness for clinical and research applications, despite holding much promise. We used 

a mobile application of our own creation to collect raw acceleration data and heart rate from the Apple Watch worn by 

participants undergoing polysomnography, as well as during the ambulatory period preceding in lab testing. Using this 

data, we compared the contributions of multiple features (motion, local standard deviation in heart rate, and “clock proxy”) 

to performance across several classi�ers. Best performance was achieved using neural nets, though the differences across 

classi�ers were generally small. For sleep-wake classi�cation, our method scored 90% of epochs correctly, with 59.6% of 

true wake epochs (speci�city) and 93% of true sleep epochs (sensitivity) scored correctly. Accuracy for differentiating wake, 

NREM sleep, and REM sleep was approximately 72% when all features were used. We generalized our results by testing the 

models trained on Apple Watch data using data from the Multi-ethnic Study of Atherosclerosis (MESA), and found that we 

were able to predict sleep with performance comparable to testing on our own dataset. This study demonstrates, for the 

�rst time, the ability to analyze raw acceleration and heart rate data from a ubiquitous wearable device with accepted, 

disclosed mathematical methods to improve accuracy of sleep and sleep stage prediction.
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Statement of Signi�cance

Use of consumer sleep trackers is widespread, but because the type of data returned from the devices is often proprietary (e.g. “Fitbit 

steps”) and the algorithms are typically trade secret, most are not used by the clinical and research communities. We wrote our own 

code to directly access the accelerometer on the Apple Watch. We then recorded raw acceleration, along with heart rate data as meas-

ured via photoplethysmography in the Apple Watch, during the night while subjects underwent the gold standard for sleep tracking, 

polysomnography. We compared the output of multiple classi�cation algorithms to ground truth polysomnography to determine best per-

formance. This sets the stage for greater transparency in the use of wearables to assess sleep on a large scale.
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Introduction

An estimated 50–70 million individuals in the United States 

are impacted by sleep that is inadequate in duration or quality 

[1]. The negative effects of sleep loss are even more profound 

when the poor sleep quality or shortened sleep duration takes 

place on a chronic, daily basis, rather than as a singular dis-

turbance. The gold standard for sleep measurement is the 

polysomnogram (PSG), which requires a sleep lab, sleep techni-

cian, and monitoring of multiple physiological parameters [2]. 

As such, polysomnography is generally restricted to the assess-

ment of sleep for only one or two nights. Longitudinal, ambula-

tory sleep measurement can bene�t a number of populations, 

including patients with suspected sleep disorders, workers in 

occupations where any impairment in alertness is high risk (i.e. 

transportation workers), and healthy individuals who desire im-

proved sleep for maximal cognitive and physical performance 

and optimal health.

The current method accepted by the medical and scien-

ti�c community for objective, longitudinal sleep measurement 

in the ambulatory setting is actigraphy [3, 4]. Actigraphy refers 

to the use of FDA-approved, wrist-worn accelerometry devices 

that measure movement to estimate sleep. A large body of peer-

reviewed evidence has assessed performance of actigraphy 

against PSG. However, actigraphy has signi�cant inadequacies 

that limit its use: actigraphs are expensive compared to the con-

sumer sleep trackers which are already owned by millions of in-

dividuals, actigraphs record only movement, and they struggle 

to correctly classify wake events during the attempted sleep 

period [5–8].

Logistically, actigraphs typically require in-person set-up and 

data recovery (given the lack of Bluetooth or cloud capability of 

most platforms), and at least two contacts with a trained indi-

vidual on the sleep medicine or research team are required. In 

addition, seamless integration is lacking between actigraphy 

software and the electronic health record or other platforms to 

manage health and wellness.

Consumer marketed wearables are a tempting solution to the 

problem of ambulatory sleep tracking given ease of use, wide-

spread availability, measurement of multiple biological signals, 

low cost, and opportunity for integration with other health tech-

nology products. However, the minimal validation of consumer 

sleep trackers and their associated outputs against PSG has pre-

cluded use in clinical, research, and occupational settings [9–13].

Even when devices are validated against PSG once, both de-

vice �rmware and associated software are frequently updated 

by the manufacturer. As algorithms that determine sleep met-

rics are rarely disclosed, such updates could make previous 

validation studies irrelevant. These barriers to validation and 

the lack of transparency surrounding the associated software’s 

sleep scoring methods have historically reduced enthusiasm 

for consumer marketed wearable use in medicine and research. 

Overcoming these barriers is of great interest, as a growing body 

of evidence has begun to reveal the potential clinical and re-

search utility of commercially available products [14, 15].

The current generation of consumer marketed wearable 

devices that claim to measure sleep use multisensor data ac-

quisition, typically microelectromechanical systems (MEMS) ac-

celerometers and photoplethysmography (PPG) [16, 17]. MEMS 

accelerometers are the ubiquitous sensors used in mobile and 

wearable devices to measure motion and are widely validated 

for the assessment of physical activity and energy expenditure. 

Over the past decade, the technology underlying MEMS accel-

erometers has rapidly advanced and allowed for increased 

memory and battery capacity, wide acceleration range, minute 

size, and low cost. Importantly, raw acceleration signal can be 

extracted from MEMS accelerometers prior to processing by 

manufacturer algorithms [18]. PPG is an optical technique that 

measures blood volume changes which has been validated to 

accurately measure heart rate in multiple contexts [15, 19]. The 

utility of consumer-available PPG is underscored by recent FDA 

clearance of a mobile application that analyzes PPG signal ac-

quired by the Apple Watch for over-the-counter use to evaluate 

for irregular heart rhythms [15, 20].

On top of the rapid progress in sensor development, 

technological advances have expanded our ability to ana-

lyze the vast amount of data they collect. Machine learning 

techniques and other advanced computational methods that 

make use of the current capabilities of computing power, 

memory, and storage to classify novel input data are well-

suited for the prediction of sleep metrics from massive 

amounts of sensor acquired signals. Therefore, the weighted 

sum algorithms [21–25] that have formed the cornerstone of 

existing actigraphy software programs are likely to be out-

performed by newer techniques.

Lastly, for over 40 years, mathematical models have described 

the biological properties of sleep-wake control. Speci�cally, sleep 

is governed by the well-described two-process model comprised 

of the circadian oscillator and homeostatic sleep drive [26, 27]. 

Homeostatic drive accumulates with prolonged wakefulness and is 

opposed by the mounting circadian alerting signal such that a con-

solidated period of wakefulness is maintained during the daytime 

[28, 29]. At night, conversely, the central circadian clock maintains a 

low alerting signal to promote consolidation of the nocturnal sleep 

period [28, 29]. Additionally, an ultradian cycle of alternating non-

rapid eye movement (NREM) and rapid eye movement (REM) sleep 

stages is superimposed on the two-process model. These inter-

actions have been studied at length and are built into more recent 

mathematical models of human sleep [30, 31].

Given the ability to numerically simulate such models of the 

circadian clock, one can consider predicted circadian phase over 

the course of the night as an additional input to a sleep/wake 

classi�cation algorithm. With a suf�ciently long window of re-

corded activity patterns, a circadian input can be estimated and 

provided as a feature alongside the traditionally incorporated 

measurements of motion and heart rate used in algorithms ap-

plied to wearable data.

Therefore, the primary goal of this study was to collect raw 

acceleration and heart rate data from the MEMS accelerometer 

and PPG housed within the Apple Watch and use modern classi-

�cation methods to distinguish sleep from wake and determine 

sleep stages as compared to gold-standard PSG. The secondary 

goal was to assess how the incorporation of a “clock proxy” term 

that represents the changing circadian propensity for sleep over 

the night in�uenced performance across all classi�ers. Finally, 

to generalize our algorithms beyond the Apple Watch acceler-

ometer and PPG, models trained on our dataset were tested on 

an independently collected dataset from the Multi-ethnic Study 

of Atherosclerosis (MESA) cohort, which consists of motion data 

from actigraphy-derived activity counts and heart rate via pulse 

oximetry from co-recorded PSG.
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Methods

Study protocol

Procedure.

