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Summary: In this paper, we compare and analyze the results from automatic analysis and visual scoring of 
nocturnal sleep recordings. The validation is based on a sleep recording set of 60 subjects (33 males and 27 females), 
consisting of three groups: 20 normal control subjects, 20 depressed patients and 20 insomniac patients treated with 
a benzodiazepine. The inter-expert variability estimated from these 60 recordings (61,949 epochs) indicated an 
average agreement rate of 87.5% between two experts on the basis of 30-second epochs. The automatic scoring 
system, compared in the same way with one expert, achieved an average agreement rate of 82.3%, without expert 
supervision. By adding expert supervision for ambiguous and unknown epochs, detected by computation of an 
uncertainty index and unknown rejection, the automatic/expert agreement grew from 82.3% to 90%, with supervision 
over only 20% of the night. Bearing in mind the composition and the size of the test sample, the automated sleep 
staging system achieved a satisfactory performance level and may be considered a useful alternative to visual sleep 
stage scoring for large-scale investigations of human sleep. Key Words: Sleep-Automatic scoring-Visual scor­
ing-Scoring variability-Neural networks. 

Several automatic sleep scoring systems have been 
described in the last 2 decades. First, hybrid systems 
were used (1-3). Second, in addition to these heuristic 
approaches, a considerable number of methods based 
on statistical pattern recognition techniques, which uti­
lize more formal approaches, were devised (4-8). 
Third, expert systems were also designed (9,10) and 
neural networks were used (11,12). Reliability of au­
tomatic sleep scoring systems has been reported. Smith 
et al. (3) presented an agreement of 83% between hu­
man scoring and their hybrid system of staging, but 
they pooled stage 1 and rapid eye movement (REM) 
sleep. Gaillard and Tissot (2) found an agreement of 
77.8% using the same data as Smith and Karacan (3) 
and 82.7% with their own data (stage 1 and REM also 
pooled). Martin et al. (4) found 82% agreement with 
nine healthy young subjects, and Hasan (13) reported 
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80% agreement in young normal subjects, 77% for 
older normal subjects and 75% for alcoholics (using 
20-second epochs). Stanus et al. (7) found 75% agree­
ment on 15 control subjects and 70% on 15 patients, 
whereas Kuwahara et al. (8) found 89.1 % agreement 
in 12 control subjects. Automatic analysis with the Ox­
ford sleep stager showed 73.1 % agreement in 10 sub­
jects without sleep disturbances (14). 
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Several studies have also evaluated agreement in 
human vs. human scoring. Agreement between scorers 
ranged from 88% to 85% according to Gaillard and 
Tissot (2) and Smith et al. (3), on the basis of 60-
second epochs. Recently Stanus et al. (7) obtained an 
82% reliability using 20-second epoch definition, and 
Ferri et al. (15) obtained 80% agreement with nine 
groups of readers from different laboratories. Kubicki 
et al. (14) found an agreement rate of 91.3% between 
two independent readers. Agreement in visual scoring 
of sleep stages among 10 laboratories in Japan (16) 
showed values ranging from 67.3% to 75.3% for two 
healthy subjects. Inter-reader agreement between dif-
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ferent laboratories is broadly similar. Variations are 
based on different time bases and on the number of 
readers for the validation. The difference between 
readers has three major causes: 1) the scoring of slow­
wave sleep, which illustrates the human subjectivity 
introduced into the rules applied to the threshold of 75 
I..L V for delta wave recognition and in the detection of 
the percentage of delta waves in the epochs; 2) the 
scoring of stage 1 sleep, which is subject to great vari­
ation due to a lack of clearly characteristic features; 
and 3) application of "3-minute rules" in the stan­
dardized system (17). 

Our group is working on signal processing tech­
niques and pattern recognition applied to biomedical 
systems. Our main goal is to define a structure and an 
environment for electroencephalographic (EEG) signal 
interpretation in medicine. In this field, a sleep analysis 
system was developed. We have applied a new method 
for detecting sleep stage patterns in data that is based 
on a neural network model. The originality of this 
method lies in knowledge learning with a small struc­
ture, which allows real-time classification and han­
dling of the large diversity of sleep data. Our ultimate 
objective is the use of the automatic sleep system in 
an everyday environment. Therefore, we paid special 
attention to validation of the results against the stan­
dardized scoring technique using data collected from 
several populations. 