After approval by the University of Michigan Institutional Review 

Board, 39 subjects were recruited for participation in the study. 

Written informed consent was obtained and an exclusion criteria 

questionnaire was used to ensure participants did not have a 

known diagnosis of the following: restless legs syndrome, sleep-

related breathing disorders, insomnia, parasomnias, central dis-

orders of hypersomnolence, cardiovascular disease (congenital 

heart disease, congestive heart failure, coronary artery disease, 

myocardial infarction, cardiac arrhythmias), peripheral vascular 

disease, vision impairment not correctable by glasses or contacts, 

or other disorders expected to result in signi�cant neurological 

or psychiatric impairment. Individuals who participated in night 

shift work or transmeridian travel greater than two time zones 

within the month prior to enrollment were excluded. Signi�cant 

excessive daytime sleepiness was ruled out by use of the Epworth 

Sleepiness Scale (ESS) to ensure participants did not score >10 

(indicative of excessive daytime sleepiness) [32].

After enrollment, participants were provided with an Apple 

Watch (Apple Inc.) which was applied to the wrist and a mo-

bile application developed by OW that contained a digital sleep 

diary and psychomotor vigilance test (results from which are 

not discussed here). On the �nal night of the 7- to 14-day ambu-

latory recording period, the patients presented to the University 

of Michigan Sleep and Chronophysiology Laboratory and under-

went attended PSG. During the entirety of the PSG recording, 

subjects continued to wear the Apple Watch, and data was 

transmitted in real-time to servers housed at the University of 

Michigan. OW’s code for accessing the accelerometer and heart 

rate data in the Apple Watch is online at https://github.com/

ojwalch/sleep_accel.

Subjects that demonstrated PSG �ndings suggestive of 

REM sleep behavior disorder (loss of normal REM atonia in the 

submentalis electromyogram lead combined with motor be-

haviors and vocalizations directly observed by the registered 

polysomnographic technologist [RPSGT] during stage REM sleep; 

1 subject) or obstructive sleep apnea (apnea-hypopnea index 

of at least �ve per hour of sleep based on the respiratory event 

scoring described below; 3 subjects) were removed from ana-

lysis. The PSG records of excluded subjects were reviewed by a 

board-certi�ed sleep medicine physician after RPSGT scoring. 

Four additional subjects were removed from the subject pool 

due to incomplete data. In cases where the battery on the Apple 

Watch failed before the sleep opportunity ended, the data was 

cropped to include only those time points for which valid data 

existed.

Ambulatory recording.

Apple Watch (Series 2 and 3, Apple Inc) devices were worn con-

tinuously during the 7- to 14-day ambulatory recording period 

with the exception of a nightly interruption to charge the device. 

The 7- to 14-day ambulatory recording period allowed for esti-

mation of each subject’s daily activity patterns, which were used 

to generate predictions of circadian phase used as the “clock 

proxy” feature.

Laboratory PSG and Apple Watch recording.

Subjects underwent an 8-hour sleep opportunity monitored 

with PSG with lights out at the time of habitual bedtime. PSG 

was conducted in accordance with the technical speci�cations 

of the American Academy of Sleep Medicine (AASM) [2] with the 

exception of the oronasal thermistor and nasal pressure trans-

ducer. Bilateral frontal, central and occipital electroenceph-

alogram (EEG) recorded with use of the International 10–20 

system of electrode placement, bilateral electrooculogram (EOG) 

recorded from the supraorbital and infraorbital ridges, chin 

electromyogram (EMG), thoracic and abdominal respiratory in-

ductance plethysmography (RIP) belts, snore microphone, pulse 

oximetry, and electrocardiogram (ECG) with use of two leads 

were recorded.

Electrophysiological signals for the �rst eight subjects 

were recorded on a Vitaport 3 (TEMEC Instruments B.V., The 

Netherlands) data acquisition system, while all others were 

recorded on a Grael HD-PSG/EEG Diagnostic Ampli�er System 

using Compumedics Profusion SLEEP4 Online Acquisition and 

Analysis Software (Compumedics, USA Inc., Charlotte, NC). All 

data were digitized at 256 Hz and stored off-line for visual sta-

ging and scoring using standard AASM scoring criteria [2]. Given 

absent oronasal thermistor and nasal pressure transducer, re-

spiratory inductance plethysmography sum (RIPsum) and dual 

thoracoabdominal RIP belts were used as alternative apnea and 

hypopnea sensors, respectively. Hypopnea rule 1A was used.

Concurrent to the monitoring of sleep via PSG, raw acceler-

ation and heart rate were recorded from the Apple Watch and 

transmitted to a secure server. The Apple Watch uses a triaxial 

MEMS accelerometer that measures acceleration in the x, y, 

and z directions, in units of g (9.8 m/s2). Heart rate is measured 

by the Apple Watch with PPG on the dorsal aspect of the wrist. 

Raw acceleration signal and heart rate data are obtained from 

the device by creating a “Workout Session” and using functions 

built-in to the iOS WatchKit and HealthKit frameworks.

Analysis

Summary PSG parameters (time in bed [TIB], total sleep time 

[TST], sleep onset latency [SOL], wake after sleep onset [WASO], 

sleep ef�ciency [SE], REM sleep minutes, and NREM sleep min-

utes) were assessed with descriptive methods. Bland-Altman 

plots were created to visualize agreement and heteroscedasticity 

(Figure 5) [33]. Epoch-by-epoch classi�er output comparison to 

PSG is detailed below.

Feature and algorithm selection.

Three types of features were considered as inputs to the clas-

si�cation algorithms tested: motion (activity counts, converted 

from raw acceleration in m/s2 using the method outlined in [34]), 

heart rate, and a “clock proxy” term representing simulated 

input to sleep from the circadian clock. Every sample classi-

�ed by the algorithms corresponds to a 30-second epoch scored 

during PSG. When classifying each 30-second epoch, features 

are cropped to a local window of 10 minutes around the scored 

epoch. Sample data for one subject’s PSG and Apple Watch re-

cordings are shown in Figure 1.

Motion feature.

Acceleration was returned from the Apple Watch as three vec-

tors representing acceleration in the x, y, and z directions, and 

a fourth, representing the timestamp of the measurement in 

seconds since January 1, 1970 (UNIX or epoch time). The accel-

eration in each direction was returned in units of g. In general, 

data were sampled at approximately 50 Hz, with two exceptions: 
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(1) motion was sampled at 20 Hz for the �rst two subjects due to 

battery life concerns and (2) occasionally, short windows of time 

with missing data would occur, likely due to server-side issues 

during the real-time sleep night data collection. Less than 3% of 

the total recording time was affected in this way, and interpol-

ation was used to estimate counts during missing time points. 

Data from the �rst two subjects were included only after it was 

veri�ed that doing so did not meaningfully change the results.

To make trained classi�ers backwards compatible with his-

torical data collection methods, we converted our raw acceler-

ation data to activity counts using MATLAB code available online 

and validated in the work of te Lindert and colleagues. The �nal 

activity count feature was arrived at by convolving the window 

with a Gaussian (σ = 50 seconds).

Heart rate feature.

Heart rate was measured by PPG from the Apple Watch and 

returned in beats per minute sampled every several seconds. 

This signal was interpolated to have a value for every 1 second, 

smoothed and �ltered to amplify periods of high change by con-

volving with a difference of Gaussians �lter (σ 
1
 = 120 seconds, 

σ 
2
 = 600 seconds). Each individual was normalized by dividing 

by the 90th percentile in the absolute difference between each 

heart rate measurement and the mean heart rate over the sleep 

period. The standard deviation in the window around the scored 

epoch was used as the representative feature for heart rate. 

While this represents variation in heart rate, it is distinct from 

ECG-based de�nitions of heart rate variability.

“Clock proxy” and time-based feature.

By “clock proxy,” we refer to a feature meant to approximate the 

changing drive of the circadian clock to sleep over the course of 

the night. The clock-proxy feature was determined by two sep-

arate ways. The �rst way was to use a �xed cosine wave, shifted 

relative to the time of recording start, which rose and fell over 

the course of the night. This way of computing the clock proxy 

term is attractive because it only requires the time of recording 

as an input.

Figure 1. Sample data from one subject’s night of sleep. From top: Motion, raw acceleration from the Apple Watch microelectromechanical system accelerometer (in 

x, y, and z directions); Counts, acceleration processed as activity counts using code from [34]; Heart rate, heart rate from Apple Watch photoplethysmography; “Clock 

proxy,” predicted from ambulatory recording with Apple Watch; Stages, hypnogram from scored polysomnography. Insets on the right show zoomed-in version of the 

data on the left, with selected windows marked with gray overlays.
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In an effort to incorporate longitudinal, personalized infor-

mation about the subjects’ circadian clocks, such as their phase 

at the time of sleep onset, we also computed the clock proxy fea-

ture using well-validated mathematical model of the circadian 

clock [35]. Most models of the human circadian clock require 

light input in order to predict circadian phase. The Apple Watch 

does not currently allow developer access to a light sensor; how-

ever, it does allow access to steps data via HealthKit. To arrive 

at the clock proxy feature, steps data imported from the Apple 

Watch was used in place of light data, with the rationale that 

walking or running typically takes place in a lit environment. 

The imported steps data was used to infer a “typical” daily pat-

tern of rest and activity, speci�c to each subject, and converted 

to estimated light using a simple steps-to-light function; specif-

ically, if steps were above a threshold, the “light” was assumed 

to be one of three levels depending on the time of day: 50 lux 

between 10:00 pm and 07:00 am, 500 lux during the evening be-

tween 04:00 pm and 10:00 pm, 500 lux in the morning between 

07:00 am and 10:00 am, and 1000 lux between 10:00 am and 4:00 

pm. The normalized output from the model of the circadian 

clock could then be used as the estimated “clock proxy” feature.

The full circadian clock model predictions were used for 

the results presented in the main body of the manuscript. 

Differences between the full circadian clock model feature, the 

cosine feature, and a feature which is just time since recording 

onset (as employed in [36]) are described in the Supplementary 

Materials.

Algorithm training and selection.

Logistic regression, k-nearest neighbors, a random forest clas-

si�er, and a neural net (multilayer perceptron, MLP) were used 

as candidate models in our comparison of different classi�ca-

tion algorithms. Pre-built tools from scikit-learn (version 0.20.3) 

[37] for Python (Python Software Foundation. Python Language 

Reference, version 3.7. Available at http://www.python.org) were 

used for each implementation. All code used to perform the ana-

lysis and generate the �gures in this paper is available at https://

github.com/ojwalch/sleep_classi�ers. The hyperparameters 

searched for each classi�er are provided in Supplementary Table 

S1.

Validation against PSG

Initially, all training and testing was done within the Apple 

Watch dataset. Classi�cation of sleep stage (either sleep/wake 

or wake/NREM/REM) by each of the models considered was 

compared to PSG in an epoch-by-epoch analysis. Epochs were 

aligned with Apple Watch recordings using seconds since 

January 1, 1970 (UNIX) timestamps.

Models were trained and tested using both Monte Carlo 

cross-validation and leave-one-out cross-validation. For Monte 

Carlo cross-validation with sleep/wake classi�cation, the 

dataset was randomly split 50 times into a training set (approxi-

mately 70% of the subjects) and a testing set (approx. 30%), and 

for wake/NREM/REM classi�cation, the dataset was randomly 

split 20 times at the same training and testing proportions. In 

the leave-one-out cross-validation, a single subject was held 

out for testing, and the model was trained on the remaining 

subjects. No samples in the training set were ever used in the 

corresponding testing set, nor were samples from a single sub-

ject ever simultaneously used in both the training and testing 

sets. Parameters were tuned for each training dataset to min-

imize the risk of over�tting.

Using Monte Carlo cross-validation, the classi�cation ability 

of each algorithm across all feature sets considered was sum-

marized using receiver operating characteristic (ROC) curves 

and precision-recall curves. ROC curves are created by varying 

a threshold parameter and plotting the true positive and false-

positive rates at all thresholds against each other [38]. An ROC 

curve presents all possible true and false-positive rates for the 

model, rather than a single true/false positive rate pair in isola-

tion. Doing so allows �exibility in model creation: the choice of 

threshold can be driven by the relative importance of achieving 

highly accurate detection of sleep epochs versus highly ac-

curate detection of wake epochs. Higher area under the ROC 

curve (AUC) suggests that the model is better able to distinguish 

classes.

Due to class imbalance between sleep and wake, precision-

recall curves were also plotted with wake as the positive class. 

In this case, the recall (on the x-axis) is the fraction of wake 

epochs scored correctly, and the precision (on the y-axis) shows 

the fraction of all epochs labeled wake that were truly wake [39]. 

In this way, one can see how often the classi�er labels epochs as 

the less frequent class erroneously across all thresholds.

Each ROC and precision-recall curve for sleep/wake classi-

�cation using the Apple Watch dataset represents the average 

performance across all 50 training and testing sets, with new 

subdivisions of the data generated at each iteration. Likewise, 

each ROC curve for wake/NREM/REM classi�cation represents 

the average performance across all 20 training and testing sets. 

To visualize performance of wake/NREM/REM classi�cation, one 

versus rest plots were also created and included in the supple-

ment, also with 20 training/testing splits.

Leave-one-out cross-validation was used to understand sub-

ject variability in classi�er performance. From the results of 

training on all subjects but one and testing on the remaining 

subject, histograms of speci�city, sensitivity, and accuracy 

across subjects were constructed.

Use of the MESA dataset

The National Sleep Research Resource (NSRR) provides access to 

the data from MESA, a multicenter longitudinal investigation of 

factors associated with the development of subclinical cardio-

vascular disease and the progression to clinical cardiovascular 

disease [40–42]. A diverse sample of 6814 black, white, Hispanic, 

and Chinese-American men and women were recruited for 

participation in 2000–2002. From 2010 to 2013, 2237 partici-

pants also were enrolled in a Sleep Exam (MESA Sleep) which 

included full overnight unattended PSG and 7-day wrist-worn 

actigraphy. For the purpose of this study, a subset of the data (188 

subjects; chosen for computational feasibility) with co-recorded 

actigraphy and PSG data was extracted and processed for use 

as an independent testing set. Given the different data collec-

tion methodology, the motion and local standard deviation in 

heart rate features corresponded to direct activity counts from 

actigraphy and heart rate during PSG, respectively. Heart rate 

was derived from pulse oximetry, which uses PPG, increasing the 

comparability of the Apple Watch (training) and MESA (testing) 

set. The “clock proxy” feature was derived from the ambulatory 

actigraphy recording for each MESA participant.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
le

e
p
/a

rtic
le

/4
2
/1

2
/z

s
z
1
8
0
/5

5
4
9
5
3
6
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsz180#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsz180#supplementary-data
http://www.python.org
https://github.com/ojwalch/sleep_classifiers
https://github.com/ojwalch/sleep_classifiers
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsz180#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsz180#supplementary-data


6 | SLEEPJ, 2019, Vol. 42, No. 12

Results

Demographic and summary PSG data

Summary sleep variables are provided for the 31 subjects (21 female) in 

Table 1. The average age of participants was 29.4 years (σ = 8.52 years).