METHODS 

Subjects 

Sleep recordings from 60 subjects (33 males and 27 
females) were analyzed. The subjects included 20 nor­
mal controls (12 males and 8 females), aged 19 
through 42 years (mean = 26 ± 7); 20 patients with 
depression (10 males and 10 females), aged 35 through 
65 years (mean = 48 ± 10); and 20 patients with in­
somnia treated with benzodiazepines (11 males and 9 
females), aged 25 through 72 years (mean = 44 ± 11). 

The normal control subjects were volunteers 
screened to rule out those with significant medical 
problems, major sleep disorders or abnormal sleep 
habits. 

Patients in the group with depression were diag­
nosed according to DSM-III-R (18) criteria and had a 
minimum total score of 17 on the Hamilton Depression 
Scale (19). All patients were drug-free for at least 5 
weeks at the time of study. 

Patients with insomnia were diagnosed on the basis 
of a medical history, full clinical examination and clin­
ical laboratory tests. All met DSM-III-R criteria for 
primary insomnia. No patients in the insomnia group 
had sleep difficulties that were obviously secondary to 

psychopathology (e.g. major affective disorders, psy­
chosis) or medical problems (e.g. pain). All the insom­
niac patients had been treated with a benzodiazepine 
for more than 6 months. This group was examined in 
order to test our system not only in "good sleepers" 
but also in patients who might exhibit large variations 
in their EEG patterns. Thus, typical EEG modifications 
due to benzodiazepine treatment might be expected, 
such as increase in beta and spindle activity or de­
crease in slow-wave activity (20). 

The three groups were chosen to provide samples 
of normal and pathological sleep recordings. Testing 
only one set of recordings seemed inadequate. In this 
study, we focused our work on three major groups that 
together characterize the diversity of the different 
types of sleep recordings made in our laboratory. 

Recordings 

Polygraphic sleep recordings used for this evalua­
tion did not include adaptation night data. Data chan­
nels included two EEG channels (C4-AI and OI-C3), 
one horizontal electrooculogram (EOG) channel and 
one chin electromyogram (EMG) channel. 

An electronic device was used for amplification and 
analogue filtering (type: Bessel order 2) with the fol­
lowing cut-off frequencies: 0.5-30 Hz for EEG, 0.5-
15 Hz for EOG and 5-70 Hz for EMG. The signals 
were digitized at a sampling rate of 128 Hz. 

Automatic sleep scoring system 

Real time computerized analysis of the sleep re­
cordings was performed in three major steps: 1) Fea­
ture extraction from three data channels (central EEG, 
EOG, EM G) using signal processing techniques. The 
result, for each 30 second epoch, is a "feature vector" 
of 17 components. 2) Classification of each "feature 
vector" characterizing each page to one of the sleep 
stages using a multilayer neural network model. 3) Su­
pervision of the classification using an uncertainty in­
dex computed in the output space of the multilayer 
network and distance rejection using a nonsupervised 
neural network called ART2. 

Feature extraction 

The automatic sleep stage scoring system requires 
only three data channels: central EEG, horizontal EOG 
and chin EMG. This limitation was chosen to comply 
with the minimum recommendation of the standard­
ized system and to allow the implementation of the 
system with a portable device. The feature extraction 
technique (Fig. 1) involved segmenting the signal into 
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EEG 
EOG 
EMG 

Power Spectrum 

Feature Extraction 
EEG: EOG: 

1: Relative Power in the B band [0-4Hz[ 111: Relative Power in the band [0-4Hz[ 
2: Relative Power in the a band [4-8Hz[ 12: Total Power of the EOG [0-3SHz] 
3: Relative Power in the a. band [8-13Hz[ 13: Mean Frequency of EOG spectral density 
4: Relative Power in the ~1 band [13-22Hz[ 14: Dispel-sion of EOG spectral density 
5: Relative Power in the ~2 band [22-3SHz] 
6: Total Power of the EEG [0-3SHz] EMG : 
7: Ratio of Powers Bla 115: Total Power of the EMG [0-3SHz] 
8: Ratio of Powers wa 16: Mean Frequency ofEMG spectral density 
9: Mean Frequency of EEG spectral density 17: Dispersion of EMG spectral density 
10: Dispersion of EEG spectral density 