Algorithm comparisons

Across every algorithm surveyed, performance was best when 

all available features—motion, heart rate, and clock proxy—were 

used as inputs to the classi�er. ROC curves summarizing the 

performance of each classi�er for sleep/wake and sleep stage 

classi�cation are shown in Figures 2 and 4. Precision-recall plots 

for wake classi�cation in the sleep-wake classi�er are shown 

in Figure 3. Bland-Altman plots to visualize the differences be-

tween classi�er and PSG values (y-axis) versus PSG values 

(x-axis) were constructed for TST, SOL, WASO, SE, stage REM 

sleep, and NREM sleep (Figure 5). This plot was generated using 

�xed thresholds for wake (θW = 0.3) and REM sleep (θREM = 0.35)

. While a difference choice of �xed thresholds, or choosing a dif-

ferent threshold for each person using an additional hold-out 

set after training, would change this plot, it can still be used to 

identify inter-individual differences and show how the motion-

only classi�er struggles with distinguishing REM and NREM.

Performance metrics for sleep/wake classi�cation across 

all classi�ers surveyed are summarized in Tables 2–5. The frac-

tion of true sleep epochs scored correctly (also referred to as 

sensitivity in the sleep literature, when sleep is treated as the 

positive class), the fraction of true wake epochs scored correctly 

(speci�city), accuracy, AUC, and Cohen’s kappa values were de-

termined every time the model was tested (on a reserved por-

tion of the data not used for training), and averaged across 

trials. Similar performance metrics for wake/NREM/REM clas-

si�cation are in Table 6.

Table 1.   Age and summary sleep statistics from the Apple Watch 

(PPG, MEMS)-PSG training set

Parameter Mean (SD) Range

Age (years) 29.42 (8.52) 19.0–55.0

TST (minutes) 427.87 (38.87) 318.5–474.0

TIB (minutes) 472.56 (27.03) 373.0–490.0

SOL (minutes) 14.97 (10.1) 2.0–44.0

WASO (minutes) 28.73 (22.8) 2.0–92.0

SE (%) 90.48 (5.54) 77.0–97.9

Time in REM (minutes) 107.15 (31.22) 44.14–194.32

Time in NREM (minutes) 320.77 (39.11) 227.47–393.3

REM, rapid eye movement sleep; NREM, non-rapid eye movement sleep.

Figure 2. ROC curves across multiple classi�ers and features for differentiating sleep and wake. The x-axis represents the fraction of true wake epochs incorrectly clas-

si�ed as sleep and the y-axis represents the fraction of true sleep epochs correctly classi�ed as sleep. ROC curves are generated by applying the full range of possible 

thresholds to the class probabilities assigned to each epoch by the classi�ers.
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Sleep/wake classi�cation

In the case of binary sleep/wake classi�cation, local heart rate 

standard deviation by itself (without motion) was consistently 

the lowest performing feature set for the classi�ers, scoring 

roughly 24%–33% of wake epochs correctly (speci�city) when the 

fraction of sleep epochs scored correctly (sensitivity) was �xed 

at 90% across classi�ers. The motion-only feature set identi�ed 

48%–55% of wake epochs correctly when the fraction of correct 

sleep epochs was �xed at 90%.

Combining motion and heart yielded few improvements to 

sleep/wake classi�cation over motion-only for binary sleep/wake 

classi�cation (adding only roughly 3% to the fraction of wake 

scored correctly in k-nearest neighbors at the 95% threshold for 

the fraction of sleep epochs scored correctly). The inclusion of 

the clock proxy improved the fraction of wake epochs scored 

correctly by about 14% (when the fraction of sleep epochs scored 

correctly was �xed at 90%) when added to motion and heart rate 

in both the random forest and neural net classi�ers.

AUC is greatest when all three features are considered and 

a neural net is used as the classi�er (AUC = 0.878). The differ-

ences between the types of classi�ers, however, are much less 

pronounced than those between choices of feature sets. For 

instance, the AUC of the logistic regression classi�er for all 

features is 0.854, roughly 3% lower than the AUC of the neural 

net classi�er trained on all features, while the difference be-

tween AUC for the heart rate-only versus motion-only logistic 

regression classi�ers is approximately 10%.

Wake/NREM/REM classi�cation

Two different approaches were employed for the analysis of the 

wake/NREM/REM classi�er performance: traditional ROC curves, 

and one versus rest ROC curves.

Typically, ROC curves are generated for binary classi�ca-

tion problems. In cases where there is more than one class, as 

in wake/NREM/REM classi�cation, the de�nition of “true posi-

tive” on the y-axis is ambiguous; therefore, one versus rest ROC 

curves for each class were also used; that is, wake versus not 

wake, REM versus not REM, and NREM versus not NREM. This re-

duces the classi�cation problem to a binary one. These plots are 

shown in Supplementary Figures S1–S3.

Additional ROC curves are found in Figure 4 and summarize 

the performance in all three classes by replacing “true posi-

tive” with the accuracy where REM and NREM performance is 

(approximately) equal. These multi-class staging ROC curves 

were generated by applying two thresholds to the probabilities 

returned from the classi�er. The �rst was applied to achieve a 

Figure 3. Precision-recall curves across multiple classi�ers and features for differentiating sleep and wake. The x-axis represents the fraction of true wake epochs cor-

rectly classi�ed as wake and the y-axis represents the fraction of all epochs labeled as wake by the classi�er that were correct.
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desired wake false positive rate; i.e. the fraction of wake epochs 

scored incorrectly, either as REM or NREM sleep.

For those epochs not scored as wake under that threshold, 

a second threshold was chosen for the REM and NREM class 

probabilities that made their respective accuracies (i.e. fraction 

of each class classi�ed correctly) as close to equal as possible. 

It is important to note that choosing these thresholds requires 

knowledge of ground truth classi�cations; thus, these plots 

should be taken only as an exploration of model properties 

when ground truth is known.

This process was repeated for a spread of desired wake false-

positive rates ranging from 0 to 1 in steps of 0.05 in order to 

achieve full coverage along the x-axis of Figure 4. In every case 

but for classi�ers trained on the motion-only feature set, it was 

possible to choose a threshold that made the REM and NREM 

accuracies essentially equal (the dotted and dashed lines in 

Figure 4 show the NREM and REM accuracies, with the solid line 

showing their average).

Choosing thresholds that make the fractions of NREM and 

REM sleep classi�ed correctly approximately equal does not 

generally yield the highest accuracy. This occurs because more 

time is spent in NREM sleep than in REM sleep in a typical night, 

and as such, the fraction of NREM sleep classi�ed correctly is 

proportionally more important to accuracy than the fraction of 

REM sleep classi�ed correctly. Table 6 includes the highest ac-

curacy values found during the threshold search, along with 

their corresponding κ values.

Motion by itself is the weakest predictor of NREM and REM. 

The average of the REM and NREM accuracies for motion (solid 

blue lines in Figure 4) is lower than other feature sets, with ei-

ther the fraction of REM sleep scored correctly (dashed line) or 

NREM sleep scored correctly (dotted line) being extremely low. 

Decreasing the threshold for one class does not �x this, as the 

accuracy of the other falls rapidly in response.

Heart rate, while only improving performance minimally over 

motion alone in sleep/wake classi�cation, plays a much more 

signi�cant role in wake/NREM/REM classi�cation (Figure 4). With 

the inclusion of heart rate, it was possible to change thresholds 

without experiencing dramatic changes in the NREM and REM 

accuracies, as occurred with the motion-only feature set. Heart 

rate furthermore improved the NREM/REM accuracy (found by 

choosing the threshold that makes them approximately equal) 

Figure 4. ROC curves across multiple classi�ers and features for classifying wake/NREM/REM. Each point on the x-axis represents the fraction of wake epochs classi�ed 

incorrectly, with any wake epoch classi�ed either as NREM or REM sleep counting as a false positive. The y-axis summarizes REM and NREM accuracy rates. To choose 

a threshold for distinguishing REM and NREM sleep, a binary search was performed to �nd the value that minimized the difference between REM accuracy and NREM 

accuracy. In the case of the motion-only feature set, the dashed and dotted lines correspond to the REM and NREM accuracies (respectively), and the solid line is their 

average. For all others, the solid line represents the average of the REM and NREM accuracies, which could be made nearly identical through the choice of the appro-

priate threshold. NREM, non-rapid eye movement; REM, rapid eye movement.
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by 15%–25% across classi�ers when included as a feature on top 

of motion.

Individual performance

Variability in performance between subjects is visualized by the 

histograms in Figures 6 and 7. In these histograms, one subject 

is omitted while the rest are used to train a neural net classi�er. 

In Figure 6, the same �xed threshold (θW = 0.3) that the wake 

probability must exceed for an epoch to be counted as wake is 

used for all subjects. In Figure 7, the threshold is chosen so that 

the fraction of sleep epochs scored as sleep meets the “true posi-

tive rate” values speci�ed for each row.

Algorithm testing in MESA dataset

Models for each classi�er were trained using all subjects 

from the Apple Watch dataset, saved as �les, and used to 

test unseen data from the MESA subcohort with co-recorded 

actigraphy and PSG. Summary sleep variables are summar-

ized from the 188 subjects (90 female) of the MESA testing 

set in Table 7. The average age of participants was 68.78 years 

(σ = 8.81).

In Figure 8, ROC curves are shown comparing performance 

of the neural net model against PSG in the MESA subcohort with 

different feature sets, for both sleep/wake (A), and wake/NREM/

REM (B) classi�cation. As in the Apple Watch dataset, including 

more features improves the ability of the model to differentiate 

Figure 5. Bland-Altman plots for TST (minutes), SOL (minutes), WASO (minutes), SE (fraction), stage REM sleep (minutes), and NREM sleep (minutes) as predicted by 

the neural net classi�er. The differences in classi�er-produced values versus PSG values are plotted on the y-axis and the corresponding ground truth PSG values are 

plotted on the x-axis. Sleep metrics were computed using the same �xed thresholds for wake (θW = 0.3)and REM (θREM = 0.35) for all subjects.
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sleep from wake, with heart rate-only yielding the weakest per-

formance for sleep/wake classi�cation.

The neural net sleep/wake classi�er, trained using all fea-

tures on the entirety of the Apple Watch data set and tested on 

the MESA subcohort, scored 60% of wake epochs correctly, 90% 

of sleep epochs correctly, and demonstrated a Cohen’s Kappa 

(κ) of 0.525 and an area under the ROC curve of 0.845. The wake/

NREM/REM neural net classi�er achieved a best accuracy of 69%, 

and a corresponding κ of 0.4. Performance metrics for testing the 

neural net classi�er with the MESA cohort are provided in Tables 

8 and 9, and Bland-Altman plots for sleep metrics using a neural 

net model trained on the Apple Watch-PSG dataset and tested 

on the MESA dataset are presented in Figure 9.

Discussion

This study demonstrates, for the �rst time, the ability of a widely 

used consumer wearable device to estimate sleep stages using 

investigator, as opposed to manufacturer, developed algorithms 

and the generalizability of these algorithms to data collected by 

traditional methods. Compared to PSG, our neural net model 

applied to Apple Watch-derived heart rate, motion, and a com-

puted circadian estimate demonstrated sleep/wake differenti-

ation with 93% of true sleep epochs scored correctly and 60% of 

true wake epochs scored correctly and REM-NREM sleep stage 

differentiation accuracy of 72%. Although various consumer 

marketed wearable devices that employ MEMS accelerometers 

and PPG have been compared to PSG, these validation studies 

are dependent entirely on preprocessed outputs from the manu-

facturers’ proprietary algorithms. Our study is novel in our use 

of raw motion and heart rate data, readily accessible from the 

Apple Watch, to develop and optimize sleep stage estimation al-

gorithms and in doing so disclose our methodology. Additionally, 

we incorporate a clock proxy term as a feature based on the a 

priori knowledge of sleep-wake regulation. Finally, we show the 

generalizability of our algorithms by testing them on a dataset 

Table 3.   Sleep/wake differentiation performance by k-nearest neighbors across different feature inputs in the Apple Watch (PPG, MEMS) 

dataset

Accuracy Wake correct (speci�city) Sleep correct (sensitivity) κ AUC

Motion 0.789 0.672 0.8 0.255 0.803

 0.866 0.483 0.9 0.3  

 0.887 0.405 0.93 0.307  

 0.9 0.345 0.95 0.307  

HR 0.768 0.406 0.8 0.117 0.682

 0.845 0.237 0.9 0.117  

 0.868 0.172 0.93 0.103  

 0.882 0.12 0.95 0.082  

Motion, HR 0.79 0.678 0.8 0.255 0.81

 0.867 0.496 0.9 0.308  

 0.889 0.431 0.93 0.327  

 0.903 0.38 0.95 0.338  

Motion, HR, and Clock Proxy 0.8 0.797 0.8 0.309 0.868

 0.877 0.627 0.9 0.391  

 0.897 0.535 0.93 0.404  

 0.909 0.458 0.95 0.402  

Fraction of wake correct, fraction of sleep correct, κ, and AUC for sleep-wake predictions of k-nearest neighbor classi�er with use of motion, HR, clock proxy, or com-

bination of features. HR, heart rate.

Table 2.  Sleep/wake differentiation performance by logistic regression across different feature inputs in the Apple Watch (PPG, MEMS) dataset

Accuracy Wake correct (speci�city) Sleep correct (sensitivity) κ AUC

Motion 0.794 0.725 0.8 0.277 0.819

 0.871 0.549 0.9 0.343  

 0.892 0.476 0.93 0.361  

 0.905 0.415 0.95 0.367  

HR 0.776 0.512 0.8 0.174 0.743

 0.852 0.326 0.9 0.187  

 0.875 0.266 0.93 0.191  

 0.889 0.215 0.95 0.182  

Motion, HR 0.792 0.707 0.8 0.269 0.83

 0.87 0.546 0.9 0.341  

 0.892 0.475 0.93 0.36  

 0.905 0.417 0.95 0.369  

Motion, HR, and Clock Proxy 0.8 0.798 0.8 0.31 0.854

 0.871 0.556 0.9 0.347  

 0.892 0.471 0.93 0.358  

 0.905 0.411 0.95 0.364  

Fraction of wake correct, fraction of sleep correct, accuracy, κ, and AUC for sleep-wake predictions of logistic regression with use of motion, HR, clock proxy, or com-

bination of features. HR, heart rate.
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(MESA) collected via entirely different means in a population 

with signi�cantly different demographics.

Comparison to consumer wearable devices

Our algorithm differentiated sleep from wake with an accuracy of 

90% and a speci�city (true wake epochs scored correctly) of 60% 

(when at the 93% sensitivity threshold). Therefore, our results 

are similar to previously reported performance of actigraphy 

and in line with past work validating consumer wearable de-

vices that estimate sleep with proprietary algorithms (see [43] 

for a comprehensive review).