FIG_ 1. Feature extraction technique. 

short fixed nonoverlapping intervals of 2 seconds. The 
power spectrum was calculated using fast Fourier 
transformation with a 2-second epoch (256 points). 
Truncating error was reduced with a Hanning window. 
Characteristics of the power spectrum called "fea­
tures" were then extracted. Feature extraction involves 
the reduction of large amounts of data to a meaningful 
summary. Fourier transformation is useful in problems 
where the amplitude or energy spectrum exhibits sig­
nificant interclass differences. No theory exists to de­
termine which particular transform will be most ben­
eficial. Often transform applicability is best evaluated 
by measuring recognition system performance using 
transformed data. Techniques for defining. features that 
carry significant information may be divided into hu­
man or logical design techniques (known features) and 
automatic design techniques (statistical features). Our 
first step was to define features using our considerable 
experience in manual sleep stage classification. We di­
vided the spectrum into EEG frequency bands (delta, 
theta, alpha, beta1 and beta2). Next, we used statistical 
tests (t test, analysis of variance) or direct examination 
of the transformed data (one-dimensional plot or prin­
cipal component analysis) to validate parameters. 
Mean spectrum frequency and dispersion were added 
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for discriminant power in univariate statistical tests. 
Owing to the nonlinear classifier used, it is difficult to 
determine the exact importance of each individual pa­
rameter. The final performance of the recognition sys­
tem will reflect the parameter quality. Seventeen time­
frequency parameters are estimated for each 30-second 
epoch by averaging 15 successive 2-second estimates. 

Classification 

The aim of the classification to assign each vector 
of parameters to one of the sleep stages. We focused 
our research on supervised classification algorithms 
that could take into account the huge variability of 
data. We used a neural network model for the classi­
fication of sleep stages; its properties have been pub­
lished previously (12,21). The neural network model 
used for the sleep stage classification is a multilayer 
perceptron. The model we used for this study is shown 
in Fig. 2. Here the input value Xk is the parameter 
vector previously described. The units on the input 
layer are connected to the units on the hidden layer 
that in turn are connected to the units on the output 
layer. The goal of the network is to correctly classify 
the 30-second epochs of the sleep recording, charac-
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Xk 17 
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Error back-propagation 

FIG. 2. Neural network model for sleep stage classification. 

terized by the 17 time-frequencies parameter vector, to 
one of the different sleep stages. Thus the output layer 
is made of six units, one for each stage (or class). The 
first step in neural networks is the learning phase. 
Learning consists of altering the values of weights in 
response to a teaching signal that provides information 
about the correct classification of the input patterns. 
The learning algorithms are based on the minimization 
of a "cost" function. Adaptation or learning is a major 
focus of neural network research. We used the well­
known "back-propagation algorithm" (22). The learn­
ing set used in this study consisted of 12 all-night sleep 
recordings totally independent from the testing set. We 
only kept the proportion of the test set, i.e. four normal 
control subjects, four depressed patients and four in­
somniac patients. When learning is completed, the 
main properties of the learning set are concentrated in 
the connection weights. We used the network for the 
classification of new independent all-night sleep re­
cordings. This test phase consists of the presentation 
of the parameter vector for each page at the input layer 
of the network and computing the forward propagation 
to obtain the sleep stage at the output layer. Test com­
puting time for 1 night of 1,000 epochs is approxi­
mately 5 seconds, which allows real time classifica­
tion. Moreover, connection weights of the neural net 
took only 984 bytes of memory. 

Supervision 

When applying multilayer neural networks to a clas­
sification task, one generally uses a learning set as pri­
or information. In diagnostic problems, not all states 
of the system are usually available. Consequently, the 
learning set is not exhaustive. In some cases, it is very 
difficult to indicate the correct scoring. These difficul­
ties have been discussed by Kubicki et al. (23). Thus, 
some information is needed about the degree of cer­
tainty of the decision. In other words, it would be very 
interesting to know if the decision taken by the auto­
matic system was made without any doubt. Taking into 
account these considerations we propose two solu­
tions: 1) the unknown, characterized by a state for 
which initial rules are totally inappropriate; and 2) the 
uncertainty. This notion means that, for some inputs, 
a unique decision may not be reliable. 

Rejection of the unknown 

The classification method must be able to eliminate 
artifacts. This can be accomplished by distance rejec­
tion, a property of many statistical pattern recognition 
algorithms. An input pattern can be very far away 
from any training sample and nevertheless may acti­
vate the output neuron corresponding to a predefined 
class. This is because the decision functions are only 
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valid in a neighborhood of the learning set. One so­
lution is with the addition of an unsupervised network 
with two functions: first, to approximate the learning 
set hull; and second, to form clusters of rejected points. 
The nonsupervised network we used for this task is a 
very simplified version of ART2, proposed by Car­
penter and Grossberg (24), called NeoART (25). 
NeoART compressed data sets by the automatic ex­
traction of prototypes. At the end of the learning pro­
cess, the learning set is represented by prototypes. A 
prototype fires if an observation falls into a hyper­
sphere centered on it and with a radius related to a 
distance parameter. The choice of the distance param­
eter must be determined using descriptive multidimen­
sional analysis, according to a compromise between 
precision and number of prototypes (here we used a 
distance parameter equal to 0.2). Therefore, the learn­
ing set is described by a union of hyperspheres. In 
order to obtain distance rejection, when learning was 
completed, we just determined whether at least one 
output NeoART cell fired. If so, the observation to be 
classified belonged to a region where the multilayer 
network output was reliable. Otherwise, a new proto­
type would be generated by NeoART, and the obser­
vation would be rejected. Note that the created pro­
totype can be used to form a cluster with rejected 
points, if these points fall into its influence region. 

Uncertainty rejection 

Another important characteristic is uncertainty re­
jection. For some inputs, a unique decision may not 
be reliable. To handle this problem, using multilayer 
networks, we determined whether an input vector be­
longed to an ambiguous zone in the representation 
space by evaluating the minimum distance between the 
network output and the closest theoretical decision. 
The theoretical decisions Di, i = 1 ... m are defined 
as m-dimensional binary vectors with ith component 
equal to 1 if the presented observation belongs to clus­
ter i, and -1 elsewhere. The actual output 0 is con­
tinuous in the hypercube [-1, l]m. For uncertainty re­
jection, the proposed criterion is: 

if d' = mini [distance (O,Di)] > t the observation 
o is considered as ambiguous. 

else the observation 0 belongs to cluster j. 
d' will be called the uncertainty index (26). 

The distance used in all experiments was the Eu­
clidean distance. When a distance exceeded threshold, 
the input was classified as ambiguous, and the system 
gave a probability of belonging to the nearest classes. 
The threshold was determined by minimizing the error 
probability of the detector by plotting the absolute fre­
quency histograms of correctly classified data and mis-
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classified data versus the distance. Optimum threshold 
was defined by the abscissa of the intersection between 
these histograms (i.e. minimum error abscissa = l.7). 

Figure 3 shows the uncertainty index variations dur­
ing a complete night. The uncertainty index is very 
high during slow-wave sleep (stage 3 and 4), charac­
terizing the artificial distinction introduced by the delta 
wave rules. 

Sleep scoring validation method 

To assess variability between visual and automatic 
scoring, we compared the 60 nights epoch by epoch. 
First, inter-scorer variability was performed to define 
a reference by comparing data epoch by epoch. Then, 
sleep stage inter-expert agreement was computed. Sec­
ond, sleep parameter comparisons were made to de­
termine if variability introduced by a scorer influenced 
final diagnosis. Afterwards, analogous comparisons 
were used to estimate the agreement between the au­
tomatic sleep staging system and the scorers. 

RESULTS 

Inter-expert agreement 

For the three groups of 20 recordings, the two visual 
scorings were compared epoch by epoch to derive an 
agreement matrix for each group (Table 1). The num­
bers of epochs correctly classified by the two experts 
are on the main diagonal in bold type. Other squares 
contain the numbers of incorrectly scored epochs. 