When speci�cally comparing our �ndings to the perform-

ance of current generation, off-the-shelf consumer wearable 

devices that use PPG and accelerometry, reported sensitivity 

and speci�city are similar. The FitBit Charge HR, FitBit Charge 

2, Jawbone UP3, and FitBit Alta HR have all been validated in 

epoch-by-epoch analyses against PSG in adolescents and adults 

[12, 44–46]. The sensitivity (fraction of true sleep epochs scored 

as sleep) reported in these investigations ranged from 95% to 

97% and speci�city (fraction of true wake epochs scored as 

wake) was reported at 39%–62%.

For sleep stage prediction, the Fitbit Charge 2 was able to 

achieve 81% accuracy for stage N1+N2, 49% accuracy for N3, and 

74% accuracy for stage REM [44]. Cook and colleagues evaluated 

the accuracy of the Jawbone UP3 in a group with suspected dis-

orders of central hypersomnolence and found accuracy of 56% 

for N1 + N2, 82% for N3, and 72% for REM [45]. The same group 

evaluated the FitBit Alta HR in the same patient population and 

found accuracy of 73% for N1 + N2, 89% for N3, and 89% for stage 

REM [46]. It is important to note is that the N1  + N2, N3, and 

REM estimation performance values noted above are simply 

agreement between device output and PSG without taking into 

account the potential for this agreement to occur by chance as 

would be re�ected by the kappa statistic.

Table 4.  Sleep/wake differentiation performance by random forest classi�er across different feature inputs in the Apple Watch (PPG, MEMS) 

dataset

Accuracy Wake correct (speci�city) Sleep correct (sensitivity) κ AUC

Motion 0.793 0.713 0.8 0.27 0.81

 0.869 0.53 0.9 0.329  

 0.891 0.457 0.93 0.346  

 0.904 0.399 0.95 0.352  

HR 0.771 0.454 0.8 0.142 0.708

 0.849 0.282 0.9 0.152  

 0.872 0.221 0.93 0.149  

 0.886 0.174 0.95 0.14  

Motion, HR 0.792 0.707 0.8 0.267 0.816

 0.869 0.519 0.9 0.322  

 0.89 0.448 0.93 0.339  

 0.904 0.394 0.95 0.349  

Motion, HR, and Clock Proxy 0.799 0.789 0.8 0.303 0.871

 0.879 0.653 0.9 0.405  

 0.901 0.579 0.93 0.433  

 0.914 0.513 0.95 0.444  

Fraction of wake correct, fraction of sleep correct, accuracy, κ, and AUC for sleep-wake predictions of random forest classi�er with use of motion, HR, clock proxy, or 

combination of features. HR, heart rate.

Table 5.  Sleep/wake differentiation performance by neural net across different feature inputs in the Apple Watch (PPG, MEMS) dataset

Accuracy Wake correct (speci�city) Sleep correct (sensitivity) κ AUC

Motion 0.793 0.714 0.8 0.276 0.815

 0.87 0.542 0.9 0.342  

 0.891 0.467 0.93 0.358  

 0.904 0.408 0.95 0.364  

HR 0.775 0.506 0.8 0.174 0.737

 0.851 0.323 0.9 0.187  

 0.874 0.263 0.93 0.19  

 0.887 0.208 0.95 0.177  

Motion, HR 0.792 0.707 0.8 0.272 0.828

 0.868 0.528 0.9 0.333  

 0.89 0.461 0.93 0.353  

 0.904 0.408 0.95 0.364  

Motion, HR, and Clock Proxy 0.801 0.816 0.8 0.322 0.878

 0.881 0.675 0.9 0.424  

 0.901 0.596 0.93 0.449  

 0.913 0.523 0.95 0.455  

Fraction of wake correct, fraction of sleep correct, accuracy, κ, and AUC for sleep-wake predictions of neural net classi�er with use of motion, HR, clock proxy, or com-

bination of features. HR, heart rate.
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Our classi�er is able to achieve an accuracy of 72% for the 

three-stage classi�er, with balanced class accuracies (where a 

threshold is chosen so the REM accuracy equals the NREM ac-

curacy) occurring at roughly 65% accuracy for each class. Our 

classi�ers generally perform worse than the consumer wearable 

devices described above. One reason for this could be that add-

itional processing, beyond real-time individual epoch classi�ca-

tion, could be employed in these algorithms to improve results; 

e.g. choosing thresholds to match appropriate percentages of 

time spent in each stage of sleep. Such an approach would likely 

improve sleep/wake classi�cation in the general population, 

while worsening it populations of atypical sleepers. Further, 

given that these validation studies are limited by manufacturer 

preprocessed data and undisclosed algorithms, the reported 

performance from a single study remain relevant only to that 

speci�c device, �rmware, and software iteration and cannot be 

replicated for vigor or generalized to similar wearables. Finally, 

because the comparator studies are purely validation of the pro-

prietary, undisclosed algorithm output, we are unable to draw 

conclusions regarding the candidate causes of the discrepancies 

in performance.

To our knowledge, there are only two published studies that, 

similar to our work, extracted raw signal from MEMS accelerom-

eter and PPG sensors to develop, optimize, and validate sleep-

wake scoring algorithms.

Fonseca and colleagues [16] trained ECG heart rate variability 

based sleep-wake scoring and sleep staging algorithms on the 

SIESTA dataset and validated the performance of these algo-

rithms, applied to wrist-worn PPG and accelerometer signal, 

against PSG on an independent testing set. The �nal selected 

algorithm was found to yield a sensitivity to wake of 58%, and 

accuracy of 92% and a Cohen’s kappa (κ) of 0.55. For three classes 

(wake, NREM and REM), the classi�er achieved a κ of 0.46 and ac-

curacy of 73% while the four class (wake, N1+N2, N3, and REM) 

classi�er, demonstrated a κ of 0.42 and accuracy of 59%.

Beattie and colleagues trained and validated algorithms 

with use of raw motion and PPG signal (from the FitBit de-

vice) co-recorded with at home PSG [47]. In the epoch-by-epoch 

analysis, the fraction of wake epochs correctly identi�ed as 

wake (speci�city) was 69% and the fraction of sleep epochs cor-

rectly identi�ed as sleep (sensitivity) was 95%. Cohen’s kappa of 

the four-class classi�er was 0.52.

Validation within our PPG-MEMS accelerometer (Apple 

Watch) dataset demonstrated sleep-wake accuracy (90%), spe-

ci�city (fraction of true wake epochs scored correctly, 60%) and 

sensitivity (fraction of true sleep epochs scored correctly, 93%) 

that was similar to Fonseca and colleagues and approaching 

that of Beattie and colleagues; however, our κ was somewhat 

worse at 0.455. Importantly, in the more dif�cult problem of 

three-class sleep stage classi�cation (wake, NREM, and REM) al-

though our accuracy of 72% was similar to that of [16] and [47] 

our best κ of 0.3 was markedly worse than the κ values reported 

in both studies. It is possible that this could be due to the sam-

pling rate of the Apple Watch heart rate via PPG (every 8–10 

seconds), due to differences in the collection of heart rate and 

motion collected via the Apple Watch versus other wearables, 

or our own choice of parameters in the classi�cation. Our hope 

is that in making all data and code open source, other groups 

can use the same data we have to improve upon our results. 

Interestingly, in our independent validation of our algorithm on 

the MESA dataset, κ for sleep-wake and three-class sleep staging 

were 0.525 and 0.4 respectively; the potential explanation of the 

improved performance on the MESA dataset is explored later in 

the discussion.

Implications of classi�er and feature selection

We surveyed four different classi�ers in this work: logistic re-

gression, k-nearest neighbors, random forest, and neural nets. 