Control group 

Table 1A gives the agreement matrix derived from 
the 20 control recordings. For example, row S3 indi­
cates that, taking expert 1 as reference, 912 epochs of 
stage 3 sleep were correctly classified by expert 2, 190 
epochs were scored by expert 2 in stage 2 and 171 
epochs were scored in stage 4. The TOT column in­
dicates the total number of epochs in each stage for 
expert 1. The TOT row indicates the total number of 
epochs in each stage for expert 2. The AGR. % row 
indicates the agreement percentage for one stage be­
tween experts, with expert 2 as reference (example: S3 
agreement % = 912/1,495 X 100 = 61%). The 
AGR. % column indicates the agreement percentage for 
one stage between experts, with expert 1 as reference 
(example: S3 agreement % = 912/1,273 X 100 = 
71.6%). The last two columns indicate the number and 
the percentage of difference per stage. 

The total agreement percentage over 21,138 epochs 
that were visually analyzed was 88.2% between the 
two experts, i.e. 2,502 epochs were scored differently. 
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Uncertainty Index 
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FIG. 3. Evolution of the uncertainty index for a whole night. 
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TABLE 1. Agreement matrix inter-experts for the three groups 

Expert 2 

A. Control W SI S2 S3 S4 REM TOT 

W 1,504 174 71 11 1,761 
SI 71 436 113 29 649 
S2 54 383 8,313 367 8 268 9,393 

Expert 1 S3 190 912 171 1,273 
S4 3 19 216 2,665 2.903 
REM 40 149 164 4,806 5,159 
TOT 1,672 1,142 8,870 1,495 2,845 5,114 21,138 

Agr. % 89.95 38.18 93.72 61.00 93.67 93.98 

Expert 2 

B. Depressed W SI S2 S3 S4 REM TOT 

W 3,440 317 74 24 3,855 
SI 139 589 254 54 1,036 
S2 78 210 7,628 847 37 92 8,892 

Expert 1 S3 1 79 688 248 1,016 
S4 61 754 815 
REM 55 127 252 4,032 4,466 
TOT 3,713 1,243 8,287 1,596 1,039 4,202 20,080 
Agr. % 92.65 47.39 92.05 43.11 72.57 95.95 

Expert 2 

C. Insomniac W SI S2 S3 S4 REM TOT 

W 2,695 241 63 14 3,013 
SI 79 521 230 34 865 
S2 67 141 10,313 575 1 169 11,266 

Expert 1 S3 69 936 129 1,134 
S4 2 7 59 445 513 
REM 54 136 231 1 3,518 3,940 
TOT 2,897 1,039 10,913 1,570 577 3,735 20,731 
Agr. % 93.03 50.14 94.502 59.62 77.12 94.19 

6h 15mn 

Agr. % Diff. n Diff. % 

85.4 257 14.6 
67.2 213 32.8 
88.5 1,080 11.5 
71.6 361 28.4 
91.8 238 8.2 
93.2 353 6.8 
88.2 2,502 11.8 

Agr. % Diff. n Diff. % 

89.2 415 10.8 
56.9 447 43.1 
85.8 1,264 14.2 
67.7 328 32.3 
92.5 61 7.5 
90.3 434 9.7 
85.3 2,949 14.7 

Agr. % Diff. n Diff. % 

89.4 318 10.6 
60.2 344 39.8 
91.5 953 8.5 
82.5 198 17.5 
86.7 68 13.3 
89.3 422 10.7 
88.9 2,303 11.1 
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The reading problems were essentially observed in 
stage 1 (67.2% agreement) and stage 3 (71.6% agree­
ment). The stage 3 sleep epochs were confused pri­
marily with stage 4. Stages 3 and 4 are defined to 
represent degrees of slow-wave sleep. For some stud­
ies, these two stages have been combined into a single 
stage referred to as slow-wave sleep (SWS), 95% of 
which is classified correctly. Principal differences are 
represented by the values adjacent to the main diago­
nal. 

Depressed group 

Table IB gives the agreement matrix derived from 
the 20 recordings from depressed patients. The total 
agreement percentage over 20,080 epochs that were 
visually analyzed was 85.3% between the two experts, 
i.e. 2,949 misclassified epochs. The reading problems 
were essentially observed in stage I (56.9% agree­
ment) and stage 3 (67.7% agreement). With stages 3 
and 4 combined into a single stage (SWS), agreement 
was 95%. 