While the classi�er methods differ in their ability to distinguish 

wake from sleep and differentiate sleep stages, these differ-

ences are not particularly pronounced. However, feature inclu-

sion signi�cantly impacts performance. As an example, the AUC 

for all classi�ers is signi�cantly increased when heart rate and 

motion are taken together, versus heart rate alone. Moreover, 

the inclusion of a feature that exploits the known circadian 

Table 6.  Sleep stage classi�cation accuracy across different features and classi�ers in the Apple Watch (PPG, MEMS) dataset

Wake correct NREM correct REM correct Best accuracy κ

Logistic regression Motion 0.6 0.506 0.332 0.71 0.085

 HR 0.6 0.452 0.453 0.698 0.033

 Motion, HR 0.6 0.625 0.625 0.701 0.161

 Motion, HR, Clock 0.6 0.623 0.623 0.699 0.13

k-Nearest neighbors Motion 0.6 0.294 0.532 0.698 0.072

 HR 0.6 0.402 0.402 0.671 0.108

 Motion, HR 0.6 0.607 0.605 0.711 0.227

 Motion, HR, Clock 0.6 0.648 0.647 0.721 0.243

Random forest Motion 0.6 0.397 0.441 0.702 0.075

 HR 0.6 0.434 0.434 0.676 0.165

 Motion, HR 0.6 0.615 0.615 0.695 0.293

 Motion, HR, Clock 0.6 0.638 0.638 0.686 0.302

Neural net Motion 0.6 0.394 0.498 0.713 0.084

 HR 0.6 0.454 0.454 0.698 0.04

 Motion, HR 0.6 0.622 0.622 0.723 0.256

 Motion, HR, Clock 0.6 0.651 0.65 0.723 0.277

Performance metrics for wake/NREM/REM classi�cation across multiple classi�ers with use of motion, HR, clock proxy, or combination of features. NREM and REM 

Correct refer to the fraction of NREM and REM sleep epochs scored correctly when a threshold is chosen so they are as close as possible, while maintaining the 

fraction of correctly scored wake epochs at 0.6. Best accuracy refers to the highest accuracy found during the threshold search, and κ is the Cohen’s kappa for that 

accuracy. HR, heart rate.
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control of sleep using longitudinal data measurably improves 

performance: �xing the percentage of sleep epochs scored cor-

rectly at 90%, the percentage of wake epochs scored correctly in 

the MESA dataset increases 5% when the estimated circadian 

phase (“clock proxy”) is included as a feature.

Use of the clock proxy described above is a step towards 

integrating machine learning predictions with a priori know-

ledge of the physiology of human sleep. We calculated the 

circadian input in two ways, as a fixed cosine wave, shifted 

relative to the time of recording start and with a well-

validated mathematical model of the circadian clock [35] that 

takes into account the longitudinal activity to compute esti-

mated circadian phase. We chose to use the second model as 

our final approach in computing the clock proxy to include 

more personalized information about the individual’s circa-

dian state (for instance, if they are trying to fall asleep at 

too early a phase). The inherent way individuals typically 

use wearable devices, wearing the device daily for extended 

durations, provides the opportunity to include long term am-

bulatory data as an input to sleep-wake estimation. The dis-

advantage of this computation is that it did require reliance 

on Apple’s proprietary steps calculation function, which re-

duces transparency.

Apart from our use of the clock proxy to assist with sleep-

wake scoring many possible extensions of this idea exist. The 

sleep homeostat is not included in our predictions, nor are 

Figure 6. Histograms of performance when training on all subjects but one, and testing on the omitted subject using the neural net classi�er. For all tested subjects’ 

sleep nights, an epoch was counted as wake if its probability exceeded 0.3 (θW = 0.3).
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known feedback mechanisms between REM, NREM, and wake-

promoting parts of the brain. To further integrate derived 

physical models and statistical predictions, the exchange of 

information would need to be bi-directional. For example, con-

sider the sleep homeostat, which decreases during sleep and 

increases during wake. If the classi�er is highly con�dent that 

the subject is awake, and thus, that the homeostat is increasing 

rather than decreasing, this information could be used to af-

fect classi�cation of epochs later in the night. A generalization 

of combining mathematical modeling with statistical methods 

of classifying sleep could be to incorporate model predictions 

that change in response to information from the classi�er; e.g. 

using differential equations with a Kalman �lter. These methods 

may be considered in future work to monopolize on the known 

biological properties of sleep as inputs for improved algorithm 

performance.

Generalizability

In addition to our goal of estimating sleep from consumer-

available sensors in a transparent manner with validation 

against PSG, we wanted to ensure our work was generalizable 

and device agnostic. Therefore, we used a method described by 

te Lindert and Van Someren to convert MEMS accelerometer 

Figure 7. Histograms of performance when training on all subjects and testing on one subject who was omitted from training. The two performance measures plotted 

are accuracy and speci�city. Here, speci�city refers to the fraction of wake epochs scored correctly as wake. Each row corresponds to a �xed “true positive rate” (TPR), 

referring to the fraction of sleep epochs scored correctly as sleep. For each row, the threshold separating sleep and wake was chosen to match the �xed true positive 

rate. As the required true positive rate increases, the likelihood of a wake epoch being scored as sleep increases; hence, there is a skew towards lower values in the 

speci�city histograms as TPR increases.

Table 7.  Age and summary sleep statistics from the MESA (pulse ox-

imetry, actigraphy)-PSG testing set

Parameter Mean (SD) Range

Age (years) 68.82 (8.81) 56.0–89.0

TST (minutes) 356.33 (87.56) 70.0–591.0

TIB (minutes) 470.54 (85.18) 199.0–770.0

WASO (minutes) 91.6 (59.73) 4.5–303.5

SE (%) 75.68 (13.08) 27.24–98.38

AHI 17.57 (16.2) 0.0–78.7

AHI, apnea-hypopnea index.
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signal into the activity counts used by traditional actigraphy. 

The conversion provided by te Lindert and Van Someren has 

vast implications for sleep medicine and research. Firstly, as 

they note, backward compatibility confers the ability to pool dif-

ferent cohorts and analyze the objective, longitudinal sleep data 

with the same algorithms, regardless of the device from which 

the data was derived. Further, given the rapid expansion in com-

puting power and data storage, the ability to convert between 

raw MEMS accelerometer signal and activity counts provides a 

greater wealth of wrist-worn motion data collected alongside 

ground truth PSG. Investigators may, therefore, use previously 

collected actigraphy and PSG data from well-established cohorts 

such as those contained within the NSRR, to develop and test al-

gorithms that can be applied to the current generation of wear-

able devices.

We used their code to ensure that our algorithms, de-

veloped from Apple Watch data and PSG in a population of 

31 healthy individuals, could be tested for performance on 

a much larger, more diverse population. Indeed, despite the 

differences in motion and heart rate data acquisition in the 

MESA cohort (traditional actigraphy and pulse oximetry), 

our algorithms demonstrated excellent sleep/wake predic-

tion compared to PSG. One particularly intriguing finding 

is that the best kappa values were obtained when our al-

gorithm was validated on the MESA dataset. Performance 

on the unseen MESA testing set actually exceeded our best 

kappa during validation within the Apple Watch dataset. One 

reason for this could be fundamental differences between 

the data acquisition methods—i.e. MEMS accelerometer 

versus actigraphy and wrist-worn PPG versus finger worn, 

medical-grade PPG (pulse oximetry). It could also be that dif-

ferences in the sleep-wake characteristics of the two subject 

populations change the predictive ability of the classifier. 

In our Apple Watch dataset, WASO was only sometimes ac-

companied by significant movement; in the MESA cohort, we 

have qualitatively observed that wake after recording onset 

was often associated with significant motion (e.g. the subject 

was standing up and moving around), making wake easier to 

classify.

The availability of algorithms that span both raw acceler-

ation and activity counts, obtained through different sensors, 

will standardize ambulatory sleep tracking for both research 

and clinical practice. This methodology, and the data sharing 

required to support its use, allows for continued utilization of 

established resources while promoting innovation.