Insomniac group 

Table 1 C gives the agreement matrix observed on 
the 20 benzodiazepine-treated patients with insomnia 
recordings. The total agreement percentage over 
20,731 epochs that were visually analyzed was 88.9% 
between the two experts, i.e. 2,303 misclassified ep­
ochs. The reading problems were essentially observed 
in stage 1 (60.2% agreement). The SWS agreement 
percentage was 95%. 

Automatic/expert agreement 

Similarly, we compared results between the auto­
matic analysis and an expert. The 60 recordings were 
computed in real time by the neural network. For each 
recording, we compared the automatic classification 
and the visual classification of expert 1. Results of 
comparison between expert 2 and automatic analysis 
did not differ statistically from those computed with 
expert 1. The Spec. % row indicates the specificity of 
the system, i.e. the agreement percentage per stage be­
tween expert 1 and automatic analysis with automatic 
analysis as reference. 

Control group 

Table 2A gives the agreement matrix derived from 
the 20 control recordings scored by automatic system 
and expert 1. The total agreement percentage over 
21,138 epochs that were visual analyzed was 84.5%, 
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i.e. 3,272 misclassified epochs. Problems were essen­
tially observed in stage 1 (21.9% agreement) and stage 
3 (49.6% agreement). SWS agreement was 90%. 

Depressed group 

Table 2B gives the agreement matrix derived from 
the 20 recordings from depressed patients scored by 
automatic system and expert 1. The total agreement 
percentage over 20,080 epochs that were visually an­
alyzed was 81.5%, i.e. 3,707 misclassified epochs. 
Problems were essentially observed in stage 1 (21.6% 
agreement) and stage 3 (46.7% agreement). SWS 
agreement was 84%. 

Insomniac group 

Table 2C gives the agreement matrix derived from 
the 20 insomniac recordings scored by automatic sys­
tem and expert 1. The total agreement percentage over 
20,731 epochs that were visually analyzed was 81.0%, 
i.e. 3,936 misclassified epochs. Problems were essen­
tially observed in stage 1 (20.6% agreement) and stage 
4 (56.7% agreement). SWS agreement was 86.8%. 

Sleep parameter comparison 

Table 3 shows the results of sleep parameter com­
parison among expert 1 (EXP 1), expert 2 (EXP 2) 
and the automatic system (AUTO). No significant dif­
ferences between the two experts were observed for 
the main sleep parameters in the control group, except 
for the duration of stage 1. In the group of depressed 
patients, stage 1, stage 3 and SWS duration showed 
significant variability between readers. In the insom­
niac group, stage 1 duration and stage 4 latency 
showed significant variability between readers. 

In comparison with expert 1, the automatic sleep 
stage system showed the same weakness observed in 
the epoch by epoch comparison. For the control group, 
the poor detection of stage 1 influenced duration and 
latency of stage 1. The mixing of stages 3 and 4 in­
duced significant differences in the duration of stages 
3 and 4. In the group with depressed patients the du­
ration and latency of stage 1 and the duration of stage 
3 were different. In the insomniac group, the duration 
and latency of stage 1, duration of stage 3 and stage 
4 latency differed significantly. In summary, deficien­
cies observed in epoch by epoch comparison were also 
observed in the sleep parameter comparison. Overall, 
differences concerned mainly the detection of stage 1 
and the failure to distinguish between stages 3 and 4. 
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TABLE 2. Agreement matrix automatic/expert for the three groups 

Automatic analysis 

A. Control W SI S2 S3 S4 REM TOT Agr. % Diff. n Diff. % 

W 1,476 16 186 5 78 1,761 83.8 285 16.2 
SI 212 142 166 129 649 21.9 507 78.1 
S2 247 111 8,223 119 95 598 9,393 87.5 1,170 12.5 

Expert 1 S3 13 283 632 331 14 1,273 49.6 641 50.4 
S4 43 56 55 2,742 7 2,903 94.5 161 5.5 
REM 133 371 4 4,651 5,159 90.2 508 9.8 
TOT 2,124 269 9,285 806 3,177 5,477 21,138 84.5 3,272 15.5 

Spec. % 69.49 52.79 88.56 78.41 86.31 84.92 

Automatic analysis 

B. Depressed W SI S2 S3 S4 REM TOT Agr. % Diff. n Diff. % 

W 3,429 103 180 143 3,855 88.9 426 11.1 
SI 399 224 249 2 162 1,036 21.6 812 78.4 
S2 410 144 7,576 214 63 485 8,892 85.2 1,316 14.8 

Expert 1 S3 5 267 474 268 1 1,016 46.7 542 53.3 
S4 3 11 74 727 815 89.2 88 10.8 
REM 175 6 342 3,943 4,466 88.3 523 11.7 
TOT 4,421 478 8,625 764 1,058 4,734 20,080 81.5 3,707 18.5 

Spec. % 77.56 46.86 87.84 62.04 68.71 83.29 

Automatic analysis 

C. Insomniac W SI S2 S3 S4 REM TOT Agr. % Diff. n Diff. % 

W 2,645 37 239 91 3,013 87.8 368 12.2 
SI 335 178 247 105 865 20.6 687 79.4 
S2 455 69 9,952 326 41 423 11,266 88.3 1,314 11.7 

Expert 1 S3 6 202 886 38 2 1,134 78.1 248 21.9 
S4 5 2 215 291 513 56.7 222 43.3 
REM 449 64 577 1 6 2,843 3,940 72.2 1,097 27.8 
TOT 3,895 348 11,219 1,429 376 3,464 20,731 81.0 3,936 19.0 

Spec. % 67.91 51.15 88.71 62.00 77.39 82.07 

TABLE 3. Sleep parameter comparison for the three groups 

Control Depressed Insomniac 

EXP 1 EXP 2 AUTO ANOVA EXP 1 EXP 2 AUTO ANOVA EXP 1 EXP 2 AUTO ANOVA 

m (T m (T m (T 112 lIA m (T m (T m (T 112 ItA m (T m (T m (T 112 lIA 

Sleep latency 16 10 18 10 15 10 29 28 27 27 32 36 28 23 27 23 20 17 
Time spent 

asleep 485 52 489 51 469 52 406 86 421 68 386 94 443 52 447 52 418 52 
Efficiency 92 3 93 3 91 3 81 15 85 11 77 17 86 9 86 9 81 9 
Stage shifts 83 18 95 21 92 19 101 28 94 19 99 25 81 23 80 22 95 23 
NREM time 356 43 361 45 334 47 294 58 312 48 271 73 345 59 353 56 334 60 
REM time 129 26 128 25 135 21 112 44 109 39 116 47 99 33 93 31 84 42 
Awake (minutes) 44 18 39 19 60 32 96 82 79 56 116 93 75 51 72 53 100 54 
Stage 1 (minutes) 16 8 29 17 2 3 * * 26 13 30 13 9 16 * * 22 11 26 17 6 8 * 
Stage 2 (minutes) 235 44 222 39 238 41 222 59 212 51 219 72 282 53 273 50 283 50 
Stage 3 (minutes) 32 10 37 14 9 9 * 25 12 42 19 15 14 * * 28 23 39 26 38 38 * * 
Stage 4 (minutes) 73 19 71 19 85 18 * 20 26 27 26 26 28 13 25 14 25 7 20 
SWS (minutes) 104 14 109 16 94 18 46 19 69 23 42 21 * 41 24 54 25 45 29 
Rem sleep 

latency 67 13 65 12 65 32 64 39 63 40 62 44 96 63 95 62 92 61 
Cycle number 5 1 5 1 5 1 4 1 5 1 4 1 4 1 4 1 4 2 
Stage 1 latency 13 9 12 8 183 229 * 25 27 21 25 64 82 * 28 28 17 14 122 146 * 
Stage 2 latency 16 10 18 10 16 11 29 28 27 27 33 35 28 23 27 23 24 19 
Stage 3 latency 29 11 29 11 43 43 * 52 36 52 38 58 44 56 34 63 43 66 61 
Stage 4 latency 35 11 35 12 34 11 84 61 69 46 77 60 70 53 116 52 104 49 * * 

* Significant Holm a-adjustment procedure. 
Comparisons between expert 1 (EXP 1), expert 2 (EXP 2) and the automatic system (AUTO). Mean (m) and standard deviation (rr) of 

each sleep parameter were computed for the 20 nights for each group. Statistical analysis was carried out using analysis of variance for 
repeated measures. If the "expert" factor (expert 1, expert 2 or automatic analysis) was significant, a Holm a-adjustment procedure (27) 
was used to characterize the differences. Significant differences between the two experts were marked by an asterisk in the 1/2 column. 
Significant differences between expert 1 and automatic system were marked by an asterisk in the IIA column. 