Limitations

Despite the strengths, this study is not without limitations. Our 

training dataset was comprised of relatively young, healthy indi-

viduals free of sleep disorders. Because local heart rate standard 

deviation was used as an input to the model, the ability of the 

model to estimate sleep is likely predicated on the presence of a 

functioning autonomic nervous system and performance could 

be reduced in the setting of cardiovascular disease as well as 

sleep-disordered breathing, insomnia, and periodic limb move-

ments of sleep [48–56]. Additionally, to extend this work to clin-

ical populations, further algorithm validation in other disorders 

must take place. For example, a condition that affects motion 

during sleep, such as REM behavior disorder, could signi�cantly 

impact our results. Further, the incorporation of the clock proxy 

may require a normal functioning circadian timing system that 

interacts as expected with the sleep homeostat, which may be 

altered in certain sleep disorders.

The individuals in our training set demonstrated high SE 

which could lead to falsely low speci�city (i.e. if few wake epochs 

exist on PSG, the sleep/wake classi�er has a reduced oppor-

tunity to correctly designate wake epochs and is more suscep-

tible to noise). Our concerns about this limitation are mitigated 

given the preserved performance when we test models trained 

on our Apple Watch data with data from the MESA cohort, which 

was comprised of PSG records with lower sleep ef�ciencies.

In our training set, “ground truth” PSG labeling was based on 

the staging of a single registered polysomnographic technolo-

gist (RPSGT), which is not infallible. We did not require subjects 

to wear the watch on their non-dominant wrist, which could 

be a confounding factor; although other investigators have not 

found this to be the case [47]. Additionally, user errors with the 

Figure 8. MESA dataset (n = 188) validation of neural net models trained on the Apple Watch-PSG dataset. Left) Sleep/wake differentiation performance in MESA dataset 

Right) Wake/NREM/REM classi�er performance in MESA dataset. The dashed lines represent REM accuracy for the motion-only feature set; the dotted lines represent 

NREM accuracy for the motion-only feature set. For all, solid lines represent the average of the NREM and REM accuracies, chosen to be as close to equal as possible via 

threshold selection. NREM, non-rapid eye movement; REM, rapid eye movement.
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app and problems with the server collecting data resulted in 

loss of data for four subjects in the study. Improved user inter-

face and stability in the open-source application developed for 

this project will be needed before the app can be deployed at a 

broader scale.

As demonstrated by the Bland-Altman plots of sleep metrics, 

the ability of the classi�er to accurately quantify sleep varies 

across different values of SOL, WASO, TST, and SE. Although our 

classi�er had improved speci�city compared to actigraphy and 

most current generation multisensor wearables, the problem 

of greater inaccuracy with larger amounts of wake during the 

attempted sleep period persists. The broad distribution of how 

well the classi�er performs could limit the utility in practical 

use cases. Future work should continue to focus on improve-

ment of algorithm speci�city for wake; further, different popu-

lations may require different algorithms to most accurately 

measure sleep with wearable devices.

Conclusion

Algorithms that estimate sleep from actigraphy have existed for 

decades. The initial algorithms used thresholds to decide sleep 

and wake applied to motion count data from actigraphs that 

had been processed with understandable, disclosed methods. 

Figure 9. Quantifying sleep metrics performance in the MESA dataset (n = 188) using a model trained on the Apple Watch-PSG dataset. Bland-Altman plots for TST 

(minutes), SOL (minutes), WASO (minutes), SE (fraction), stage REM sleep (minutes), and NREM sleep (minutes) as classi�ed by a neural net classi�er. The differences in 

classi�er values versus PSG values are plotted on the y-axis (actual - predicted) and the corresponding ground truth PSG values are plotted on the x-axis. Sleep metrics 

were computed using the same �xed thresholds for wake (θW = 0.3) and REM (θREM = 0.35) for all subjects.
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State-of-the-art classi�ers are no longer so transparent. Each 

method comes with large numbers of tunable parameters, with 

the meaning of each speci�c to the classi�er in use. Easily sum-

marizing a classi�er as an expression or table in a paper, as was 

done in the past, is no longer feasible.

In addition to the growing complexity of classi�cation al-

gorithms, we now have many more sources of data than the 

limited set available from actigraph devices. Although each de-

vice returns data processed in a slightly different way, the rapid 

growth of wearable sensor capabilities provides access to new 

streams of data for use in classi�cation.

Other medical �elds have demonstrated the ability of new 

technology to produce FDA cleared, over-the-counter ad-

junct evaluation tools; for example, home pregnancy tests, 

glucometers, and more recently, the Apple Watch irregular heart 

rate detection capability. Because sleep health is marked by 

the convergence of behavior and biology, sleep medicine is an 

obvious bene�ciary of instruments that lie on the interface of 

consumer technology and medicine. However, the �eld of sleep 

medicine has remained somewhat resistant to the use of con-

sumer marketed sensors given the lack of transparency in data 

acquisition and analysis, and the lack of a feasible, ef�cient 

method to validate the vast number of devices and associated 

software [13].

The adoption of affordable, ubiquitous sensors holds sig-

ni�cant potential for growing our understanding of sleep and 

increasing the reach of sleep medicine. Achieving this potential 

requires wearable manufacturers to allow access to raw sensor 

data, an intact infrastructure for data sharing of resources with 

overlapping wearable sensor and scored PSG data, open-source 

code and disclosed algorithms such as those presented here. 

This work sets the stage to harness commercial devices for sleep 

research at large scales.

Supplementary material

Supplementary material is available at SLEEP online.

Figure S1. One vs Rest ROC curves for the REM vs not REM clas-

si�cation problem.

Figure S2. One vs Rest ROC curves for the NREM vs not NREM 

classi�cation problem.

Figure S3. One vs Rest ROC curves for the wake vs not wake clas-

si�cation problem.

Figure S4. Comparing adding model-generated circadian drive 

(pink), cosine (purple), and time since recording start (gray), to 

motion and heart rate (green). This plot was generated by re-

peating Monte Carlo cross validation ten times in the manner 

described in the main text. Here, “clock” refers to the circa-

dian model, and “time” refers to time since recording start.
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Table 8.  Sleep/wake differentiation performance by the neural net classi�er across different feature inputs in the MESA dataset

Accuracy Wake correct (speci�city) Sleep correct (sensitivity) κ AUC

Motion 0.768 0.702 0.8 0.486 0.822

 0.785 0.543 0.9 0.473  

 0.783 0.472 0.93 0.447  

 0.777 0.413 0.95 0.416  

HR 0.699 0.487 0.8 0.294 0.718

 0.726 0.359 0.9 0.292  

 0.729 0.304 0.93 0.273  

 0.729 0.262 0.95 0.254  

Motion, HR 0.767 0.697 0.8 0.482 0.827

 0.786 0.546 0.9 0.476  

 0.785 0.477 0.93 0.452  

 0.78 0.42 0.95 0.423  

Motion, HR, and Clock Proxy 0.774 0.72 0.8 0.501 0.845

 0.803 0.599 0.9 0.525  

 0.805 0.542 0.93 0.514  

 0.803 0.493 0.95 0.495  

Fraction of wake correct, fraction of sleep correct, accuracy, κ, and AUC for sleep-wake predictions of neural net classi�er with use of motion, HR, clock proxy, or com-

bination of features. HR, heart rate.

Table 9.  Sleep stage classi�cation accuracy across different features by the neural net classi�er in the MESA dataset

Wake correct NREM correct REM correct Best accuracy κ

Motion 0.6 0.466 0.411 0.668 0.352

HR 0.6 0.37 0.364 0.624 0.243

Motion, HR 0.6 0.611 0.609 0.667 0.372

Motion, HR, Clock 0.6 0.622 0.625 0.686 0.403
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