Sleep, Vol. 19, No.1, 1996 

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/article/19/1/26/2749751 by guest on 20 August 2022



34 N. SCHALTENBRAND ET AL. 

Supervision 

The above comparisons are between automatic and 
expert analysis without accounting for uncertainty or 
unknown states. The major part of the 5% difference 
observed between experts and automatic system in­
volves these issues. 

Across the whole set of 60 nights, the computation 
of the uncertainty index showed that approximately 
19% of the epochs were detected as ambiguous, and 
half of them were misclassified by automatic scoring. 
By adding expert supervision for these ambiguous ep­
ochs, we were able to correct about 95 epochs per 
night (9.5% of the recording). Consequently, the au­
tomatic/expert agreement rose from 82% to 89%. 

Detecting unknowns allows us to reject epochs that 
differ from the learning set. Across all records, 19.6% 
of epochs were rejected, and a third of these were mis­
classified by the automatic system. Expert supervision 
for unknown epochs improved an average 30 epochs 
per night (3% of the recording). The automatic/expert 
agreement rose from 82% to 84%. 

DISCUSSION 

Our results show both inter-scorer and computer vs. 
human scorer variability. Inter-reader variability could 
result from 1) different application of standardized 
rules of scoring by different readers and 2) a real dif­
ficulty in scoring some sleep recordings with the stan­
dardized rules (19). The standardized system was de­
veloped on and for recordings made for normal young 
adult volunteers and therefore may be more difficult 
to apply to abnormal data. 

We found that inter-scorer agreement averaged 
87.5%, on the basis of 30-second epochs. The popu­
lation set had little influence on the overall accuracy. 
Stage 1 was the most variable stage in all groups, 
probably because it is a short-lasting stage that appears 
between wake and other sleep stages (principally stage 
2 and REM), or after body movement during sleep. 
REM stage agreement was slightly lower in benzodi­
azepine-treated insomniac recordings due to beta in­
trusion and the diminution of eye movements. SWS 
scoring presented the classical problem of transitions 
between stages 3 and 4. When stages 3 and 4 were 
combined into a single stage, SWS, the agreement per­
centage of SWS was 95%. 

Automatic scoring compared to human scoring in­
dicated an average agreement rate of 82.3%. The main 
differences were observed in stage 1 and the confusion 
between stages 3 and 4. 

Stage 1 scoring was the most unstable stage for au­
tomatic scoring in the three groups (20% agreement) 
because it presented two major characteristics: 1) the 
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a priori probability of stage 1 during the night was 
very low (between 3% and 6% of the total number of 
epochs). The classifier used (neural network) converg­
es to the optimum classifier of Bayes that weights the 
decision by the a priori probability of each class. That 
means that a small class will be poorly detected in 
comparison with a large one. Therefore, detection of 
stage 1 by this automatic detector was unsatisfactory. 
2) Stage 1 is a short-lasting stage. Data averaging over 
the 30-second base time for classification did not allow 
good temporal resolution for stage 1 detection. Body 
movement followed by stage 1 might be scored as 
awake because the movement has a high energy level. 

The 82.3% epoch by epoch reliability for our au­
tomatic sleep scoring system is comparable with other 
studies. Moreover, supervision of the ambiguous and 
unknown epoch automatic decisions offered by the 
system improved its reliability from 82.3% to 90% af­
ter supervision of the recording for only 20% of the 
night. 

The automatic method could be used to quantify 
other aspects of the sleep process, such as spectral 
analysis or sleep depth index. However, our purpose 
in the present study was to validate the system against 
classical stages of sleep, as defined by the Ad Hoc 
Committee (47), that are widely used to evaluate sleep 
structure. It is clear that our automatic technique is less 
accurate when applied to fragmented sleep with many 
sleep stage changes or awakenings due to sleep apnea, 
dementia, alpha-delta sleep or another pathology. This 
is partially due to the technique being mainly based 
on continuous EEG activity rather than on phasic 
events. This method would profit from a combination 
of techniques that would simultaneously explore sleep 
staging and the microstructure of phasic events. Fur­
ther developments in this area are in progress. 
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